TIGER

Journal Articles: 120 results
Designing and Conducting a Purification Scheme as an Organic Chemistry Laboratory Practical  Kate J. Graham, Brian J. Johnson, T. Nicholas Jones, Edward J. McIntee, and Chris P. Schaller
Describes an open-ended laboratory practical that challenges students to evaluate when different purification techniques are appropriate.
Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.; Schaller, Chris P. J. Chem. Educ. 2008, 85, 1644.
IR Spectroscopy |
Microscale Lab |
Molecular Properties / Structure |
NMR Spectroscopy |
Physical Properties |
Separation Science
NMR and IR Spectroscopy for the Structural Characterization of Edible Fats and Oils  Molly W. Crowther
This article describes an upper-level instrumental laboratory for undergraduates that explores the complementary nature of IR and NMR spectroscopy in the analysis of five edible and structurally similar fats and oils for average chain length, degree of unsaturation, and trans fat content.
Crowther, Molly W. J. Chem. Educ. 2008, 85, 1550.
Consumer Chemistry |
Food Science |
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Spectroscopy |
Fatty Acids
The Synthesis of a Cockroach Pheromone  Patty L. Feist
This paper describes the synthesis of gentisyl quinone isovalerate or blattellaquinone, a sex pheromone of the German cockroach and a compound with real-world applications. The experiment also affords students practice in extraction as well as IR and NMR spectroscopy.
Feist, Patty L. J. Chem. Educ. 2008, 85, 1548.
Esters |
IR Spectroscopy |
Natural Products |
NMR Spectroscopy |
Oxidation / Reduction |
Synthesis
The Synthesis of N-Benzyl-2-azanorbornene via Aqueous Hetero Diels–Alder Reaction  Xavier Sauvage and Lionel Delaude
Characterization of the product of this organic synthesis through IR and NMR data analysis provides valuable material to familiarize students with different types of protonproton coupling patterns and their typical ranges, serves to illustrate the concepts of green chemistry and atom efficiency, and can be used to exemplify structural analysis and computational studies.
Sauvage, Xavier; Delaude, Lionel. J. Chem. Educ. 2008, 85, 1538.
Alkenes |
Aqueous Solution Chemistry |
Conformational Analysis |
Green Chemistry |
IR Spectroscopy |
Molecular Modeling |
NMR Spectroscopy |
Stereochemistry |
Synthesis
Synthesis of the Commercial Antidepressant Moclobemide   Jesse D. More
Describes an experiment for the undergraduate organic chemistry laboratory in which students synthesize the commercial antidepressant drug moclobemide, marketed under the trade name Manerix, in one step using commercially available material. The purity and identity of the product are confirmed by melting point and NMR and IR spectroscopy.
More, Jesse D. J. Chem. Educ. 2008, 85, 1424.
Drugs / Pharmaceuticals |
IR Spectroscopy |
Medicinal Chemistry |
NMR Spectroscopy |
Synthesis
The Comparative Nucleophilicity of Naphthoxide Derivatives in Reactions with a Fast-Red TR Dye  Cheryl M. Mascarenhas
In this experiment, organic chemistry students perform reactions between three naphthyl acetate derivatives and the diazonium salt Fast-Red TR. Students discover under what conditions the hydrolysis and electrophilic aromatic substitution is fastest and slowest, allowing them to conclude that latter, rather than the former, is rate-limiting.
Mascarenhas, Cheryl M. J. Chem. Educ. 2008, 85, 1271.
Alcohols |
Aromatic Compounds |
Dyes / Pigments |
Esters |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Thin Layer Chromatography |
UV-Vis Spectroscopy
The Preparation and Enzymatic Hydrolysis of a Library of Esters  Elizabeth M. Sanford and Traci L. Smith
In this investigative case study, students work collaboratively to prepare and characterize a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver and orange peel esterases.
Sanford, Elizabeth M.; Smith, Traci L. J. Chem. Educ. 2008, 85, 944.
Drugs / Pharmaceuticals |
Enzymes |
Esters |
Industrial Chemistry |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Thin Layer Chromatography
Identification of an Unknown Compound by Combined Use of IR, 1H NMR, 13C NMR, and Mass Spectrometry: A Real-Life Experience in Structure Determination  Louis J. Liotta and Magdalena James-Pederson
In this introductory organic chemistry experiment, students are expected to operate NMR, IR, and GCMS instrumentation to obtain spectra which are interpreted to elucidate the chemical structure of the assigned compounds without the benefit of a list of possible unknowns.
Liotta, Louis J.; James-Pederson, Magdalena. J. Chem. Educ. 2008, 85, 832.
Gas Chromatography |
Instrumental Methods |
IR Spectroscopy |
Mass Spectrometry |
Molecular Properties / Structure |
NMR Spectroscopy |
Qualitative Analysis |
Spectroscopy
Synthesis and Characterization of 9-Hydroxyphenalenone Using 2D NMR Techniques  Benjamin Caes and Dell Jensen Jr.
The synthesis of 9-Hydroxyphenalenone produces a planar multicyclic beta-ketoenol, the tautomerization of which results in C2v symmetry on the NMR time scale, thus simplifying the spectra and providing a unique structure for teaching 2D NMR spectroscopy.
Caes, Benjamin; Jensen, Dell, Jr. J. Chem. Educ. 2008, 85, 413.
Alcohols |
Aldehydes / Ketones |
Aromatic Compounds |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis
Peer Mentoring in the General Chemistry and Organic Chemistry Laboratories  Caleb A. Arrington, Jameica B. Hill, Ramin Radfar, David M. Whisnant, and Charles G. Bass
This article describes a discovery experiment in which organic chemistry students act as mentors to general chemistry students. Members from both groups work together to isolate an unknown compound using distillation. The structure of the product is then determined collaboratively using IR and NMR spectroscopy.
Arrington, Caleb A.; Hill, Jameica B.; Radfar, Ramin; Whisnant, David M.; Bass, Charles G. J. Chem. Educ. 2008, 85, 288.
IR Spectroscopy |
NMR Spectroscopy
Regioselectivity in Organic Synthesis: Preparation of the Bromohydrin of α-Methylstyrene  Brad Andersh, Kathryn N. Kilby, Meghan E. Turnis, and Drew L. Murphy
In the described experiment, the regiochemical outcome of the addition of "HOBr" to a-methylstyrene is investigated. Although both "classic" qualitative analysis and instrumental techniques are described, the emphasis of this experiment is on the utilization 13C and DEPT-135 NMR spectroscopy to determine the regiochemical outcome of the addition.
Andersh, Brad; Kilby, Kathryn N.; Turnis, Meghan E.; Murphy, Drew L. J. Chem. Educ. 2008, 85, 102.
Addition Reactions |
Alcohols |
Alkenes |
Constitutional Isomers |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis
Synthesis of Quaternary Ammonium Salts of Tricyclic Cationic Drugs: A One-Pot Synthesis for the Bioorganic Chemistry Laboratory  Linda S. Brunauer, Abid C. Mogannam, Won B. Hwee, and James Y. Chen
Describes a one-pot conversion of tricyclic cationic drugs to their quaternary ammonium forms for a widely used bioactive drug, chlorpromazine, a phenothiazine-based antipsychotic. The conversion of parent drug to the methylated form was evaluated by qualitatively measuring its ability to induce alterations in the shape of mammalian erythrocytes.
Brunauer, Linda S.; Mogannam, Abid C.; Hwee, Won B.; Chen, James Y. J. Chem. Educ. 2007, 84, 1992.
Amines / Ammonium Compounds |
Bioorganic Chemistry |
Drugs / Pharmaceuticals |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
Thin Layer Chromatography
Isolation of Betulin and Rearrangement to Allobetulin  Brian Green, Michael D. Bentley, Bong Y. Chung, Nicholas G. Lynch, and Bruce L. Jensen
Betulin is obtained by extraction from birch bark and converted to allobetulin. Both compounds display 1H NMR spectra that include axialequatorial coupling characteristic of a C3-alcohol, conformational analysis by the use of dihedral angles and the Karplus equation, coupling patterns caused by diastereotopic protons and long-range interactions, and chemical shift values that are influenced by electronegativity and stereochemistry.
Green, Brian; Bentley, Michael D.; Chung, Bong Y.; Lynch, Nicholas G.; Jensen, Bruce L. J. Chem. Educ. 2007, 84, 1985.
Biosynthesis |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
Natural Products
Using Ozone in Organic Chemistry Lab: The Ozonolysis of Eugenol  Bruce M. Branan, Joshua T. Butcher, and Lawrence R. Olsen
This organic laboratory involves the ozonolysis of eugenol (clove oil) followed by a reductive workup that generates an aldehyde easily identified by its NMR and IR spectra.
Branan, Bruce M.; Butcher, Joshua T.; Olsen, Lawrence R. J. Chem. Educ. 2007, 84, 1979.
Aldehydes / Ketones |
Gases |
IR Spectroscopy |
Laboratory Equipment / Apparatus |
Natural Products |
NMR Spectroscopy |
Synthesis |
Oxidation / Reduction
Making Student-Acquired Spectra Available via a Web Browser  Jennifer L. Muzyka, Ian M. Kaster, and Lucas W. Hatcher
This paper reports on an approach to make student-acquired spectral data available via a Web browser that allows instrument time to be dedicated to acquisition of spectra rather than time-consuming integration and printing.
