Journal Articles: 6 results
Regiospecific Epoxidation of Carvone: A Discovery-Oriented Experiment for Understanding the Selectivity and Mechanism of Epoxidation Reactions  Kendrew K. W. Mak, Y. M. Lai, and Yuk-Hong Siu
Peroxy acids and alkaline H2O2 are two commonly used reagents for alkene epoxidation. The former react preferentially with electron-rich alkenes while the latter works better with a,-unsaturated carbonyl compounds. The selectivity of these two reagents on carvone, a naturally occurring compound that contains both types of C=C bonds, is investigated.
Mak, Kendrew K. W.; Lai, Y. M.; Siu, Yuk-Hong. J. Chem. Educ. 2006, 83, 1058.
Alkenes |
Chromatography |
Epoxides |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Mechanisms of Reactions
Epoxide Reactions  Thomas Bertolini
Puzzle involving epoxide reactions.
Bertolini, Thomas. J. Chem. Educ. 2002, 79, 828.
Synthesis |
Epoxides |
The Discovery-Oriented Approach to Organic Chemistry. 4. Epoxidation of p-Methoxy-trans-b-methylstyrene: An Exercise in NMR and IR Spectroscopy for Sophomore Organic Laboratories  Rebecca S. Centko and Ram S. Mohan
Illustrates epoxidation of alkenes as well as the reactivity of epoxides toward acids. The experiment involves reaction of p-methoxy-trans-beta-methylstyrene (trans-anethole) with m-chloroperoxybenzoic acid (MCPBA), in both the absence and presence of a buffer, followed by product identification using 1H NMR, 13C NMR, and IR spectroscopy
Centko, Rebecca S.; Mohan, Ram S. J. Chem. Educ. 2001, 78, 77.
IR Spectroscopy |
NMR Spectroscopy |
Epoxides |
Diastereospecific Synthesis of an Epoxide: An Introductory Experiment in Organic Synthetic and Mechanistic Chemistry  James A. Ciaccio
A two-step epoxide synthesis that can be presented to students in the form of two mechanistic "puzzles" that probe the stereoselectivity of two important reactions: halohydrin formation from alkenes and epoxide formation via intramolecular Williamson ether synthesis.
Ciaccio, James A. J. Chem. Educ. 1995, 72, 1037.
Stereochemistry |
Molecular Properties / Structure |
Mechanisms of Reactions |
Synthesis |
Epoxides |
Chemical toxicology. Part I. Organic compounds  Carter, D. E.; Fernando, Quintus
General principles of toxicology, and particular consideration of aliphatics, aromatic, and halogenated hydrocarbons; alcohols, aldehydes, esters, ethers, and ketones; sulfides, mercaptans, and carbon disulfide; nitrogen-containing compounds; and carcinogens.
Carter, D. E.; Fernando, Quintus J. Chem. Educ. 1979, 56, 284.
Toxicology |
Alcohols |
Aldehydes / Ketones |
Esters |
Ethers |
Aromatic Compounds |
Amines / Ammonium Compounds |
Microbial oxidation of alkenes. An integrated organic-biology experiment  Kumler, Philip L.; DeJong, Peter J.
The conversion of an appropriate terminal alkene to a 1,2-epoxyalkane by Pseudomonas oleovorans introduces students to the techniques used in carrying out chemical conversions employing microorganisms.
Kumler, Philip L.; DeJong, Peter J. J. Chem. Educ. 1975, 52, 475.
Oxidation / Reduction |
Alkenes |
Bioorganic Chemistry |
Biotechnology |
Natural Products