TIGER

Journal Articles: 26 results
Experimental Design and Optimization: Application to a Grignard Reaction  Naoual Bouzidi and Christel Gozzi
This 5-week project, which systematically investigates optimizing the synthesis of benzyl-1-cyclopentan-1-ol, constitutes an initiation into research methodology and experimental design to prepare the student-engineer for an industry internship. Other pedagogical goals include experience in synthetic techniques, obtaining reproducible yields, and using quantitative analysis methods.
Bouzidi, Naoual; Gozzi, Christel. J. Chem. Educ. 2008, 85, 1544.
Addition Reactions |
Alcohols |
Aldehydes / Ketones |
Chemometrics |
Gas Chromatography |
Organometallics |
Synthesis
Evaluating Mechanisms of Dihydroxylation by Thin-Layer Chromatography  Benjamin T. Burlingham and Joseph C. Rettig
Presents a microscale experiment in which cyclohexene is dihydroxylated under three sets of conditions and the products determined through thin-layer chromatography. Teams of students evaluate proposed mechanisms for each dihydroxylation in light of the data collected.
Burlingham, Benjamin T.; Rettig, Joseph C. J. Chem. Educ. 2008, 85, 959.
Addition Reactions |
Alkenes |
Diastereomers |
Mechanisms of Reactions |
Microscale Lab |
Stereochemistry |
Synthesis |
Thin Layer Chromatography
Regioselectivity in Organic Synthesis: Preparation of the Bromohydrin of α-Methylstyrene  Brad Andersh, Kathryn N. Kilby, Meghan E. Turnis, and Drew L. Murphy
In the described experiment, the regiochemical outcome of the addition of "HOBr" to a-methylstyrene is investigated. Although both "classic" qualitative analysis and instrumental techniques are described, the emphasis of this experiment is on the utilization 13C and DEPT-135 NMR spectroscopy to determine the regiochemical outcome of the addition.
Andersh, Brad; Kilby, Kathryn N.; Turnis, Meghan E.; Murphy, Drew L. J. Chem. Educ. 2008, 85, 102.
Addition Reactions |
Alcohols |
Alkenes |
Constitutional Isomers |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis
Reaction-Map of Organic Chemistry  Steven Murov
The Reaction-Map of Organic Chemistry has been designed to provide an overview of most of the reactions needed for the organic chemistry course and should help students develop synthetic routes from one functional group to another.
Murov, Steven. J. Chem. Educ. 2007, 84, 1224.
Addition Reactions |
Electrophilic Substitution |
Elimination Reactions |
Nucleophilic Substitution |
Oxidation / Reduction |
Periodicity / Periodic Table |
Reactions |
Synthesis |
Enrichment / Review Materials
The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway  R. David Crouch, Amie Richardson, Jessica L. Howard, Rebecca L. Harker, and Kathryn H. Barker
Describes an experiment offering the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated addition of a ketone to an aldehyde.
Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H. J. Chem. Educ. 2007, 84, 475.
Addition Reactions |
Aldehydes / Ketones |
Green Chemistry |
NMR Spectroscopy |
Reactions |
Synthesis
A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory  George D. Bennett
The proline-catalyzed aldol condensation between acetone and isobutyraldehyde proceeds in good yield and with high enantioselectivity at room temperature. This multi-week experiment also illustrates a number of principles and trade-offs of green chemistry.
Bennett, George D. J. Chem. Educ. 2006, 83, 1871.
Addition Reactions |
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Green Chemistry |
Mechanisms of Reactions |
Stereochemistry
Diastereoselectivity in the Reduction of α-Hydroxyketones. An Experiment for the Chemistry Major Organic Laboratory  David B. Ball
Describes a research type, inquiry-based project where students synthesize racemic ahydroxyketones using umpolung, a polarity-reversal approach; investigate chelating versus non-chelating reducing agents; and determine the diastereoselectivity of these reducing processes by NMR spectroscopy.
Ball, David B. J. Chem. Educ. 2006, 83, 101.
Addition Reactions |
Aldehydes / Ketones |
Chirality / Optical Activity |
Chromatography |
Conferences |
Constitutional Isomers |
Enantiomers |
NMR Spectroscopy |
Stereochemistry |
Synthesis |
Conformational Analysis
Derivatization of Fullerenes: An Organic Chemistry Laboratory  Charles T. Cox Jr. and Melanie M. Cooper
Presents two undergraduate organic chemistry laboratories detailing the synthesis of fullerene derivatives, using the Bingel (carbene insertion) and Prato (1,3-dipolar addition) protocols.
Cox, Charles T., Jr.; Cooper, Melanie M. J. Chem. Educ. 2006, 83, 99.