Muzyka, Jennifer L.; Kaster, Ian M.; Hatcher, Lucas W. J. Chem. Educ. 2007, 84, 1871.
IR Spectroscopy |
Laboratory Computing / Interfacing |
NMR Spectroscopy |
Spectroscopy
Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones  Nicholas G. Angelo, Laura K. Henchey, Adam J. Waxman, James W. Canary, Paramjit S. Arora, and Donald Wink
Describes an experiment in which students perform the aldol condensation on an unknown aldehyde and ketone and make use of TLC, column chromatography, recrystallization, and characterization by 1H NMR, GCMS, and FTIR.
Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald. J. Chem. Educ. 2007, 84, 1816.
Aldehydes / Ketones |
Chromatography |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Spectroscopy |
Thin Layer Chromatography
A Knoevenagel Initiated Annulation Reaction Using Room Temperature or Microwave Conditions  A. Gilbert Cook
The product of a Knoevenagel initiated annulation reaction is identified through a guided prelab exercise of the synthesis of the Hagemann ester, and then through the analysis of GCMS, NMR, and IR spectra. The stereochemistry of the product is determined through the NMR spectrum and Karplus curve, and the student is required to write a mechanism for the reaction.
Cook, A. Gilbert. J. Chem. Educ. 2007, 84, 1477.
Aldehydes / Ketones |
Conformational Analysis |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
Mechanisms of Reactions |
NMR Spectroscopy |
Stereochemistry |
Synthesis
Using a Premade Grignard Reagent To Synthesize Tertiary Alcohols in a Convenient Investigative Organic Laboratory Experiment  Michael A. G. Berg and Roy D. Pointer
Describes the use of a commercially available Grignard reagent in a Grignard synthesis that avoided the failures typically associated with the Grignard reaction.
Berg, Michael A. G.; Pointer, Roy D. J. Chem. Educ. 2007, 84, 483.
Aldehydes / Ketones |
Grignard Reagents |
IR Spectroscopy |
NMR Spectroscopy |
Organometallics |
Synthesis
Keeping Your Students Awake: Facile Microscale Synthesis of Modafinil, a Modern Anti-Narcoleptic Drug  Evangelos Aktoudianakis, Rui Jun Lin, and Andrew P. Dicks
Describes the microscale preparation of modafinil, a pharmaceutical recently approved for the treatment of narcolepsy, by a sulfide oxidation reaction. An unusual feature of modafinil is the presence of a chiral sulfoxide functionality where a sulfur atom acts as a stereocenter, demonstrating that atoms other than carbon can act as centers of chirality.
Aktoudianakis, Evangelos; Lin, Rui Jun; Dicks, Andrew P. J. Chem. Educ. 2006, 83, 1832.
Chirality / Optical Activity |
Drugs / Pharmaceuticals |
Synthesis |
Mechanisms of Reactions |
IR Spectroscopy |
NMR Spectroscopy |
Microscale Lab |
Stereochemistry
Photochemical Dimerization of Dibenzylideneacetone. A Convenient Exercise in [2+2] Cycloaddition Using Chemical Ionization Mass Spectrometry  G. Nageswara Rao, Chelli Janardhana, V. Ramanathan, T. Rajesh, and P. Harish Kumar
Presents a laboratory procedure for the photochemical dimerization of dibenzylideneacetone, a dienone. The dimerization is confirmed by chemical ionization mass spectrometry, and other spectroscopic techniques are used to establish the structure of the product.
Rao, G. Nageswara; Janardhana, Chelli; Ramanathan, V.; Rajesh, T.; Kumar, P. Harish. J. Chem. Educ. 2006, 83, 1667.
Aldehydes / Ketones |
Alkenes |
Chromatography |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Photochemistry |
Thin Layer Chromatography
Developing Critical Thinking Skills: The "Sabotaged" Synthesis of Methyl p-Bromobenzoate  Eric J. Mahan and Mary Alice Nading
Before beginning an experiment, students are told that someone might have sabotaged their experiment to produce other-than-expected results. The objective is to perform the experiment, determine if any sabotage has occurred, and, if so, identify the changes that were made to the reagents as well as the person responsible.
Mahan, Eric J.; Nading, Mary Alice. J. Chem. Educ. 2006, 83, 1652.
Alcohols |
Carboxylic Acids |
Esters |
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Synthesis
3,5-Diarylisoxazoles: Individualized Three-Step Synthesis and Isomer Determination Using 13C NMR or Mass Spectroscopy  Chad E. Stephens and Reem K. Arafa
Describes the three-step synthesis and definitive characterization of a 3,5-diarylisoxazole via the chalcone and chalcone dibromide. The project is individualized with regard to compound purification, characterization, and literature searches as each student prepares a differently substituted chalcone.
Stephens, Chad E.; Arafa, Reem K. J. Chem. Educ. 2006, 83, 1336.
Alkenes |
Heterocycles |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Synthesis |
Spectroscopy
The Step-by-Step Robinson Annulation of Chalcone and Ethyl Acetoacetate. An Advanced Undergraduate Project in Organic Synthesis and Structural Analysis  Lionel Delaude, Jean Grandjean, and Alfred F. Noels
The Robinson annulation is a three-step process involving a Michael addition followed by an internal aldol condensation and a dehydration. It is possible to stop the reaction after every step and to isolate the three products, allowing students to confirm the validity of the stepwise mechanism and develop a more thorough understanding of the whole process.
Delaude, Lionel; Grandjean, Jean; Noels, Alfred F. J. Chem. Educ. 2006, 83, 1225.
Catalysis |
Chirality / Optical Activity |
Conformational Analysis |
Diastereomers |
IR Spectroscopy |
Synthesis |
NMR Spectroscopy |
Stereochemistry
Regiospecific Epoxidation of Carvone: A Discovery-Oriented Experiment for Understanding the Selectivity and Mechanism of Epoxidation Reactions  Kendrew K. W. Mak, Y. M. Lai, and Yuk-Hong Siu
Peroxy acids and alkaline H2O2 are two commonly used reagents for alkene epoxidation. The former react preferentially with electron-rich alkenes while the latter works better with a,-unsaturated carbonyl compounds. The selectivity of these two reagents on carvone, a naturally occurring compound that contains both types of C=C bonds, is investigated.
Mak, Kendrew K. W.; Lai, Y. M.; Siu, Yuk-Hong. J. Chem. Educ. 2006, 83, 1058.
Alkenes |
Chromatography |
Epoxides |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Mechanisms of Reactions
Stereospecific Synthesis of the Geometrical Isomers of a Natural Product  T. Grove, D. DiLella, and E. Volker
Presents an experiment for the synthesis of (Z) and (E) isomers that is presented to students as a puzzle in which they must determine the identity of the major component in anise oil. A necessary part of the analysis is the preparation the (E) and (Z) isomers of anethole. Molecular modeling is used to explore the conformation of and energy difference between isomers.
Grove, T.; DiLella, D.; Volker, E. J. Chem. Educ. 2006, 83, 1055.
Alkenes |
Computational Chemistry |
Gas Chromatography |
IR Spectroscopy |
NMR Spectroscopy |
Stereochemistry |
Synthesis
Usnic Acid and the Intramolecular Hydrogen Bond. A Computational Experiment for the Organic Laboratory  Thomas K. Green and Charles A. Lane
A computational experiment is described for the organic chemistry laboratory that allows students to estimate the relative strengths of the intramolecular hydrogen bonds of usnic and isousnic acids, two related lichen secondary metabolites.
Green, Thomas K.; Lane, Charles A. J. Chem. Educ. 2006, 83, 1046.
Computational Chemistry |
Hydrogen Bonding |
IR Spectroscopy |
NMR Spectroscopy |
Laboratory Computing / Interfacing
Reductive Amination: A Remarkable Experiment for the Organic Laboratory  Kim M. Touchette
The synthesis of N-(2-hydroxy-3-methoxybenzyl)-N-p-tolylacetamide is a fast, simple three-step sequence that serves as a useful example of the reductive amination reaction for the organic chemistry laboratory.
Touchette, Kim M. J. Chem. Educ. 2006, 83, 929.
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Green Chemistry |
Instrumental Methods |
IR Spectroscopy |
NMR Spectroscopy |
Oxidation / Reduction |
Solids
Iodolactonization of 4-Pentenoic Acid   R. David Crouch, Alexander Tucker-Schwartz, and Kathryn Barker
Describes an experiment in which 4-pentenoic acid is converted into a lactone via iodolactonization.
Crouch, R. David; Tucker-Schwartz, Alexander; Barker, Kathryn. J. Chem. Educ. 2006, 83, 921.
Alkenes |
Carboxylic Acids |
IR Spectroscopy |
Mechanisms of Reactions |
NMR Spectroscopy |
Reactions |
Synthesis
Acetal Protecting Groups in the Organic Laboratory: Synthesis of Methyl 4,6-O-Benzylidene-α-D-Glucopyranoside  Alexei V. Demchenko, Papapida Pornsuriyasak, and Cristina De Meo
The synthesis of methyl 4,6-O-benzylidene-a-D-glucopyranoside provides an opportunity to synthesize a cyclic acetal; stereoselectively introduce a chirality center; and learn extraction, evaporation, precipitation, optical rotation, melting point measurement, thin-layer chromatography, IR-spectroscopy, mass spectrometry, and various NMR techniques.
