TIGER

Journal Articles: 21 results
Percy Julian, Robert Robinson, and the Identity of Eserethole  Addison Ault
The Nova production Percy JulianĀForgotten Genius, which included the very public disagreement over the identity of "eserethole," the key intermediate for the synthesis of the alkaloid physostigmine, left three important chemical questions unanswered.
Ault, Addison. J. Chem. Educ. 2008, 85, 1524.
Constitutional Isomers |
Enantiomers |
Natural Products |
Stereochemistry |
Synthesis
Evaluating Mechanisms of Dihydroxylation by Thin-Layer Chromatography  Benjamin T. Burlingham and Joseph C. Rettig
Presents a microscale experiment in which cyclohexene is dihydroxylated under three sets of conditions and the products determined through thin-layer chromatography. Teams of students evaluate proposed mechanisms for each dihydroxylation in light of the data collected.
Burlingham, Benjamin T.; Rettig, Joseph C. J. Chem. Educ. 2008, 85, 959.
Addition Reactions |
Alkenes |
Diastereomers |
Mechanisms of Reactions |
Microscale Lab |
Stereochemistry |
Synthesis |
Thin Layer Chromatography
Rapid and Stereoselective Conversion of a trans-Cinnamic Acid to a β-Bromostyrene  Thomas A. Evans
The stereoselective synthesis of an aryl vinyl bromide is accomplished in a rapid microscale reaction of trans-4-methoxycinnamic acid with N-bromosuccinimide in dichloromethane. This guided-inquiry experiment links reactivity, stereochemistry, and mechanism in electrophilic addition reactions of alkenes and in E1 and E2 elimination reactions that form alkenes.
Evans, Thomas A. J. Chem. Educ. 2006, 83, 1062.
Alkenes |
Carbocations |
Gas Chromatography |
Mechanisms of Reactions |
Microscale Lab |
NMR Spectroscopy |
Stereochemistry
Stereospecific Synthesis of the Geometrical Isomers of a Natural Product  T. Grove, D. DiLella, and E. Volker
Presents an experiment for the synthesis of (Z) and (E) isomers that is presented to students as a puzzle in which they must determine the identity of the major component in anise oil. A necessary part of the analysis is the preparation the (E) and (Z) isomers of anethole. Molecular modeling is used to explore the conformation of and energy difference between isomers.
Grove, T.; DiLella, D.; Volker, E. J. Chem. Educ. 2006, 83, 1055.
Alkenes |
Computational Chemistry |
Gas Chromatography |
IR Spectroscopy |
NMR Spectroscopy |
Stereochemistry |
Synthesis
The Study of Elimination Reactions Using Gas Chromatography: An Experiment for the Undergraduate Organic Laboratory  Devin Latimer
This article describes an investigation of elimination reactions of alkyl halides. 1-Bromopentane or 2-bromopentane are reacted with either sodium ethoxide or potassium tert-butoxide. Gas chromatography is used to monitor the relative amounts of 1-pentene, (E)-2-pentene, and (Z)-2-pentene produced.
Latimer, Devin. J. Chem. Educ. 2003, 80, 1183.
Chromatography |
Instrumental Methods |
Synthesis |
Gas Chromatography |
Elimination Reactions |
Mechanisms of Reactions |
Alkenes |
Stereochemistry
Orgo Cards: Organic Chemistry Review (Steven Q. Wang, Babak Razani, Edward J. K. Lee, Jennifer Wu, and William Berkowitz)  Eugene Gooch
The major strength of this product lies in coverage of the reaction mechanisms. Mechanisms are written out using curved arrow notation, steps are numbered, and a sentence describes the details of each step. Efforts are made to describe both ionic and radical mechanisms accurately. Stereochemical details are integrated into the descriptions of reactions and their mechanisms.
Gooch, Eugene. J. Chem. Educ. 2003, 80, 1009.
Enrichment / Review Materials |
Reactions |
Mechanisms of Reactions |
Stereochemistry
"Chiral Acetate": The Preparation, Analysis, and Applications of Chiral Acetic Acid  Addison Ault
Production of chiral acetic acid using deuterium and tritium and its application to understanding stereochemistry and the specificity of enzymatic reactions.
Ault, Addison. J. Chem. Educ. 2003, 80, 333.
Chirality / Optical Activity |
Enzymes |
Isotopes |
Synthesis |
Stereochemistry |
Enrichment / Review Materials |
Carboxylic Acids |
Enantiomers |
Reactions |
Mechanisms of Reactions
Semi-Microscale Williamson Ether Synthesis and Simultaneous Isolation of an Expectorant from Cough Tablets  Ryan G. Stabile and Andrew P. Dicks
Procedure for synthesis of the active ingredient in many well-known, over-the-counter cough syrups - 3-(2-methoxyphenoxy)-1,2-propanediol, an aromaric ether.
