TIGER

Journal Articles: 19 results
Reaction-Map of Organic Chemistry  Steven Murov
The Reaction-Map of Organic Chemistry has been designed to provide an overview of most of the reactions needed for the organic chemistry course and should help students develop synthetic routes from one functional group to another.
Murov, Steven. J. Chem. Educ. 2007, 84, 1224.
Addition Reactions |
Electrophilic Substitution |
Elimination Reactions |
Nucleophilic Substitution |
Oxidation / Reduction |
Periodicity / Periodic Table |
Reactions |
Synthesis |
Enrichment / Review Materials
Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides  Jack R. Waas
Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the HartreeĀFock method, and two DFT methods. All five methods agreed generally with the expected empirically known trends in the dissociation of alkyl halides.
Waas, Jack R. J. Chem. Educ. 2006, 83, 1017.
Alkanes / Cycloalkanes |
Computational Chemistry |
Mechanisms of Reactions |
Molecular Modeling |
Reactions |
Reactive Intermediates |
Thermodynamics |
Elimination Reactions |
Nucleophilic Substitution
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
The Substitution–Elimination Mechanistic Disc Method  Paul T. Buonora and Yu Jin Lim
In this manuscript a mnemonic device designed to facilitate presentation of the competing SN1, SN2, E1, and E2 mechanisms is presented.
Buonora, Paul T.; Lim, Yu Jin. J. Chem. Educ. 2004, 81, 368.
Mechanisms of Reactions |
Elimination Reactions |
Nucleophilic Substitution
Spiral Puzzle for Organic Chemistry Students  Ender Erdik
Puzzle to review organic reactions and their reagents.
Erdik, Ender. J. Chem. Educ. 2003, 80, 428.
Synthesis |
Learning Theories |
Enrichment / Review Materials |
Addition Reactions |
Alkylation |
Electrophilic Substitution |
Elimination Reactions |
Reactions |
Nucleophilic Substitution |
Mechanisms of Reactions |
Grignard Reagents
A New Approach To Teaching Organic Chemical Mechanisms  Wentland, Stephen H.
Describing the mechanisms of organic reactions using five simple steps or operations.
Wentland, Stephen H. J. Chem. Educ. 1994, 71, 3.
Mechanisms of Reactions |
Addition Reactions |
Nucleophilic Substitution |
Electrophilic Substitution |
Elimination Reactions |
Resonance Theory |
Molecular Properties / Structure
GC/MS experiments for the organic chemistry laboratory: I. E2 elimination of 2-bromo-2-methyloctane   Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott
Two capillary GC/MS experiments that were designed for and tested in a sophomore organic laboratory course.
Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott J. Chem. Educ. 1993, 70, A103.
Gas Chromatography |
Alkenes |
Alkanes / Cycloalkanes |
Alcohols |
Elimination Reactions |
Synthesis
A study of the E2 reaction for the microscale organic lab  Flash, Patrick; Galle, Fred; Radil, Mark
Students determine the pseudo-first-order rate constant for the elimination of HBr from 2-bromobutane and measure the yield and approximate composition of the alkene products, determine the yield of alkenes from 1-bromobutane under the same conditions, and examine the effect of changing solvent polarity on alkene yields for the two halides.
Flash, Patrick; Galle, Fred; Radil, Mark J. Chem. Educ. 1989, 66, 958.
Elimination Reactions |
Mechanisms of Reactions |
Rate Law |
Kinetics
A conversion of methyl ketones into acetylenes: A project for a problem oriented or microscale organic chemistry course  Silveira, Augustine, Jr.; Orlando, Steven C.
The authors present their adaptation of an open-ended project on the conversion of methyl ketones into acetylenes for the microscale lab and describe its pedagogic utility.
Silveira, Augustine, Jr.; Orlando, Steven C. J. Chem. Educ. 1988, 65, 630.
Microscale Lab |
Aldehydes / Ketones |
Synthesis |
Nucleophilic Substitution |
Gas Chromatography
Aromatic substitution reactions: when you've said ortho, meta, and para you haven't said it all  Traynham, James G.
The author presents a range of examples for nucleophilic, electrophilic, and free-radical reactions where the ipso is an important, predominant, or even exclusive site of reaction.
Traynham, James G. J. Chem. Educ. 1983, 60, 937.