Demchenko, Alexei V.; Pornsuriyasak, Papapida; De Meo, Cristina. J. Chem. Educ. 2006, 83, 782.
Carbohydrates |
IR Spectroscopy |
Medicinal Chemistry |
NMR Spectroscopy |
Thin Layer Chromatography |
Synthesis
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
4-Dimethylaminopyridine or Acid-Catalyzed Syntheses of Esters: A Comparison  Annemieke W. C. van den Berg and Ulf Hanefeld
Students compare acid-catalyzed ester synthesis and the 4-dimethylaminopyridine-catalyzed reaction. Based on the outcome of the experiments, students discuss the different reaction mechanisms and reason why different products are formed.
van den Berg, Annemieke W. C.; Hanefeld, Ulf. J. Chem. Educ. 2006, 83, 292.
Acids / Bases |
Catalysis |
Chromatography |
Esters |
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Synthesis |
Mechanisms of Reactions
Convenient Microscale Synthesis of a Coumarin Laser Dye Analog  Evangelos Aktoudianakis and Andrew P. Dicks
Describes the Knoevenagel synthesis of 3-acetyl-7-(diethylamino)-2H-1-benzopyran-2-one, a fluorescent coumarin laser dye analog.
Aktoudianakis, Evangelos; Dicks, Andrew P. J. Chem. Educ. 2006, 83, 287.
Aromatic Compounds |
Fluorescence Spectroscopy |
IR Spectroscopy |
Microscale Lab |
Synthesis |
NMR Spectroscopy |
UV-Vis Spectroscopy
Synthesis of Methyl Diantilis, a Commercially Important Fragrance  William H. Miles and Katelyn B. Connell
Describes the synthesis of a family of fragrances, including the commercially important Methyl Diantilis, and provides an excellent introduction to intellectual property laws.
Miles, William H.; Connell, Katelyn B. J. Chem. Educ. 2006, 83, 285.
Alcohols |
Food Science |
Catalysis |
Ethers |
Industrial Chemistry |
IR Spectroscopy |
Lewis Acids / Bases |
NMR Spectroscopy |
Oxidation / Reduction |
Synthesis
Grubbs's Cross Metathesis of Eugenol with cis-2-Butene-1,4-diol To Make a Natural Product. An Organometallic Experiment for the Undergraduate Lab   Douglass F. Taber and Kevin J. Frankowski
Describes the ruthenium catalyzed cross metathesis of eugenol with cis-1,4-butenediol. The experiment is an excellent example of the powerful selectivity possible with the Grubbs' catalyst, demonstrating the preference for trans over cis alkene formation and for cross metathesis over homodimerization.
Taber, Douglass F.; Frankowski, Kevin J. J. Chem. Educ. 2006, 83, 283.
Alkenes |
Catalysis |
IR Spectroscopy |
Mass Spectrometry |
Mechanisms of Reactions |
Microscale Lab |
Natural Products |
NMR Spectroscopy |
Organometallics |
Stereochemistry |
Synthesis |
Thin Layer Chromatography |
Transition Elements
Microwave-Assisted Synthesis of a Natural Insecticide on Basic Montmorillonite K10 Clay. Green Chemistry in the Undergraduate Organic Laboratory  Matthew R. Dintzner, Paul R. Wucka, and Thomas W. Lyons
Describes a microwave-assisted, solvent-free, one-pot synthesis of a naturally occurring insecticide catalyzed by naturally benign, base-washed Montmorillonite K10 clay. The reaction features several interesting mechanistic considerations, including an electrophilic aromatic addition, dehydration, and intramolecular hetero-DielsAlder cyclization.
Dintzner, Matthew R.; Wucka, Paul R.; Lyons, Thomas W. J. Chem. Educ. 2006, 83, 270.
Chromatography |
Green Chemistry |
Mass Spectrometry |
NMR Spectroscopy |
Synthesis |
IR Spectroscopy |
Spectroscopy
Derivatization of Fullerenes: An Organic Chemistry Laboratory  Charles T. Cox Jr. and Melanie M. Cooper
Presents two undergraduate organic chemistry laboratories detailing the synthesis of fullerene derivatives, using the Bingel (carbene insertion) and Prato (1,3-dipolar addition) protocols.
Cox, Charles T., Jr.; Cooper, Melanie M. J. Chem. Educ. 2006, 83, 99.
Acids / Bases |
Addition Reactions |
Chromatography |
Heterocycles |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
UV-Vis Spectroscopy
Just Click It: Undergraduate Procedures for the Copper(I)-Catalyzed Formation of 1,2,3-Triazoles from Azides and Terminal Acetylenes  William D. Sharpless, Peng Wu, Trond Vidar Hansen, and James G. Lindberg
In keeping with the defining aspects of click chemistry, this reaction is high-yielding, requires no chromatography, is easily monitored by TLC, and displays distinct peaks in both IR and 1H-NMR. Virtually all products precipitate, and with just a few different starting blocks, every student, or pair of lab partners, can produce a unique "clicked" compound.
Sharpless, William D.; Wu, Peng; Hansen, Trond Vidar; Lindberg, James G. J. Chem. Educ. 2005, 82, 1833.
Catalysis |
Heterocycles |
Alkynes |
IR Spectroscopy |
NMR Spectroscopy |
Reactions |
Thin Layer Chromatography |
Synthesis
The Virtual ChemLab Project: A Realistic and Sophisticated Simulation of Organic Synthesis and Organic Qualitative Analysis  Brian F. Woodfield, Merritt B. Andrus, Gregory L. Waddoups, Melissa S. Moore, Richard Swan, Rob Allen, Greg Bodily, Tricia Andersen, Jordan Miller, Bryon Simmons, and Richard Stanger
Describes a set of sophisticated and realistic laboratory simulations for use in freshman- and sophomore-level chemistry classes and laboratories called Virtual ChemLab. The purpose of these simulations is to reinforce concepts taught in the classroom, provide an environment for creative learning, and emphasize the thinking behind instructional laboratory experiments.
Woodfield, Brian F.; Andrus, Merritt B.; Waddoups, Gregory L.; Moore, Melissa S.; Swan, Richard; Allen, Rob; Bodily, Greg; Andersen, Tricia; Miller, Jordan; Simmons, Bryon; Stanger, Richard. J. Chem. Educ. 2005, 82, 1728.
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Synthesis |
Reactions |
Thin Layer Chromatography
Diels–Alder Synthesis of endo-cis-N-Phenylbicyclo[2.2.2]oct-5-en-2,3-dicarboximide  Marsha R. Baar and Kristin Wustholz
endo-cis-N-Phenylbicyclo[2.2.2]oct-5-en-2,3-dicarboximide was synthesized by a DielsAlder cycloaddition of 1,3-cyclohexadiene and N-phenylmaleimide in ethyl acetate. 1,3-Cyclohexadiene and N-phenylmaleimide were selected to illustrate the Alder rule, which reflects a preference for endo products and to overcome the difficulties associated with the traditional combination of 1,3-cyclopentadiene and maleic anhydride.
Baar, Marsha R.; Wustholz, Kristin. J. Chem. Educ. 2005, 82, 1393.
Asymmetric Synthesis |
Microscale Lab |
Stereochemistry |
Addition Reactions |
Alkenes |
IR Spectroscopy |
NMR Spectroscopy
Monoterpene Unknowns Identified Using IR, 1H-NMR, 13C-NMR, DEPT, COSY, and HETCOR  Lisa T. Alty
This set of NMR experiments can be a capstone experience for a spectroscopy or advanced laboratory course following organic chemistry. Students are given a monoterpene to identify using IR, 1H-NMR, 13C-NMR, and DEPT data. Once the unknown is identified, they can fully interpret and assign each carbon and each proton signal to the structure using COSY and HETCOR along with the one-dimensional NMR data. The rigidity of the ring systems and the chiral centers in all of the compounds present diastereotopic hydrogens and, in some cases, diastereotopic methyl groups.
Alty, Lisa T. J. Chem. Educ. 2005, 82, 1387.
Natural Products |
NMR Spectroscopy |
Diastereomers |
Chirality / Optical Activity |
IR Spectroscopy |
Undergraduate Research
Organic Spectroscopy Laboratory: Utilizing IR and NMR in the Identification of an Unknown Substance  Neil M. Glagovich and Timothy D. Shine
An undergraduate organic laboratory designed to teach the use of IR and NMR spectra interpretation in the identification of an unknown substance has been developed. This laboratory requires the student to obtain the IR spectrum of an unknown substance and, from the interpretation of that spectrum, determine which of several possible functional groups is present in the molecule. Using this information and either the melting point or boiling point of the unknown, the student is able to determine a list of likely candidates (usually between eight and twelve suspects collated from a supplied table of possible compounds). The student will then draw the structures for all candidate compounds and, from those structures, predict the 1H- and 13C-NMR spectra for each.
Glagovich, Neil M.; Shine, Timothy D. J. Chem. Educ. 2005, 82, 1382.
