TIGER

Journal Articles: 41 results
Experimental Design and Optimization: Application to a Grignard Reaction  Naoual Bouzidi and Christel Gozzi
This 5-week project, which systematically investigates optimizing the synthesis of benzyl-1-cyclopentan-1-ol, constitutes an initiation into research methodology and experimental design to prepare the student-engineer for an industry internship. Other pedagogical goals include experience in synthetic techniques, obtaining reproducible yields, and using quantitative analysis methods.
Bouzidi, Naoual; Gozzi, Christel. J. Chem. Educ. 2008, 85, 1544.
Addition Reactions |
Alcohols |
Aldehydes / Ketones |
Chemometrics |
Gas Chromatography |
Organometallics |
Synthesis
The Comparative Nucleophilicity of Naphthoxide Derivatives in Reactions with a Fast-Red TR Dye  Cheryl M. Mascarenhas
In this experiment, organic chemistry students perform reactions between three naphthyl acetate derivatives and the diazonium salt Fast-Red TR. Students discover under what conditions the hydrolysis and electrophilic aromatic substitution is fastest and slowest, allowing them to conclude that latter, rather than the former, is rate-limiting.
Mascarenhas, Cheryl M. J. Chem. Educ. 2008, 85, 1271.
Alcohols |
Aromatic Compounds |
Dyes / Pigments |
Esters |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Thin Layer Chromatography |
UV-Vis Spectroscopy
Converting Municipal Waste into Automobile Fuel: Ethanol from Newspaper  Mark Mascal and Richard Scown
In this experiment, waste newspaper is pulped with acid and its cellulose hydrolyzed to produce glucose syrup that is fermented and distilled to yield ethanol. In doing so, students are introduced to carbohydrate chemistry and the use of fermentation in organic synthesis.
Mascal, Mark; Scown, Richard. J. Chem. Educ. 2008, 85, 546.
Acids / Bases |
Alcohols |
Applications of Chemistry |
Biotechnology |
Carbohydrates |
Qualitative Analysis |
Synthesis |
Thin Layer Chromatography
Synthesis and Characterization of 9-Hydroxyphenalenone Using 2D NMR Techniques  Benjamin Caes and Dell Jensen Jr.
The synthesis of 9-Hydroxyphenalenone produces a planar multicyclic beta-ketoenol, the tautomerization of which results in C2v symmetry on the NMR time scale, thus simplifying the spectra and providing a unique structure for teaching 2D NMR spectroscopy.
Caes, Benjamin; Jensen, Dell, Jr. J. Chem. Educ. 2008, 85, 413.
Alcohols |
Aldehydes / Ketones |
Aromatic Compounds |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis
Regioselectivity in Organic Synthesis: Preparation of the Bromohydrin of α-Methylstyrene  Brad Andersh, Kathryn N. Kilby, Meghan E. Turnis, and Drew L. Murphy
In the described experiment, the regiochemical outcome of the addition of "HOBr" to a-methylstyrene is investigated. Although both "classic" qualitative analysis and instrumental techniques are described, the emphasis of this experiment is on the utilization 13C and DEPT-135 NMR spectroscopy to determine the regiochemical outcome of the addition.
Andersh, Brad; Kilby, Kathryn N.; Turnis, Meghan E.; Murphy, Drew L. J. Chem. Educ. 2008, 85, 102.
Addition Reactions |
Alcohols |
Alkenes |
Constitutional Isomers |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis
Developing Critical Thinking Skills: The "Sabotaged" Synthesis of Methyl p-Bromobenzoate  Eric J. Mahan and Mary Alice Nading
Before beginning an experiment, students are told that someone might have sabotaged their experiment to produce other-than-expected results. The objective is to perform the experiment, determine if any sabotage has occurred, and, if so, identify the changes that were made to the reagents as well as the person responsible.
Mahan, Eric J.; Nading, Mary Alice. J. Chem. Educ. 2006, 83, 1652.