Acids / Bases |
Addition Reactions |
Chromatography |
Heterocycles |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
UV-Vis Spectroscopy
Diels–Alder Synthesis of endo-cis-N-Phenylbicyclo[2.2.2]oct-5-en-2,3-dicarboximide  Marsha R. Baar and Kristin Wustholz
endo-cis-N-Phenylbicyclo[2.2.2]oct-5-en-2,3-dicarboximide was synthesized by a DielsAlder cycloaddition of 1,3-cyclohexadiene and N-phenylmaleimide in ethyl acetate. 1,3-Cyclohexadiene and N-phenylmaleimide were selected to illustrate the Alder rule, which reflects a preference for endo products and to overcome the difficulties associated with the traditional combination of 1,3-cyclopentadiene and maleic anhydride.
Baar, Marsha R.; Wustholz, Kristin. J. Chem. Educ. 2005, 82, 1393.
Asymmetric Synthesis |
Microscale Lab |
Stereochemistry |
Addition Reactions |
Alkenes |
IR Spectroscopy |
NMR Spectroscopy
The Evolution of a Green Chemistry Laboratory Experiment: Greener Brominations of Stilbene  Lallie C. McKenzie, Lauren M. Huffman, and James E. Hutchison
We describe two new greener alkene bromination reactions that offer enhanced laboratory safety and convey important green chemistry concepts, in addition to illustrating the chemistry of alkenes. The two alternative reactions, one involving pyridinium tribromide and a second using hydrogen peroxide and hydrobromic acid, are compared to the traditional bromination of stilbene through the application of green metrics, including atom economy, percent experimental atom economy, E factor, and effective mass yield.
McKenzie, Lallie C.; Huffman, Lauren M.; Hutchison, James E. J. Chem. Educ. 2005, 82, 306.
Synthesis |
Green Chemistry |
Aromatic Compounds |
Addition Reactions |
Alkenes
The Sharpless Asymmetric Dihydroxylation in the Organic Chemistry Majors Laboratory  Christopher J. Nichols and Melissa R. Taylor
A six-period laboratory exercise has been developed that uses the convenient Sharpless asymmetric dihydroxylation (AD) to illustrate the principles of a chiral synthesis. Using one particular alkene, students perform a racemic dihydroxylation, an AD using a commercially available AD-mix, and then an AD using an ester derivative of dihydroquinidine that they synthesized themselves. The structures of the products are confirmed with 1H NMR spectroscopy and the enantiomeric excesses of the diols are determined using a chiral GC column.
Nichols, Christopher J.; Taylor, Melissa R. J. Chem. Educ. 2005, 82, 105.
Chirality / Optical Activity |
Chromatography |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Alkenes |
Addition Reactions
A Series of Small-Scale, Discovery-Based Organic Laboratory Experiments Illustrating the Concepts of Addition, Substitution, and Rearrangement  Judith S. Moroz, Janice L. Pellino, and Kurt W. Field
Multistep, microscale organic laboratory experiments are presented that illustrate addition, substitution, and rearrangement reactions.
Moroz, Judith S.; Pellino, Janice L.; Field, Kurt W. J. Chem. Educ. 2003, 80, 1319.
IR Spectroscopy |
Mass Spectrometry |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
Addition Reactions |
Mechanisms of Reactions
Spiral Puzzle for Organic Chemistry Students  Ender Erdik
Puzzle to review organic reactions and their reagents.
Erdik, Ender. J. Chem. Educ. 2003, 80, 428.
Synthesis |
Learning Theories |
Enrichment / Review Materials |
Addition Reactions |
Alkylation |
Electrophilic Substitution |
Elimination Reactions |
Reactions |
Nucleophilic Substitution |
Mechanisms of Reactions |
Grignard Reagents
Dendrimers: Branching Out of Polymer Chemistry  Eric E. Simanek and Sergio O. Gonzalez
Addresses synthetic concepts surrounding dendrimers including the use of protecting groups, functional group interconversions, and convergent and divergent synthetic strategies.
Simanek, Eric E.; Gonzalez, Sergio O. J. Chem. Educ. 2002, 79, 1222.
Materials Science |
Synthesis |
Molecular Properties / Structure |
Addition Reactions |
Aromatic Compounds |
Alkylation |
Nucleophilic Substitution
Moving Past Markovnikov's Rule  E. Eugene Gooch
Extension of the Markovnikov Rule for addition reactions across a carbon-carbon double bond.
Gooch, E. Eugene. J. Chem. Educ. 2001, 78, 1358.
Synthesis |
Reactions |
Alkenes |
Addition Reactions |
Mechanisms of Reactions
Discovery-Oriented Approach To Organic Synthesis: Tandem Aldol Condensation-Michael Addition Reactions. Identifying Diastereotopic Hydrogens in an Achiral Molecule by NMR Spectroscopy  Nanette Wachter-Jurcsak and Kendra Reddin
Procedure illustrating aldol condensation and Michael addition reactions.