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Solids |
Liquids
Thermal Degradation and Identification of Heat-Sensitive Polymers. Applications of Pyrolysis and Distillation and Instrumental Methods of Analysis  Stuart C. Clough and Emma W. Goldman
An experiment for undergraduate teaching laboratories is described that involves the identification of samples of polystyrene and poly(methyl methacrylate). This involves the thermal degradation of the polymers (a destructive distillation) into their respective monomers. The monomers are then identified using infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gas chromatographymass spectrometry.
Clough, Stuart C.; Goldman, Emma W. J. Chem. Educ. 2005, 82, 1378.
Nonmajor Courses |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Polymerization
Generation, Isolation, and Characterization of a Stable Enol from Grignard Addition to a Bis-Ester. A Microscale Experiment for the Undergraduate Organic Chemistry Laboratory  Olivier J.-C. Nicaise, Kyle F. Ostrom, and Brent J. Dalke
A microscale experiment for the undergraduate organic chemistry laboratory that consists of preparing and characterizing an alpha-ketoester and its corresponding, remarkably stable enol form, has been developed. The reaction is that of a Grignard reagent with a bis-ester. A difference in reaction temperature is responsible for the selective generation of the alpha-ketoester and the enol ester. Analysis of spectral data (1H NMR and IR) and a knowledge of organic reactions allows the students to determine the detailed structure of the two reaction products and also to suggest a mechanism for their formation. This experiment introduces students to the concept of stability of the tetrahedral intermediate in acyl-transfer reactions. It also gives them a taste of the unexpected.
Nicaise, Olivier J.-C.; Ostrom, Kyle F.; Dalke, Brent J. J. Chem. Educ. 2005, 82, 1059.
IR Spectroscopy |
Mechanisms of Reactions |
Microscale Lab |
NMR Spectroscopy |
Organometallics |
Reactive Intermediates |
Synthesis
The Ethylene Ketal Protecting Group Revisited: The Synthesis of 4-Hydroxy-4,4-diphenyl-2-butanone  Marsha R. Baar, Charles E. Russell, and Kristin L. Wustholz
The multistep synthesis of 4-hydroxy-4,4-diphenyl-2-butanone from ethyl acetoacetate illustrates the use of a ketal protecting group. Reaction of ethyl acetoacetate with ethylene glycol with p-TsOH in toluene produced the ketal ester. Reaction of the crude ketal ester with two equivalents of phenyl magnesium bromide followed by an aqueous acid workup generated the tertiary alcohol and simultaneously removed the ketal protecting group to produce the hydroxyketone. Our procedure is a modification of a previously published synthesis whose end product was 4,4-diphenyl-3-buten-2-one, the dehydrated analog.
Baar, Marsha R.; Russell, Charles E.; Wustholz, Kristin L. J. Chem. Educ. 2005, 82, 1057.
Synthesis |
Grignard Reagents |
IR Spectroscopy |
Mechanisms of Reactions |
NMR Spectroscopy
Formation of α-Tetralone by Intramolecular Friedel–Crafts Acylation  Michael S. Holden, R. David Crouch, and Kathryn A. Barker
A microscale procedure is described for the formation of the industrially-important compound alpha-tetralone. This is an example of an intramolecular FriedelCrafts acylation, utilizing 4-phenylbutanoic acid and a proton source. The title reaction demonstrates the concept of ring-forming reactions and highlights the use of carboxylic acids as an electrophile precursor in electrophilic aromatic substitution reactions.
Holden, Michael S.; Crouch, R. David; Barker, Kathryn A. J. Chem. Educ. 2005, 82, 934.
Aromatic Compounds |
Microscale Lab |
Synthesis |
Carboxylic Acids |
IR Spectroscopy |
NMR Spectroscopy
The Sharpless Asymmetric Dihydroxylation in the Organic Chemistry Majors Laboratory  Christopher J. Nichols and Melissa R. Taylor
A six-period laboratory exercise has been developed that uses the convenient Sharpless asymmetric dihydroxylation (AD) to illustrate the principles of a chiral synthesis. Using one particular alkene, students perform a racemic dihydroxylation, an AD using a commercially available AD-mix, and then an AD using an ester derivative of dihydroquinidine that they synthesized themselves. The structures of the products are confirmed with 1H NMR spectroscopy and the enantiomeric excesses of the diols are determined using a chiral GC column.
Nichols, Christopher J.; Taylor, Melissa R. J. Chem. Educ. 2005, 82, 105.
Chirality / Optical Activity |
Chromatography |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Alkenes |
Addition Reactions
A Discovery-Based Friedel–Crafts Acylation Experiment: Student-Designed Experimental Procedure  Anne McElwee Reeve
A discovery-based FriedelCrafts acylation experiment that includes a student-designed procedure, spectroscopic analysis of an unknown aromatic product, and molecular modeling is described. Students design the synthetic procedure and workup for the acylation of an unknown aromatic starting material in an instructor-guided classroom discussion that integrates concepts from the first semester of organic lab into a new context.
Reeve, Anne McElwee. J. Chem. Educ. 2004, 81, 1497.
Aromatic Compounds |
Chromatography |
IR Spectroscopy |
Molecular Modeling |
NMR Spectroscopy |
Synthesis
Two-Step Semi-Microscale Preparation of a Cinnamate Ester Sunscreen Analog  Ryan G. Stabile and Andrew P. Dicks
The two-step synthesis and characterization of a sunscreen analog (ethyl trans-4-methoxycinnamate) is presented. This experiment is tailored towards students with a sound theoretical understanding of organic chemistry and related laboratory techniques. Appropriate synthetic discussion topics include carbonyl condensation reactions, carboxylic acid esterifications, and the so-called "cesium effect" in organic synthesis.
Stabile, Ryan G.; Dicks, Andrew P. J. Chem. Educ. 2004, 81, 1488.
Conductivity |
IR Spectroscopy |
Mechanisms of Reactions |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
UV-Vis Spectroscopy |
Consumer Chemistry
Spectroscopic Properties of Some Simple Esters. A Practical Application of Synthesis and Spectroscopy in the Undergraduate Organic Laboratory  David P. Brown, Haris Durutlic, and Didier Juste
This exercise, the synthesis and spectroscopic analysis of the allyl esters of some aromatic carboxylic acids, consists of a series of open-ended experiments.
Brown, David P.; Durutlic, Haris; Juste, Didier. J. Chem. Educ. 2004, 81, 1016.
Esters |
Synthesis |
NMR Spectroscopy |
IR Spectroscopy |
Chromatography
Syntheses and Characterization of Ruthenium(II) Tetrakis(Pyridine) Complexes. An Advanced Coordination Chemistry Experiment or Mini-Project  Benjamin J. Coe
This experiment involves the syntheses of several coordination complexes of ruthenium(II) and their characterization by using various spectroscopic and spectrometric techniques.
Coe, Benjamin J. J. Chem. Educ. 2004, 81, 718.
Coordination Compounds |
IR Spectroscopy |
Synthesis |
Mass Spectrometry |
NMR Spectroscopy |
UV-Vis Spectroscopy
Modern Projects in Organic Chemistry: Miniscale and Standard Taper Microscale, 2nd Edition (Jerry R. Mohrig, Christina Noring Hammond, Paul F. Schatz, and Terence C. Morrill)  Richard Pagni
Modern Projects and Experiments in Organic Chemistry comes in two closely related versions, one for miniscale and standard taper microscale and the other for miniscale and Williamson microscale, in conjunction with the authors techniques in organic chemistry book.
Pagni, Richard. J. Chem. Educ. 2004, 81, 649.
Chromatography |
Gases |
IR Spectroscopy |
Laboratory Equipment / Apparatus |
NMR Spectroscopy |
Physical Properties |
Synthesis
Developing Investigation Skills in an Introductory Multistep Synthesis Using Fluorene Oxidation and Reduction  Mark G. Stocksdale, Steven E. S. Fletcher, Ian Henry, Paul J. Ogren, Michael A. G. Berg, Roy D. Pointer, and Barrett W. Benson
A two-step reaction sequence in the beginning organic laboratory provides a useful introduction to the importance of multistep synthesis. In addition to introducing several common synthetic methods and techniques, a two-step preparation can quickly establish the importance of testing alternative reactions in order to optimize intermediate yields.
Stocksdale, Mark G.; Fletcher, Steven E. S.; Henry, Ian; Ogren, Paul J.; Berg, Michael A. G.; Pointer, Roy D.; Benson, Barrett W. J. Chem. Educ. 2004, 81, 388.
Chromatography |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Aromatic Compounds |
Oxidation / Reduction
The Separation and Identification of Two Unknown Solid Organic Compounds: An Experiment for the Sophomore Organic Chemistry Laboratory  Patty L. Feist
Students are given a mixture of a solid ketone and a solid alcohol and asked to separate and identify the two components. First the students use TLC to determine the optimum solvent system to separate the two compounds, then they separate the unknowns on a microscale flash chromatography column. The students acquire the melting point, and if possible, the IR and 1H NMR spectra for each separated compound and identify them by matching the observed data with that of known compounds.
Feist, Patty L. J. Chem. Educ. 2004, 81, 109.