Alcohols |
Carboxylic Acids |
Esters |
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Synthesis
A Simple Combinatorial Experiment Based on Fischer Esterification. An Experiment Suitable for the First-Semester Organic Chemistry Lab  Peter A. Wade, Susan A. Rutkowsky, and Daniel B. King
Describes a combinatorial experiment for the synthesis of esters by Fischer esterification in which a total of eight esters are prepared as six mixtures.
Wade, Peter A.; Rutkowsky, Susan A.; King, Daniel B. J. Chem. Educ. 2006, 83, 927.
Alcohols |
Carboxylic Acids |
Combinatorial Chemistry |
Equilibrium |
Esters |
Gas Chromatography |
Synthesis
Synthesis of Methyl Diantilis, a Commercially Important Fragrance  William H. Miles and Katelyn B. Connell
Describes the synthesis of a family of fragrances, including the commercially important Methyl Diantilis, and provides an excellent introduction to intellectual property laws.
Miles, William H.; Connell, Katelyn B. J. Chem. Educ. 2006, 83, 285.
Alcohols |
Food Science |
Catalysis |
Ethers |
Industrial Chemistry |
IR Spectroscopy |
Lewis Acids / Bases |
NMR Spectroscopy |
Oxidation / Reduction |
Synthesis
The Discovery-Oriented Approach to Organic Chemistry. 6. Selective Reduction in Organic Chemistry: Reduction of Aldehydes in the Presence of Esters Using Sodium Borohydride  Ashvin R. Baru and Ram S. Mohan
Describes two discovery oriented lab experiments involving the chemoselective reduction of vanillin acetate and methyl 4-formylbenzoate in the presence of esters using sodium borohydride, followed by product identification using 1H and 13C NMR spectroscopy.
Baru, Ashvin R.; Mohan, Ram S. J. Chem. Educ. 2005, 82, 1674.
NMR Spectroscopy |
Alcohols |
Aldehydes / Ketones |
Esters |
Oxidation / Reduction |
Thin Layer Chromatography |
Synthesis
Cautionary Comments   R. G. Landolt
Im concerned about a safety factor in the paper, A Solvent-Free Oxidation of Alcohols in an Organic Laboratory".
Landolt, R. G. J. Chem. Educ. 2004, 81, 641.
Alcohols |
Synthesis
Organic Functional Group Playing Card Deck  Michael J. Welsh
Organic functional group playing card deck used for review of the name and structure of organic functional groups that can be used to play any game that a normal deck of cards is used for.
Welsh, Michael J. J. Chem. Educ. 2003, 80, 426.
Nomenclature / Units / Symbols |
Nonmajor Courses |
Enrichment / Review Materials |
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amides |
Amines / Ammonium Compounds |
Aromatic Compounds |
Carboxylic Acids |
Esters |
Ethers |
Mechanisms of Reactions |
Synthesis
The Oxidation of Primary Alcohols to Esters: Three Related Investigative Experiments  Chriss E. McDonald

McDonald, Chriss E. J. Chem. Educ. 2000, 77, 750.
Oxidation / Reduction |
Alcohols |
Esters |
Synthesis |
Mechanisms of Reactions
Synthesis of Derivatives of (1R)-(-)- and (1S)-(+)-10-Camphorsulfonic Acid  Steven C. Cermak and David F. Wiemer
The preparation of optically active (camphorsulfonyl)oxaziridines from commercially available (1R)-(-) and/or (1S)-(+)10-camphorsulfonic acid provides a clear demonstration of the lack of relationship between absolute configuration and optical rotation. The parent sulfonic acid can be converted to the corresponding acid chloride and then to the sulfonamide, sulfonylimine, and finally to an oxaziridine in a series of practical organic laboratory experiments.
Cermak, Steven C.; Wiemer, David F. J. Chem. Educ. 1999, 76, 1715.