Nucleophilic Substitution |
Electrophilic Substitution |
Free Radicals |
Diastereomers |
Stereochemistry |
Reactions
Organic lecture demonstrations of common-ion effect, ionizing power of solvents, and first-order reaction kinetics  Danen, Wayne C.; Blecha, Sr. M. Therese
The hydrolysis of tert-butyl chloride is the basis of three demonstrations which each illustrate an important principle of organic chemistry: the common-ion or mass law effect, the effect of changing the ionizing power of a solvent on a solvolysis reaction, and the collecting and plotting of data to illustrate a first-order reaction.
Danen, Wayne C.; Blecha, Sr. M. Therese J. Chem. Educ. 1982, 59, 659.
Aqueous Solution Chemistry |
Solutions / Solvents |
Nucleophilic Substitution |
Kinetics |
Rate Law
A dynamic carbon model capable of showing changes in hybridization  Fountain, K. R.
It is possible to construct a simple dynamic model of a carbon atom that demonstrates the Walden inversion, the SN1 reaction, and when joined with another units like itself demonstrates the full spectrum of elimination reactions.
Fountain, K. R. J. Chem. Educ. 1979, 56, 379.
Molecular Modeling |
Nucleophilic Substitution |
Elimination Reactions
Reaction mechanisms in organic chemistry. Concerted reactions  Caserio, Marjorie C.
Examines displacement and elimination, cyclization, and rearrangement reactions, as well as theoretical considerations and generalized selection rules.
Caserio, Marjorie C. J. Chem. Educ. 1971, 48, 782.
Mechanisms of Reactions |
Reactions |
Nucleophilic Substitution |
Elimination Reactions
Donor-acceptor interactions in organic chemistry  Sunderwirth, S. G.
The purpose of this article is to aid teachers in making even more effective use of theoretical considerations in teaching organic chemistry; the primary objective is to emphasize the underlying principles that are common to the following four basic types of reactions: substitution, addition, elimination, and rearrangement.
Sunderwirth, S. G. J. Chem. Educ. 1970, 47, 728.
Reactions |
Mechanisms of Reactions |
Addition Reactions |
Elimination Reactions |
Nucleophilic Substitution
Preparation of p-anisole: An organic chemistry experiment  Smith, Richard F.; Bates, Alvin C.
In this experiment, p-anisaldehyde is converted to p-anisonitrile by a modification of the three-step aldehyde-nitrile synthesis of Smith and Walker.
Smith, Richard F.; Bates, Alvin C. J. Chem. Educ. 1969, 46, 174.
Synthesis |
Mechanisms of Reactions |
Addition Reactions |
Nucleophilic Substitution |
Elimination Reactions |
Catalysis
Substitution reactions in octahedral complexes  Jones, G. R. H.
Examines the possibility of direct substitution, in aqueous solution, of a ligand in an octahedral complex by a nucleophile other than water or OH-.
Jones, G. R. H. J. Chem. Educ. 1966, 43, 657.
Coordination Compounds |
Mechanisms of Reactions |
Aqueous Solution Chemistry |
Nucleophilic Substitution |
Transition Elements |
Metals
Reaction mechanisms in organic chemistry. I. The experimental approach  Caserio, Marjorie C.
Reviews a variety of method that may be employed to determine the mechanism of organic reactions.
Caserio, Marjorie C. J. Chem. Educ. 1965, 42, 570.
Reactions |
Mechanisms of Reactions |
Reactive Intermediates |
Kinetics |
Nucleophilic Substitution |
Addition Reactions |
Elimination Reactions
Nucleophlic substitution at a saturated carbon atom; Elimination reactions (Bunton, C. A.; Banthorpe, D. V.)  Bunnett, Joseph F.

Bunnett, Joseph F. J. Chem. Educ. 1964, 41, 406.
Nucleophilic Substitution |
Elimination Reactions |
Mechanisms of Reactions
Nucleophilic reactions at trigonally bonded carbon  Cash, R. Vincent
Examines the mechanisms of nucleophilic displacement reactions, nucleophilic addition reactions, and nucleophilic addition with elimination, all at trigonally bonded carbon.
Cash, R. Vincent J. Chem. Educ. 1964, 41, 108.
Nucleophilic Substitution |
Reactions |
Mechanisms of Reactions |
Addition Reactions |
Elimination Reactions