Chromatography |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Separation Science |
Qualitative Analysis
Microscale Synthesis and Spectroscopic Analysis of Flutamide, an Antiandrogen Prostate Cancer Drug  Ryan G. Stabile and Andrew P. Dicks
The synthesis involves N-acylation of a trisubstituted aromatic compound, 3-trifluoromethyl-4-nitroaniline. The procedure is easily adapted to generate structural analogues of flutamide. A significant feature is the curricular flexibility afforded by this experiment.
Stabile, Ryan G.; Dicks, Andrew P. J. Chem. Educ. 2003, 80, 1439.
Drugs / Pharmaceuticals |
IR Spectroscopy |
Mechanisms of Reactions |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
Aromatic Compounds
A Series of Small-Scale, Discovery-Based Organic Laboratory Experiments Illustrating the Concepts of Addition, Substitution, and Rearrangement  Judith S. Moroz, Janice L. Pellino, and Kurt W. Field
Multistep, microscale organic laboratory experiments are presented that illustrate addition, substitution, and rearrangement reactions.
Moroz, Judith S.; Pellino, Janice L.; Field, Kurt W. J. Chem. Educ. 2003, 80, 1319.
IR Spectroscopy |
Mass Spectrometry |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
Addition Reactions |
Mechanisms of Reactions
The Base-Induced Reaction of Salicylaldehyde with 1-Bromobutane in Acetone: Two Related Examples of Chemical Problem Solving  Holly D. Bendorf and Chriss E. McDonald
Each student performs his or her own experimental work, running one of the two reactions, and acquiring the proton and carbon NMR, IR, and mass spectra. The students work in groups to propose structures for the products and mechanisms for their formation. The students are also asked to address why the reactions take different courses.
Bendorf, Holly D.; McDonald, Chriss E. J. Chem. Educ. 2003, 80, 1185.
Chromatography |
Mass Spectrometry |
NMR Spectroscopy |
Aromatic Compounds |
Aldehydes / Ketones |
Ethers |
Phenols |
IR Spectroscopy
C–H and C–D Bonds: An Experimental Approach to the Identity of C–H Bonds by Their Conversion to C–D Bonds  Alex T. Rowland
Three experiments that allow students to determine the relative reactivity of C-H bonds that are aliphatic, alpha, benzylic, or aromatic by the ease of substitution of deuterium for oxygen.
Rowland, Alex T. J. Chem. Educ. 2003, 80, 311.
Acids / Bases |
IR Spectroscopy |
Isotopes |
NMR Spectroscopy |
Undergraduate Research |
Alkanes / Cycloalkanes |
Aromatic Compounds |
Carboxylic Acids
Organic Spectroscopy–A Capstone Experience  Jan M. Fleischer
Experiment requiring students to make decisions regarding the likely structure of their sample based upon an IR spectrum before a final analysis with NMR spectroscopy.
Fleischer, Jan M. J. Chem. Educ. 2002, 79, 1247.
IR Spectroscopy |
Mass Spectrometry |
Fourier Transform Techniques |
NMR Spectroscopy |
Molecular Properties / Structure
Spectroscopy for Schools and Colleges [CD-ROM] (by the Royal Society of Chemistry and GlaxoWellcome)  Thomas H. Eberlein
Interactive CR-ROM to assist in learning the fundamentals of interpreting spectroscopy in organic chemistry.
Eberlein, Thomas H. J. Chem. Educ. 2002, 79, 1204.
Spectroscopy |
NMR Spectroscopy |
IR Spectroscopy |
Mass Spectrometry |
Physical Properties |
Molecular Properties / Structure |
Enrichment / Review Materials
Fractional Distillation and GC Analysis of Hydrocarbon Mixtures  Craig J. Donahue
Separating and identifying the components of a three-hydrocarbon mixture through fractional distillation and gas chromatography.
Donahue, Craig J. J. Chem. Educ. 2002, 79, 721.
Chromatography |
Gas Chromatography |
Separation Science |
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis
Personalized Combined Organic Spectroscopy Problems--Online and in the Lab  Marjorie Kandel and Peter J. Tonge
Assigning individualized spectroscopy problems from SDBS, the Japanese National Institute of Materials and Chemical Research Spectroscopic Database, combined with a laboratory unknown.
Kandel, Marjorie; Tonge, Peter J. J. Chem. Educ. 2001, 78, 1208.
Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry
Isolation and Spectral Analysis of Naturally Occurring Thiarubrine A  Juan Reyes, Melita Morton, Kelsey Downum, and Kevin E. O'Shea
An experiment in which students isolate (from ragweed) and characterize thiarubrine A; thiarubrines are an important class of compounds which have recently received attention because of their unusual reactivity, unique biological activity, and potential medicinal applications.
Reyes, Juan; Morton, Melita; Downum, Kelsey; O'Shea, Kevin E. J. Chem. Educ. 2001, 78, 781.
Aromatic Compounds |
IR Spectroscopy |
Natural Products |
NMR Spectroscopy |
UV-Vis Spectroscopy |
Medicinal Chemistry
Synthesis of Substituted Butenolides. An Undergraduate Organic Laboratory Experiment Utilizing Two 3-Step Preparatory Sequences  Géraldine Maheut, Liang Liao, Jean-Marie Catel, Paul-Alain Jaffrès, and Didier Villemin
The synthesis of substituted butenolide in two, 3-step sequences that illustrate five basic organic reactions (alkyne hydration, Knoevenagel condensation, lactonization, aldolization-type reaction, and hydration of nitrile); the products have pedagogical interest for IR and NMR spectroscopy (diastereotopic effect).
Maheut, Géraldine; Liao, Liang; Catel, Jean-Marie; Jaffrès, Paul-Alain; Villemin, Didier. J. Chem. Educ. 2001, 78, 654.
IR Spectroscopy |
Molecular Modeling |
NMR Spectroscopy |
Synthesis |
Undergraduate Research |
Reactions
WebSpectra: Online NMR and IR Spectra for Students  Craig A. Merlic, Barry C. Fam, and Michael M. Miller
WebSpectra is a World Wide Web site at UCLA through which organic chemistry students have convenient access to a library of problems in NMR and IR spectroscopy, ranging in difficulty from introductory to advanced. Students are presented with high-resolution spectra of unknown compounds in addition to the molecular formula.
Merlic, Craig A.; Fam, Barry C.; Miller, Michael M. J. Chem. Educ. 2001, 78, 118.
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
The Discovery-Oriented Approach to Organic Chemistry. 5. Stereochemistry of E2 Elimination: Elimination of cis- and trans-2-Methylcyclohexyl Tosylate  Marcus E. Cabay, Brad J. Ettlie, Adam J. Tuite, Kurt A. Welday, and Ram S. Mohan
A discovery-oriented lab that illustrates the stereochemistry of the E2 elimination reaction and is a good exercise in 1H NMR spectroscopy. The added element of discovery insures that student interest and enthusiasm are retained.
Cabay, Marcus E.; Ettlie, Brad J.; Tuite, Adam J.; Welday, Kurt A.; Mohan, Ram S. J. Chem. Educ. 2001, 78, 79.
IR Spectroscopy |
Mechanisms of Reactions |
NMR Spectroscopy |
Stereochemistry |
Elimination Reactions |
Reactions |
Alkenes
The Discovery-Oriented Approach to Organic Chemistry. 4. Epoxidation of p-Methoxy-trans-b-methylstyrene: An Exercise in NMR and IR Spectroscopy for Sophomore Organic Laboratories  Rebecca S. Centko and Ram S. Mohan
Illustrates epoxidation of alkenes as well as the reactivity of epoxides toward acids. The experiment involves reaction of p-methoxy-trans-beta-methylstyrene (trans-anethole) with m-chloroperoxybenzoic acid (MCPBA), in both the absence and presence of a buffer, followed by product identification using 1H NMR, 13C NMR, and IR spectroscopy
Centko, Rebecca S.; Mohan, Ram S. J. Chem. Educ. 2001, 78, 77.
IR Spectroscopy |
NMR Spectroscopy |
Epoxides |
Alkenes
Organic-Solvent-Free Phase-Transfer Oxidation of Alcohols Using Hydrogen Peroxide  Martin Hulce and David W. Marks
Six representative alcohols are oxidized to the corresponding aldehyde or ketone, integrating the various techniques of extraction, drying, filtration, column chromatography, gas chromatography, NMR and IR spectroscopy, and reaction kinetics.
Hulce, Martin; Marks, David W. J. Chem. Educ. 2001, 78, 66.
Catalysis |
Oxidation / Reduction |
Reactions |
Kinetics |
Chromatography |
Gas Chromatography |
Separation Science |
NMR Spectroscopy |
IR Spectroscopy |
Alcohols |
Phenols
Application of the Correlation Method to Vibrational Spectra of C60 and Other Fullerenes: Predicting the Number of IR- and Raman-Active Bands  Kazuo Nakamoto and Michael A. McKinney
The C60 molecule (Buckyball/soccer ball) exhibits only 4 IR and 10 Raman bands although it possesses 174 (3 x 60 - 6) normal vibrations. This striking reduction in the number of observed bands is evidently due to the molecule's extremely high symmetry (Ih point group).
Nakamoto, Kazuo; McKinney, Michael A. J. Chem. Educ. 2000, 77, 775.