Stereochemistry |
Synthesis |
Aromatic Compounds |
Ethers |
Alcohols |
Aldehydes / Ketones |
Acids / Bases
The Discovery-Oriented Approach to Organic Chemistry 2. Selectivity in Alcohol Oxidation: An Exercise in 1H NMR Spectroscopy for Sophomore Organic Laboratories  Steven R. Shadwick and Ram S. Mohan
A simple oxidation experiment that presents the student with a puzzle and is a good exercise in 1H NMR spectroscopy. The experiment, which illustrates the important concept of selectivity in organic synthesis, involves selective oxidation of a mixture of 1-heptanol and 2-heptanol using commercial swimming pool chlorine.
Shadwick, Steven R.; Mohan, Ram S. J. Chem. Educ. 1999, 76, 1121.
NMR Spectroscopy |
Alcohols |
Oxidation / Reduction |
Synthesis
A Puzzling Alcohol Dehydration Reaction Solved by GC–MS Analysis  Michael W. Pelter and Rebecca M. Macudzinski
The reaction of 2-methyl-2-propanol with ~50% sulfuric acid at 100 C yields isobutylene, which reacts further by a "puzzling" reaction. By coupling the GC/MS analysis of the product mixture with their knowledge of the mechanism of alcohol dehydration and alkene reactivity, students are able to identify the major products of this reaction.
Pelter, Michael W.; Macudzinski, Rebecca M. J. Chem. Educ. 1999, 76, 826.
Synthesis |
Microscale Lab |
Mass Spectrometry |
Gas Chromatography |
Alcohols |
Alkenes
Grignard Synthesis of Various Tertiary Alcohols  T. Stephen Everett
A general Grignard procedure is presented for the synthesis of aliphatic, tertiary alcohols containing six to nine carbons. Without revealing the specific starting materials, students are challenged to identify their unknown products from physical (boiling points, refractive indices) and spectral (infrared O-H, C-H and fingerprint regions) data.
Everett, T. Stephen. J. Chem. Educ. 1998, 75, 86.
IR Spectroscopy |
Alcohols |
Mechanisms of Reactions |
Synthesis
A Grignard-like Organic Reaction in Water  Gary W. Breton and Christine A. Hughey
A known Grignard-like reaction between allyl bromide and benzaldehyde mediated by zinc metal in aqueous media. The procedure retains the desirable features of the traditional Grignard reaction, while eliminating some of the commonly encountered difficulties.
Breton, Gary W.; Hughey, Christine A. J. Chem. Educ. 1998, 75, 85.
Microscale Lab |
Aromatic Compounds |
Aldehydes / Ketones |
Alcohols |
Synthesis |
Mechanisms of Reactions
The Diels-Alder Reaction of 2,4-Hexadien-1-ol with Maleic Anhydride: A Novel Preparation for the Undergraduate Organic Chemistry Laboratory Course  Keith F. McDaniel and R. Matthew Weekly
The reaction of 2,4-hexadien-1-ol with maleic anhydride provides an excellent exercise for undergraduate laboratory courses. In addition to the expected Diels-Alder reaction, which takes place readily in refluxing toluene, subsequent intramolecular cleavage of the resulting bicyclic anhydride by the pendant hydroxy group generates a lactone. Thus, two important organic reactions can be carried out in a single laboratory session.
McDaniel, Keith F.; Weekley, R. Matthew. J. Chem. Educ. 1997, 74, 1465.
Synthesis |
NMR Spectroscopy |
Molecular Properties / Structure |
Alcohols
Following Microscale Organic Reactions Using FT-IR  Janice Ems-Wilson
This article describes an experiment that encourages discussion of carbohydrate chemistry in terms of reaction mechanisms, conformational analysis, and spectroscopy. The specific experiment involves the preparation of the bis(acetonide) of D-(+)-mannose.
Ems-Wilson, Janice. J. Chem. Educ. 1996, 73, A170.