Wachter-Jurcsak, Nanette; Reddin, Kendra. J. Chem. Educ. 2001, 78, 1264.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Aromatic Compounds |
Aldehydes / Ketones |
Addition Reactions |
Mechanisms of Reactions
A -78°C Sequential Michael Addition for the Organic Lab  Michael W. Tanis
This paper introduces a cold-temperature enolate alkylation reaction that can be performed safely and inexpensively by undergraduate students in approximately two 3-hour lab sessions.
Tanis, Michael W. J. Chem. Educ. 1997, 74, 112.
Addition Reactions |
Alkenes |
Aldehydes / Ketones |
Synthesis
The Addition of Hydrogen Bromide to Simple Alkenes  Hilton M. Weiss
Synthesis of 1-bromohexane.
Weiss, Hilton M. . J. Chem. Educ. 1995, 72, 848.
Synthesis |
Mechanisms of Reactions |
Addition Reactions |
Alkenes
Synthesis of trans-2-tert-butylcyclohexanol via hydroboration: A microscale organic experiment demonstrating syn addition  Wigal, Carl T.; Hopkins, William T.; Ronald, Bruce P.
This microscale experiment demonstrates the relative stereochemistry of the titled addition.
Wigal, Carl T.; Hopkins, William T.; Ronald, Bruce P. J. Chem. Educ. 1991, 68, A299.
Synthesis |
Microscale Lab |
Addition Reactions |
Aromatic Compounds |
Stereochemistry
A laboratory study of 1,3-dipole-dipolarophile addition: An extension of the Diels Alder reaction  Gingrich, Henry L.; Pickering, Miles
Some easy organic reactions that can also be used as the basis for puzzles, or as facile heterocyclic syntheses: an area neglected in the student experiment literature.
Gingrich, Henry L.; Pickering, Miles J. Chem. Educ. 1991, 68, 614.
Mechanisms of Reactions |
Addition Reactions |
Synthesis |
Heterocycles |
Physical Properties |
NMR Spectroscopy
Preparation of 1-phenyl-3-phenylaminopyrrolidine-2,5-dione: An organic laboratory experiment on the Michael addition  Ram, Ram N.; Varsha, Kiran
Acylation of aniline with maleic anhydride to give maleanilic acid followed by Michael addition of aniline and cyclization to yield 1-phenyl-3-phenylaminopyrrolidine-2,5-dione.
Ram, Ram N.; Varsha, Kiran J. Chem. Educ. 1990, 67, 985.
Addition Reactions |
Aldehydes / Ketones |
Synthesis
The problem of syn- versus anti-addition: An organic chemistry laboratory experiment  Silversmith, Ernest F.
An experiment that allows a student to determine whether an addition to a carbon-carbon double bond proceeds in syn- or anti-fashion.
Silversmith, Ernest F. J. Chem. Educ. 1982, 59, 346.
Addition Reactions |
Mechanisms of Reactions |
Molecular Properties / Structure |
Stereochemistry |
Synthesis |
Alkenes
Project for problem-oriented undergraduate organic or integrated undergraduate laboratory  Silveira, Augustine, Jr.
This paper reports on an open-ended project which allows a great degree of flexibility in the laboratory. The project provided about a 6-week study for groups of 24 students each.
Silveira, Augustine, Jr. J. Chem. Educ. 1978, 55, 57.
Synthesis |
Undergraduate Research |
Spectroscopy |
Diastereomers |
Addition Reactions |
MO Theory |
Elimination Reactions |
Thermodynamics |
Kinetics
Molecular design of compounds via intermolecular Diels-Alder reactions  Mehta, Goverdhan
The Diels-Alder reaction involving a cycloaddition between a diene and dienophile is one of the most versatile and useful reactions in the armory of the synthetic organic chemists.
Mehta, Goverdhan J. Chem. Educ. 1976, 53, 551.
Synthesis |
Addition Reactions |
Aromatic Compounds
Dihalocarbene addition reaction  Goh, S. H.
This experiment illustrates the synthetic utility of carbenes and that of phase transfer catalysis.
Goh, S. H. J. Chem. Educ. 1973, 50, 678.
Alkenes |
Addition Reactions |
Reactions |
Mechanisms of Reactions |
Catalysis |
Synthesis
Preparation of p-anisole: An organic chemistry experiment  Smith, Richard F.; Bates, Alvin C.
In this experiment, p-anisaldehyde is converted to p-anisonitrile by a modification of the three-step aldehyde-nitrile synthesis of Smith and Walker.
Smith, Richard F.; Bates, Alvin C. J. Chem. Educ. 1969, 46, 174.
Synthesis |
Mechanisms of Reactions |
Addition Reactions |
Nucleophilic Substitution |
Elimination Reactions |
Catalysis