Chirality / Optical Activity |
Group Theory / Symmetry |
IR Spectroscopy |
NMR Spectroscopy |
Raman Spectroscopy |
Molecular Properties / Structure |
Molecular Modeling
The Heck Reaction: A Microscale Synthesis Using a Palladium Catalyst  William B. Martin and Laura J. Kateley
The microscale synthesis described uses a reaction between a bromoiodobenzene and acrylic acid to produce a bromocinnamic acid. Structure verification for the product uses IR and 1H NMR spectroscopy.
Martin, William B.; Kateley, Laura J. J. Chem. Educ. 2000, 77, 757.
Catalysis |
Microscale Lab |
Synthesis |
IR Spectroscopy |
NMR Spectroscopy |
Aromatic Compounds |
Mechanisms of Reactions
Reaction of Dibenzoylethylene with Hydriodic Acid  Fred H. Greenberg
Dibenzoylethylene is treated with hydriodic acid in acetone at room temperature to obtain dibenzoylethane rather than the expected dibenzoyliodoethane. Students identify the product by the use of NMR and IR spectra and are given a nonpictorial representation of a mechanism and asked to supply the structures of the relevant intermediates.
Greenberg, Fred H. J. Chem. Educ. 2000, 77, 505.
Microscale Lab |
Synthesis |
NMR Spectroscopy |
IR Spectroscopy |
Mechanisms of Reactions |
Reactive Intermediates
Multicomponent Reactions: A Convenient Undergraduate Organic Chemistry Experiment  Ricardo Bossio, Stefano Marcaccini, Carlos F. Marcos, and Roberto Pepino
Two experiments for the synthesis of a -lactam and a succinimide, based on a 4-component Ugi condensation. The experimental procedures for both syntheses are identical except for the choice of the starting amine, whose electron richness is controlled by the presence or absence of an electron-withdrawing group.
Bossio, Ricardo; Marcaccini, Stefano; Marcos, Carlos F.; Pepino, Roberto. J. Chem. Educ. 2000, 77, 382.
Synthesis |
Drugs / Pharmaceuticals |
IR Spectroscopy |
NMR Spectroscopy |
Mechanisms of Reactions |
Molecular Properties / Structure
Isolating trans-Anethole from Anise Seeds and Elucidating Its Structure: A Project Utilizing One- and Two-Dimensional NMR Spectrometry  Joseph W. LeFevre
This three-week project involves isolating and purifying a natural product and determining its structure. trans-Anethole is isolated from anise seeds by steam distillation and liquid-liquid extraction. The crude product is analyzed by thin-layer chromatography and purified by flash chromatography.
LeFevre, Joseph W. . J. Chem. Educ. 2000, 77, 361.
Chromatography |
IR Spectroscopy |
Natural Products |
NMR Spectroscopy |
Separation Science |
Molecular Properties / Structure |
Thin Layer Chromatography
The Preparation of a UV-Light-Absorbing Polymer: A Project-Oriented Laboratory Experiment for the Introductory Organic Chemistry Curriculum  Thomas Poon, Jean P. McIntyre, Andrea Dorigo, Drew J. Davis, Matthew A. Davis, Crystal F. Eller, Leah R. Eller, Heather K. Izumi, Kenya M. Jones, Kurt H. Kelley, William Massello, Megan L. Melamed, Cynthia M. Norris, Jeffrey A. Oelrich, Thomas A. Pluim, Sarah E. Poplawski, Jason M. St. Clair, Matthew P. Stokes, Wells C. Wheeler, and Erin E. Wilkes
A laboratory experiment is described that combines organic synthesis, spectroscopy, and polymer chemistry and is suitable for the sophomore organic chemistry curriculum. In this three-week sequence, students synthesize and characterize the UV-absorber 2-(2',4'-dimethylbenzoyl)benzoic acid and incorporate it into films of polymethylmethacrylate.
Poon, Thomas; McIntyre, Jean P.; Dorigo, Andrea; Davis, Drew J.; Davis, Matthew A.; Eller, Crystal F.; Eller, Leah R.; Izumi, Heather K.; Jones, Kenya M.; Kelley, Kurt H.; Massello, William; Melamed, Megan L.; Norris, Cynthia M.; Oelrich, Jeffrey A.; Pluim, Thomas A.; Poplawski, Sarah E.; St. Clair, Jason M.; Stokes, Matthew P.; Wheeler, Wells C.; Wilkes, Erin E. J. Chem. Educ. 1999, 76, 1523.
Synthesis |
UV-Vis Spectroscopy |
NMR Spectroscopy |
IR Spectroscopy |
Free Radicals
Gradualism: A Method for Primary Instruction on Spectroscopic Analysis in Introductory Organic Chemistry  Christopher W. Alexander, Gary L. Asleson, Charles F. Beam, Marion T. Doig, Frederick J. Heldrich*, and Shannon Studer-Martinez
The pedagogical style of gradualism is described for the instruction of spectroscopic analysis in the introductory organic chemistry laboratory. Gradualism is defined as a series of steps or lessons that build one upon the other until the student is able to solve complex problems.
Alexander, Christopher W.; Asleson, Gary L.; Beam, Charles F.; Doig, Marion T.; Heldrich, Frederick J.; Studer-Martinez, Shannon. J. Chem. Educ. 1999, 76, 1297.
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
UV-Vis Spectroscopy |
Learning Theories
Spectroscopic Instruction in Introductory Organic Chemistry: Results of a National Survey  Christopher W. Alexander, Gary L. Asleson, Marion T. Doig, and Frederick J. Heldrich*
The survey results indicated that the spectroscopic techniques of IR, MS, proton NMR, and carbon NMR are core techniques in most courses. A considerable amount of the instruction in spectroscopy is occurring in both the laboratory and the lecture portions of the course.
Alexander, Christopher W.; Asleson, Gary L.; Doig, Marion T.; Heldrich, Frederick J. J. Chem. Educ. 1999, 76, 1294.
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
UV-Vis Spectroscopy |
Spectroscopy
Spectroscopy of Simple Molecules  C. Baer and K. Cornely
A spectroscopy experiment in which students utilize IR and NMR spectroscopy to identify the structures of three unknowns from a list of 15 carefully chosen simple organic molecules. In taking IR and NMR spectra, students learn to use state-of-the-art instrumentation that is used by practicing chemists.
Baer, Carl; Cornely, Kathleen. J. Chem. Educ. 1999, 76, 89.
Instrumental Methods |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
Synthesis and Structure-Property Relationships in (h6-Arene)Cr(CO)3 Chemistry: From Guided Experiments to Discovery Research  Allen D. Hunter, Larry J. Bianconi, Steven J. DiMuzio, and Dianne L. Braho
Since instructors can have each student prepare a different complex, they are ideal targets for student directed "discovery research" lab projects. Teams of students can compare how their syntheses and the physical, spectroscopic, and electrochemical properties of their products vary as a function of the arenes' structures.
Hunter, Allen D.; Bianconi, Larry J.; DiMuzio, Steven J.; Braho, Dianne L. J. Chem. Educ. 1998, 75, 891.
Microscale Lab |
Organometallics |
IR Spectroscopy |
NMR Spectroscopy |
Electrochemistry |
Synthesis |
Coordination Compounds
Spectra Interpretation of Organic Compounds (by Erno Pretsch and Jean Thomas Clerc)  Phyllis A. Leber
An interactive spectroscopy course via the iterative solution of 15 spectral problems. An ancillary CD-ROM containing the SpecTeach version of the SpecTool software is provided with the text.
Leber, Phyllis A. J. Chem. Educ. 1998, 75, 695.
Spectroscopy |
IR Spectroscopy |
UV-Vis Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
Incorporating Organic Name Reactions and Minimizing Qualitative Analysis in an Unknown Identification Experiment  Claire Castro and William Karney
The authors have developed a new type of unknown identification experiment for the introductory organic chemistry laboratory. The unknown sample the student is provided with is the product of an organic name reaction. The student is only informed of the starting material and conditions used in the compound's synthesis, and must then: (1) deduce the compound's structure, (2) determine the name reaction and corresponding mechanism that yields the compound, and (3) present his/her results to the class.
Claire Castro and William Karney. J. Chem. Educ. 1998, 75, 472.
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis |
Nomenclature / Units / Symbols |
Reactions |
Mechanisms of Reactions |
Molecular Properties / Structure
Over 100 Years of Research on Cyclopentadienylironcarbonyl Chemistry: Microscale-Integrated Organometallic Experiments  E. Mocellin, M. Ravera, R. A. Russell, and T. Hynson
This unified microscale laboratory program is intended to build independence, confidence and even adventurousness both in synthesis and instrumental analysis, and to apply these results in a meaningful situation by demanding of the students: interpretation of results, evaluation of data and conclusion reached, reference to the original literature, and suggestion of further experimentation.
Mocellin, E.; Ravera, M.; Russell, R. A.; Hynson, T. J. Chem. Educ. 1996, 73, A99.
Organometallics |
IR Spectroscopy |
NMR Spectroscopy |
Microscale Lab |
Instrumental Methods |
Electrochemistry
Epoxidation of Alpha-Methylstyrene and its Lewis Acid Rearrangement to 2-Phenylpropanal  David L. Garin, Melissa Gamber, and Bradley J. Rowe
This undergraduate organic lab experiment includes procedures for the peracid epoxidation of an olefin and the Lewis acid rearrangement of an epoxide to a carbonyl compound.