Microscale Lab |
Carbohydrates |
Mechanisms of Reactions |
Conformational Analysis |
Spectroscopy |
Synthesis |
Aldehydes / Ketones |
Alcohols
The Hydration of 1-Hexene and 1-Hexyne  Touchette, Kim M.; Weiss, Hilton M.; Rozenberg, Daniel
The sulfuric acid-catalyzed hydration of 1-hexene and 1-hexyne.
Touchette, Kim M.; Weiss, Hilton M.; Rozenberg, Daniel J. Chem. Educ. 1994, 71, 534.
Alkynes |
Alkenes |
Alcohols |
Catalysis |
Synthesis
GC/MS experiments for the organic chemistry laboratory: I. E2 elimination of 2-bromo-2-methyloctane   Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott
Two capillary GC/MS experiments that were designed for and tested in a sophomore organic laboratory course.
Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott J. Chem. Educ. 1993, 70, A103.
Gas Chromatography |
Alkenes |
Alkanes / Cycloalkanes |
Alcohols |
Elimination Reactions |
Synthesis
Synthetic applications of aromatic metabolites  Armstead, D. E. F.
A sequel lab to clove oil extraction.
Armstead, D. E. F. J. Chem. Educ. 1991, 68, 698.
Aromatic Compounds |
Alcohols |
Natural Products |
Synthesis
A convenient synthesis of 3,4-pentadien-1-ol from 3-butyn-1-ol: Spectral analysis and unusual durability of the allene moiety  Price, William A.; Patten, Timothy E.
Description of a convenient synthesis of 3,4-pentadien-1-ol from 3-butyn-1-ol: Spectral analysis and unusual durability of the allene moiety.
Price, William A.; Patten, Timothy E. J. Chem. Educ. 1991, 68, 256.
Synthesis |
Alcohols |
Alkenes |
NMR Spectroscopy
An operationally simple hydroboration-oxidation experiment  Kabalka, George W.; Wadgaonkar, Prakash P.; Chatla, Narayana
The reactions involve the use of in situ generated diborane as the hydroborating reagent and sodium perborate as the oxidizing agent to convert cyclopentene to cyclopentanol.
Kabalka, George W.; Wadgaonkar, Prakash P.; Chatla, Narayana J. Chem. Educ. 1990, 67, 975.
Synthesis |
Mechanisms of Reactions |
Alkenes |
Alcohols
From cyclohexanol to diethyl hexanedioate (diethyl adipate): A two-step synthetic sequence for microscale organic laboratory   Wintner, Claude E.; Gray, Christina A.
The authors have developed a two-step microscale sequence from cyclohexanol through adipic acid to diethyl adipate that has proved to be successful in the first year organic laboratory.
Wintner, Claude E.; Gray, Christina A. J. Chem. Educ. 1990, 67, 341.
Microscale Lab |
Synthesis |
Alcohols
Getting away from the cookbook in the organic laboratory  Potter, Neil H.; McGrath, Thomas F.
An organic laboratory program in which students perform traditional experiments during the first semester followed by intensive independent work the second semester.
Potter, Neil H.; McGrath, Thomas F. J. Chem. Educ. 1989, 66, 666.
Synthesis |
Alcohols
A series of synthetic organic experiments demonstrating physical organic principles  Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H.
The sequence of reactions described here incorporates several common synthetic organic transformations involving alkenes, alcohols, alkyl halides, and ketones that demonstrate some important principles of physical organic chemistry.
Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H. J. Chem. Educ. 1989, 66, 174.
Synthesis |
Alkenes |
Alcohols |
Aldehydes / Ketones |
Reactions
Microscale organic laboratory: IV: A simple and rapid procedure for carrying out Wittig reactions  Pike, R. M.; Mayo, D. W.; Butcher, D. W.; Butcher, S. S.; Hinkle, R. J.