Garin, David L.; Gamber, Melissa; Rowe, Bradley J. J. Chem. Educ. 1996, 73, 555.
Lewis Acids / Bases |
Spectroscopy |
NMR Spectroscopy |
UV-Vis Spectroscopy |
Gas Chromatography |
IR Spectroscopy |
Aldehydes / Ketones
From the Lecture Hall to the Laboratory: The Pinacol Rearrangement: Fostering Problem Solving Abilities and Critical Thinking Skills of the Organic Chemistry Student  Brenda J. Wojciechowski and Todd S. Deal
This article describes an interesting experiment for elementary organic laboratories. While the reaction (the Pinacol Rearrangement) described is an old one, its application as a puzzle is a new one.
Wojciechowsi, Brenda J.; Deal, S. Todd. J. Chem. Educ. 1996, 73, 85.
Separation Science |
NMR Spectroscopy |
IR Spectroscopy
Organic Qualitative Analysis at the Microscale Level  Craig, Rhoda E. R.; Kaufman, Kurt K.
Project requiring students to identify pure unknowns and the components of mixtures using a variety of chromatography and spectrometry techniques.
Craig, Rhoda E. R.; Kaufman, Kurt K. J. Chem. Educ. 1995, 72, A102.
NMR Spectroscopy |
IR Spectroscopy |
Chromatography |
Separation Science |
Qualitative Analysis |
Acids / Bases
The Baylis-Hillman Reaction: Synthesizing a Compound and Explaining Its Formation  Crouch, R. David; Nelson, Todd D.
Experimental procedure for the synthesis of an unpredictable and unknown mechanism to be identified and described by students through analytical techniques (spectroscopy).
Crouch, R. David; Nelson, Todd D. J. Chem. Educ. 1995, 72, A6.
Synthesis |
Mechanisms of Reactions |
NMR Spectroscopy |
IR Spectroscopy |
UV-Vis Spectroscopy |
Microscale Lab
Why Do Spectral Lines Have a Linewidth?  Volker B. E. Thomsen
Explanation of why spectral lines have a linewidth.
Thomsen, Volker B. E. J. Chem. Educ. 1995, 72, 616.
NMR Spectroscopy |
IR Spectroscopy |
UV-Vis Spectroscopy |
Spectroscopy
Characterization of Low-Valent Nickel Complexes Stabilized by Bis(diphenylphosphino)methane Using Multinuclear NMR and IR Spectroscopy.  Trumpy, Valory A.; Oriskovich, Tracy A.; Gallaher, Thomas N.; Schreiner, Serge
Experimental method for the synthesis of zero-valent nickel complexes containing bis(diphenylphosphino)methane and identification through NMR and IR spectroscopy; sample data and analysis included.
Trumpy, Valory A.; Oriskovich, Tracy A.; Gallaher, Thomas N.; Schreiner, Serge J. Chem. Educ. 1995, 72, 357.
Metals |
NMR Spectroscopy |
IR Spectroscopy |
Atomic Properties / Structure |
Coordination Compounds |
Synthesis
A Qualitative Experiment for Organic Chemistry Lab  Hermann, Christine K. F.
This experiment was introduced near the end of second semester. The students were told that the unknowns were either an alcohol, a carboxylic acid, an amine, an aldehyde, or a ketone. The identifications were based on melting points or boiling points, the IR and NMR spectra, and a set of four classification tests.
Hermann, Christine K. F. J. Chem. Educ. 1994, 71, 991.
Qualitative Analysis |
IR Spectroscopy |
NMR Spectroscopy
Oxidation of (R)-(+)-pulegone to (R)-(+)-3-methyladipic acid  Scott, William J.; Hammond, Gerald B.; Becicka, Brian T.; Wiemer, David F.
This paper addresses the demand for microscale laboratories and minimizes waste disposal while linking students to current organic chemistry research.
Scott, William J.; Hammond, Gerald B.; Becicka, Brian T.; Wiemer, David F. J. Chem. Educ. 1993, 70, 951.
Microscale Lab |
Undergraduate Research |
NMR Spectroscopy |
IR Spectroscopy
Whether organic qual will wither?   Zieger, Herman E.
Author argues the important pedagogic purposes of organic qualitative analysis.
Zieger, Herman E. J. Chem. Educ. 1993, 70, 230.
Spectroscopy |
Qualitative Analysis |
IR Spectroscopy |
NMR Spectroscopy
The microscale synthesis and the structure determination of endo-9-methoxycarbonyl-3-oxatricyclo[4,2,1,0 4,5]-2-nonanone.  Lee, Moses.
The microscale synthesis and the structure determination of endo-9-methoxycarbonyl-3-oxatricyclo[4,2,1,0 4,5]-2-nonanone.
Lee, Moses. J. Chem. Educ. 1992, 69, A172.
Microscale Lab |
Synthesis |
Aldehydes / Ketones |
Fourier Transform Techniques |
NMR Spectroscopy |
IR Spectroscopy |
Gas Chromatography |
Thin Layer Chromatography |
Instrumental Methods
Microscale reactions of vanillin   Fowler, Rosemary G.
In this paper five microscale experiments which allow first-year organic student sot study the properties and reactions of vanillin are presented.
Fowler, Rosemary G. J. Chem. Educ. 1992, 69, A43.
Aldehydes / Ketones |
Aromatic Compounds |
Phenols |
Microscale Lab |
IR Spectroscopy |
NMR Spectroscopy
The synthesis of 2'-bromostyrene  Corvari, Linda; McKee, James R.; Zanger, Murray
Organic chemistry laboratories need not be the repositories of foul smells. This synthesis produces an aroma akin to hyacinth.
Corvari, Linda; McKee, James R.; Zanger, Murray J. Chem. Educ. 1991, 68, 161.
Synthesis |
NMR Spectroscopy |
IR Spectroscopy |
Stereochemistry |
Alkenes
Introduction to Spectroscopy, IR, NMR, & CMR (Clough, Fred W.)  Byrd, James E.
Set of programs designed to help students analyze and interpret infrared, 1H-NMR and 13C-NMR spectra.
Byrd, James E. J. Chem. Educ. 1990, 67, A194.
Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy |
Instrumental Methods
Grignard reagent additions to alpha, beta-ethylenic nitriles: 1,4- vs. 1,2- additions  Kulp, Stuart S.; DiConcetto, Joseph A.
The easily synthesized alpha-phenylcinnamonitrile serves as an excellent starting material to illustrate conjugate (1,4) vs. simple (1,2) addition of various reactants.
Kulp, Stuart S.; DiConcetto, Joseph A. J. Chem. Educ. 1990, 67, 271.
Grignard Reagents |
Aromatic Compounds |
IR Spectroscopy |
NMR Spectroscopy
Organic spectroscopy  Hiatt, Richard
Six programs that generate and display infrared, proton NMR, carbon-13 NMR, and mass spectra.
Hiatt, Richard J. Chem. Educ. 1989, 66, 927.
Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry
A comparison of FT NMR and FT IR techniques  Ahn, Myong-Ku
A comparison of FT NMR and FT IR based on the examination of electromagnetic waves.
Ahn, Myong-Ku J. Chem. Educ. 1989, 66, 802.
Fourier Transform Techniques |
NMR Spectroscopy |
IR Spectroscopy
Synthesis and reactivity of ?5-cyclopentadienylruthenium compounds: An organometallic chemistry experiment  Ballester, L.; Gutierrez, A.; Perpinan, M. F.
Procedure permits the application of concepts regarding the reactivity of organometallic compounds and the use of IR and NMR spectral data in the characterization of the synthesized complexes.
Ballester, L.; Gutierrez, A.; Perpinan, M. F. J. Chem. Educ. 1989, 66, 777.
Organometallics |
IR Spectroscopy |
NMR Spectroscopy |
Coordination Compounds
A tandem Michael-aldol reaction sequence: An undergraduate research organic experiment  Coutlangus, Marilyin L.; Filla, Sandra A.; Rowland, Alex T.
A short reaction sequence that allows students to determine by spectroscopic methods the constitutions of and stereochemistry in the reaction products.
Coutlangus, Marilyin L.; Filla, Sandra A.; Rowland, Alex T. J. Chem. Educ. 1989, 66, 520.
Mechanisms of Reactions |
Spectroscopy |
Stereochemistry |
IR Spectroscopy |
UV-Vis Spectroscopy |
NMR Spectroscopy
The isolation of sesquiterpenes from Artemisia annua  Roth, Ronald J.; Acton, Nancy.
Artemisia annua is a Eurasian import in North America and has been found growing in diverse parts of the United States. Procedures have been reported for the isolation of arteannuin B and of arteannuic acid.
Roth, Ronald J.; Acton, Nancy. J. Chem. Educ. 1989, 66, 349.
Plant Chemistry |
Natural Products |
IR Spectroscopy |
NMR Spectroscopy
Trifluoroacetylation of unknown alcohols: An integrated microscale organic experiment using spectroscopic methods  Piers, Kenneth; Hsung, Richard
The authors have found that trifluoroacetylation of unknown alcohols is a fast, clean, easily performed microscale experiment that integrates a number of aspects of laboratory work, viz. synthesis, isolation, characterization, spectroscopic measurement, and interpretation, and unknown identification.