This paper offers two examples that illustrate a new synthetic method. This synthesis is the first feasible preparation of a particular group available for the introductory organic laboratory.
Pike, R. M.; Mayo, D. W.; Butcher, D. W.; Butcher, S. S.; Hinkle, R. J. J. Chem. Educ. 1986, 63, 917.
Synthesis |
Aromatic Compounds |
Heterocycles |
Alkenes |
Alcohols
Oxidation of alcohols using calcium hypochlorite and solid/liquid phase-transfer catalysis  Hill, John W.; Jenson, Jeffrey A.; Henke, Charles F.; Yaritz, Joseph G.; Pedersen, Richard L.
Includes synthesis of an aldehyde from a primary alcohol as well as several ketones from secondary alcohols.
Hill, John W.; Jenson, Jeffrey A.; Henke, Charles F.; Yaritz, Joseph G.; Pedersen, Richard L. J. Chem. Educ. 1984, 61, 1118.
Alcohols |
Oxidation / Reduction |
Catalysis |
Aldehydes / Ketones |
Synthesis
A phase transfer catalyzed permanganate oxidation: preparation of vanillin from isoeugenol acetate  Lampman, Gary M.; Sharpe, Steven D.
There are several attractive features in this reaction sequence for the undergraduate laboratory. These include (1) use of a protecting acetate group, (2) use of a familiar "textbook" oxidant, potassium permanganate, (3) use of phase transfer catalyst, (4) preparing of an aldehyde, (5) short reaction period, and (6) the laboratory has a pleasant aroma.
Lampman, Gary M.; Sharpe, Steven D. J. Chem. Educ. 1983, 60, 503.
Oxidation / Reduction |
Catalysis |
Natural Products |
Synthesis |
Aldehydes / Ketones |
Alcohols |
Aromatic Compounds
A reinvestigation of the synthesis of 4-methyl-3-heptanol  Hoffman, Robert V.; Alexander, M. D.; Buntain, Gregory; Hardenstein, Richard; Mattox, Cynthia; McLaughlin, Susan; McMinn, Denise; Spray, Scott; White, Steven
A previously reported laboratory may have reported gas chromatographic separation of the 4-methyl-3-heptanol diastereomiers in error. The side reactions in the Grignard reaction account for the observed results.
Hoffman, Robert V.; Alexander, M. D.; Buntain, Gregory; Hardenstein, Richard; Mattox, Cynthia; McLaughlin, Susan; McMinn, Denise; Spray, Scott; White, Steven J. Chem. Educ. 1983, 60, 78.
Hormones |
Alcohols |
Grignard Reagents |
IR Spectroscopy |
NMR Spectroscopy |
Aldehydes / Ketones |
Gas Chromatography |
Synthesis |
Natural Products
Ketone synthesis using household bleach  Perkins, Robert A.; Chau, Felix
Household bleach is used to synthesize several different ketones from alcohols.
Perkins, Robert A.; Chau, Felix J. Chem. Educ. 1982, 59, 981.
Synthesis |
Aldehydes / Ketones |
Alcohols
An undergraduate laboratory program project involving photocyclizations in independent syntheses of novel chrysenes and phenanthrenes  Letcher, R. M.
This experiment attempts to fulfill such objectives as providing meaningful and viable preparative reactions, providing an opportunity for independent laboratory work within a project framework and under conditions of nearly equal opportunity and experience.
Letcher, R. M. J. Chem. Educ. 1981, 58, 1020.
Undergraduate Research |
Synthesis |
Aromatic Compounds |
Photochemistry |
Diastereomers |
NMR Spectroscopy |
Alcohols |
Thin Layer Chromatography
Drugs in the chemistry laboratory: The conversion of acetaminophen into phenacetin  Volker, Eugene J.; Pride, Ernest; Hough, Charles
The phenolic alcohol group of acetaminophen is alkylated with ethyl iodide using the basic catalyst K2CO3.