Piers, Kenneth; Hsung, Richard J. Chem. Educ. 1989, 66, 90.
Alcohols |
Microscale Lab |
Qualitative Analysis |
NMR Spectroscopy |
IR Spectroscopy
Fourier transforms for chemists. Part 2. Fourier transforms in chemistry and spectroscopy  Glasser, L.
Considers the number of data channels in a spectrometer, the dispersive element as a delay device, the Fourier transform technique and its advantages, the fast Fourier transform technique and its advantages, and applications of these techniques to chemistry.
Glasser, L. J. Chem. Educ. 1987, 64, A260.
Fourier Transform Techniques |
Spectroscopy |
Instrumental Methods |
IR Spectroscopy |
NMR Spectroscopy
Introducing plastic in the laboratory: Synthesis of a plasticizer, dioctylphthalate and evaluation of its effects on the physical properties of polystyrenes  Caspar, A.; Gillois, J.; Guillerm, G.; Savignac, M.; Vo-Quang, L.
These authors are proposing a two-stage experimental approach that combines preparative organic chemistry and polymer characterization.
Caspar, A.; Gillois, J.; Guillerm, G.; Savignac, M.; Vo-Quang, L. J. Chem. Educ. 1986, 63, 811.
Esters |
Reactions |
IR Spectroscopy |
UV-Vis Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Thin Layer Chromatography
An aldol condensation-photochemical bromination sequence with emphasis on spectroscopic interpretations: An undergraduate organic experiment  Rowland, Alex T.; Brechbiel, Martin W.; Gerelus, Anne Sykes
The focus in these procedures is to extend students' abilities in the interpretation of spectral data in order to reach sound conclusions regarding the constitution and stereochemistry of reaction products.
Rowland, Alex T.; Brechbiel, Martin W.; Gerelus, Anne Sykes J. Chem. Educ. 1985, 62, 908.
Photochemistry |
Mechanisms of Reactions |
IR Spectroscopy |
UV-Vis Spectroscopy |
NMR Spectroscopy |
Stereochemistry
Introductory use of infrared spectra: A formalized approach  McMinn, Dennis
A strategy for introducing the interpretation of IR spectra by looking for the presence (or absence) of peaks in six key regions
McMinn, Dennis J. Chem. Educ. 1984, 61, 708.
Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
Interpreting infrared and nuclear magnetic resonance spectra of simple organic compounds for the beginner  Ingham, A. M.; Henson, R. C.
Flowcharts to help the beginner become proficient in interpreting infrared and nuclear magnetic resonance spectra of simple organic compounds.
Ingham, A. M.; Henson, R. C. J. Chem. Educ. 1984, 61, 704.
Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
An alternative method of learning characteristic spectroscopic signals  Butler, J. Keith
Producing a colored chart correlating functional groups with shifts of frequency.
Butler, J. Keith J. Chem. Educ. 1984, 61, 703.
Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
A reinvestigation of the synthesis of 4-methyl-3-heptanol  Hoffman, Robert V.; Alexander, M. D.; Buntain, Gregory; Hardenstein, Richard; Mattox, Cynthia; McLaughlin, Susan; McMinn, Denise; Spray, Scott; White, Steven
A previously reported laboratory may have reported gas chromatographic separation of the 4-methyl-3-heptanol diastereomiers in error. The side reactions in the Grignard reaction account for the observed results.
Hoffman, Robert V.; Alexander, M. D.; Buntain, Gregory; Hardenstein, Richard; Mattox, Cynthia; McLaughlin, Susan; McMinn, Denise; Spray, Scott; White, Steven J. Chem. Educ. 1983, 60, 78.
Hormones |
Alcohols |
Grignard Reagents |
IR Spectroscopy |
NMR Spectroscopy |
Aldehydes / Ketones |
Gas Chromatography |
Synthesis |
Natural Products
Hydrogen bonding and proton transfer  Joesten, Melvin D.
A review of the types of hydrogen bonds and discussion of the application of spectroscopic and diffraction methods to studies of moderate and strong hydrogen bonds.
Joesten, Melvin D. J. Chem. Educ. 1982, 59, 362.
Hydrogen Bonding |
Acids / Bases |
IR Spectroscopy |
NMR Spectroscopy |
Spectroscopy
Sulcatol: Synthesis of an aggregation pheromone  Black, Shirley-Ann; Slessor, Keith N.
Synthesis of the aggregation pheromone of the ambrosia beetle, an insect pest of harvested timber in the Pacific North Coast.
Black, Shirley-Ann; Slessor, Keith N. J. Chem. Educ. 1982, 59, 255.
Synthesis |
Natural Products |
Molecular Properties / Structure |
Chirality / Optical Activity |
NMR Spectroscopy |
IR Spectroscopy |
Applications of Chemistry
Spectroscopy in organic chemistry at the introductory level  Gurst, Jerome E.
This author has found that the use of a limited series of compounds allow students to focus attention on the spectra rather than the structural formulas of many compounds. This allows students to grasp the significance of the spectral measurements in a minimal time period.
Gurst, Jerome E. J. Chem. Educ. 1981, 58, 511.
Spectroscopy |
UV-Vis Spectroscopy |
Mass Spectrometry |
IR Spectroscopy |
NMR Spectroscopy
Friedel-Crafts acylation: An experiment incorporating spectroscopic structure determination  Schatz, Paul F.
Students use IR and NMR methods to determine the product of an aromatic substitution.
Schatz, Paul F. J. Chem. Educ. 1979, 56, 480.
Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure |
Aromatic Compounds
A student synthesis of the housefly sex attractant  Cormier, Russell A.; Duc Phan, M.; Graddis, Thomas; Singer, Richard
This multi-step synthetic sequence illustrates several important laboratory techniques, including ir and nmr spectroscopy, thin-layer and column chromatography, rotary evaporation, recrystallization, and vacuum distillation.
Cormier, Russell A.; Duc Phan, M.; Graddis, Thomas; Singer, Richard J. Chem. Educ. 1979, 56, 345.
Synthesis |
Natural Products |
IR Spectroscopy |
NMR Spectroscopy |
Chromatography |
Thin Layer Chromatography
A novel communications-skills-based approach to the instrumental laboratory  Varnes, Arthur W.; Wetmore, David E.
Describes the approach used in a course designed to stress the importance of good writing style in laboratory reports.
Varnes, Arthur W.; Wetmore, David E. J. Chem. Educ. 1975, 52, 801.
Instrumental Methods |
Spectroscopy |
UV-Vis Spectroscopy |
IR Spectroscopy |
Gas Chromatography |
NMR Spectroscopy
The preparation and spectral analysis of toluene-a[alpha]-d  Ellis, Jerry W.; Buchanan, David H.
Provides dramatic visual evidence of the changes in IR, NMR, and mass spectra upon substitution of deuterium for hydrogen in a simple molecule.
Ellis, Jerry W.; Buchanan, David H. J. Chem. Educ. 1975, 52, 265.
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Spectroscopy
An integrated synthesis laboratory for the sophomore year  Pearson, Wesley A.; Finholt, Albert E.
Outlines the compounds synthesized and the techniques used in a two-semester integrated laboratory sequence for sophomores.
Pearson, Wesley A.; Finholt, Albert E. J. Chem. Educ. 1975, 52, 236.
Synthesis |
Coordination Compounds |
IR Spectroscopy |
NMR Spectroscopy |
UV-Vis Spectroscopy |
Chromatography
The effects of aryl substituents on ir, nmr, and mass spectra of N-t-butylbenzamides  Rubottom, George M.
The authors have developed this experiment in order to give students the opportunity to carry out a high yield synthetic reaction coupled with an analysis of the effects of substituents on the IR, NMR, and mass spectral properties of the compounds prepared.
Rubottom, George M. J. Chem. Educ. 1974, 51, 616.
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry
Quantitative analysis of APC tablets  Hanrahan, E. S.
A short note on the analysis of APC tablets through ultraviolet, infrared, and proton magnetic resonance spectroscopy.
Hanrahan, E. S. J. Chem. Educ. 1969, 46, 511.
Quantitative Analysis |
UV-Vis Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy
Spectrometric identification of insect sex attractants  Silverstein, Robert M.
Uses spectrometric methods to identify the sex attractants of three types of beetle pests.
Silverstein, Robert M. J. Chem. Educ. 1968, 45, 794.
Spectroscopy |
IR Spectroscopy |
UV-Vis Spectroscopy |
Qualitative Analysis |
Mass Spectrometry |
NMR Spectroscopy
Applications absorption spectroscopy of organic compounds (Dyer, John R.)  Williams, Theodore R.

Williams, Theodore R. J. Chem. Educ. 1965, 42, 690.
Spectroscopy |
UV-Vis Spectroscopy |
IR Spectroscopy |
NMR Spectroscopy
Spectrometric identification of organic compounds  Silverstein, Robert M.; Bassler, G. Clayton
Presents a sequence of procedures for identifying an unknown organic liquid using mass, NMR, IR, and UV spectroscopy, along with specific examples of unknowns and their spectra,
Silverstein, Robert M.; Bassler, G. Clayton J. Chem. Educ. 1962, 39, 546.
Spectroscopy |
Qualitative Analysis |
Mass Spectrometry |
IR Spectroscopy |
NMR Spectroscopy |
UV-Vis Spectroscopy