Volker, Eugene J.; Pride, Ernest; Hough, Charles J. Chem. Educ. 1979, 56, 831.
Nonmajor Courses |
Applications of Chemistry |
Medicinal Chemistry |
Drugs / Pharmaceuticals |
Synthesis |
Catalysis |
Phenols |
Alcohols
Aqueous chromic acid oxidation of secondary alcohols in diethyl ether: A convenient undergraduate organic chemistry experiment  Thompson, Kerry L.; Krishnamurthy, S.; Nylund, Thomas; Ravindranathan, M.
A two-phase procedure for the oxidation of secondary alcohols to ketones that is applicable to a wide variety of substrates.
Thompson, Kerry L.; Krishnamurthy, S.; Nylund, Thomas; Ravindranathan, M. J. Chem. Educ. 1979, 56, 203.
Aqueous Solution Chemistry |
Oxidation / Reduction |
Alcohols |
Ethers |
Synthesis |
Aldehydes / Ketones
A new synthesis of tertiary alkyl N-aryl-carbamates from isocyanates  Bailey, William J.; Griffith, James R.
A simple, convenient, and fast procedure has been developed for the synthesis of tertiary alkyl N-acrylcarbamate from phenyl and 1-naphthyl isocyanates as solid derivatives of tertiary alcohols by the use of lithium tertiary alkoxides as catalysts.
Bailey, William J.; Griffith, James R. J. Chem. Educ. 1978, 55, 809.
Catalysis |
Alcohols |
Synthesis
Synthesis of 4-methyl-3-heptanol and 4-methyl-3-heptanone. Two easily synthesized insect pheromones  Einterz, Robert M.; Ponder, Jay W.; Lenox, Ronald S.
A two step reaction sequence involving the Grignard synthesis of an alcohol followed by oxidation of this alcohol to the corresponding ketone.
Einterz, Robert M.; Ponder, Jay W.; Lenox, Ronald S. J. Chem. Educ. 1977, 54, 382.
Natural Products |
Synthesis |
Applications of Chemistry |
Grignard Reagents |
Mechanisms of Reactions |
Stereochemistry |
Alcohols |
Aldehydes / Ketones
Syntheses and rearrangements of cage molecules related to cubane  Jefford, Charles W.
This article looks at the synthesis of cubane, basketene, miscellaneous homocubane chemistry, snoutene, triqunacene, hypostrophene, tris-homocubane, and catalysis by transition metals.
Jefford, Charles W. J. Chem. Educ. 1976, 53, 477.
Catalysis |
Transition Elements |
Alkenes |
Synthesis |
Aromatic Compounds |
Heterocycles |
Alcohols
Alcohols to alkyl halides: A kinetics experiment for elementary chemistry courses  Cooley, J. H.; McCown, J. D.; Shill, R. M.
The rate measurement in this procedure is accomplished by direct observation of the change in length or volume of the insoluble layer of an alkyl bromide that is formed from a mixture of alcohol, hydrobromic acid, and sulfuric acid.
Cooley, J. H.; McCown, J. D.; Shill, R. M. J. Chem. Educ. 1967, 44, 280.
Alcohols |
Synthesis |
Kinetics |
Rate Law
The glycol centenary  Farber, Eduard
Describes the original synthesis of glycol by Adolphe Wurtz in 1856 and traces its subsequent production.
Farber, Eduard J. Chem. Educ. 1956, 33, 117.
Synthesis |
Alcohols
A laboratory exercise in catalytic dehydrogenation  Allison, Elizabeth; Gorsich, Richard; Binder, L. O.
Presents an apparatus that uses a copper catalyst to prepare aldehydes and ketones from alcohols through catalytic dehydrogenation.
Allison, Elizabeth; Gorsich, Richard; Binder, L. O. J. Chem. Educ. 1955, 32, 209.
Catalysis |
Alcohols |
Aldehydes / Ketones |
Synthesis