Stabile, Ryan G.; Dicks, Andrew P. J. Chem. Educ. 2003, 80, 313.
Chirality / Optical Activity |
Drugs / Pharmaceuticals |
Mathematics / Symbolic Mathematics |
Microscale Lab |
Synthesis |
Stereochemistry |
Applications of Chemistry |
Ethers |
Aromatic Compounds |
Medicinal Chemistry
The Discovery-Oriented Approach to Organic Chemistry. 5. Stereochemistry of E2 Elimination: Elimination of cis- and trans-2-Methylcyclohexyl Tosylate  Marcus E. Cabay, Brad J. Ettlie, Adam J. Tuite, Kurt A. Welday, and Ram S. Mohan
A discovery-oriented lab that illustrates the stereochemistry of the E2 elimination reaction and is a good exercise in 1H NMR spectroscopy. The added element of discovery insures that student interest and enthusiasm are retained.
Cabay, Marcus E.; Ettlie, Brad J.; Tuite, Adam J.; Welday, Kurt A.; Mohan, Ram S. J. Chem. Educ. 2001, 78, 79.
IR Spectroscopy |
Mechanisms of Reactions |
NMR Spectroscopy |
Stereochemistry |
Elimination Reactions |
Reactions |
Alkenes
Periplanar or Coplanar?  Saul Kane and William H. Hersh
The prefix peri, derived from the Greek for "near", was chosen to make the meaning "approximately planar". However, the current common usage of syn and antiperiplanar is planar, which is incorrect. In the interests of proper language, we suggest that future authors instead use "syn-coplanar" and "anti-coplanar".
Kane, Saul; Hersh, William H. J. Chem. Educ. 2000, 77, 1366.
Mechanisms of Reactions |
Nomenclature / Units / Symbols |
Stereochemistry |
Molecular Properties / Structure
Incorporating Heterotopicity into Organic Chemistry  Thall, Edwin
This paper reviews topological relationships and suggests how to incorporate heterotopic concepts into the contemporary chemistry curriculum.
Thall, Edwin J. Chem. Educ. 1994, 71, 1034.
Stereochemistry |
Crystal Field / Ligand Field Theory
The synthesis of 2'-bromostyrene  Corvari, Linda; McKee, James R.; Zanger, Murray
Organic chemistry laboratories need not be the repositories of foul smells. This synthesis produces an aroma akin to hyacinth.
Corvari, Linda; McKee, James R.; Zanger, Murray J. Chem. Educ. 1991, 68, 161.
Synthesis |
NMR Spectroscopy |
IR Spectroscopy |
Stereochemistry |
Alkenes
Stereochemistry (Ramsay, O. Bertrand)  Kauffman, George B.
Provides a survey of stereochemistry from its inception to the 1960s.
Kauffman, George B. J. Chem. Educ. 1985, 62, A189.
Stereochemistry |
Molecular Properties / Structure
Organosilicon chemistry. Part II  West, Robert; Barton, Thomas J.
Stereochemistry and reaction mechanisms, reactive intermediates, bioactive organosilanes, organosilanes in organic synthesis, and sources of silicon compounds.
West, Robert; Barton, Thomas J. J. Chem. Educ. 1980, 57, 334.
Molecular Properties / Structure |
Stereochemistry |
Mechanisms of Reactions |
Reactive Intermediates
Project for problem-oriented undergraduate organic or integrated undergraduate laboratory  Silveira, Augustine, Jr.
This paper reports on an open-ended project which allows a great degree of flexibility in the laboratory. The project provided about a 6-week study for groups of 24 students each.
Silveira, Augustine, Jr. J. Chem. Educ. 1978, 55, 57.
Synthesis |
Undergraduate Research |
Spectroscopy |
Diastereomers |
Addition Reactions |
MO Theory |
Elimination Reactions |
Thermodynamics |
Kinetics
Donor-acceptor interactions in organic chemistry  Sunderwirth, S. G.
The purpose of this article is to aid teachers in making even more effective use of theoretical considerations in teaching organic chemistry; the primary objective is to emphasize the underlying principles that are common to the following four basic types of reactions: substitution, addition, elimination, and rearrangement.
Sunderwirth, S. G. J. Chem. Educ. 1970, 47, 728.
Reactions |
Mechanisms of Reactions |
Addition Reactions |
Elimination Reactions |
Nucleophilic Substitution
Conformational analysis and chemical reactivity  Idoux, John P.
Uses acyclic chemistry to illustrate important concepts regarding conformational analysis and chemical reactivity.
Idoux, John P. J. Chem. Educ. 1967, 44, 495.
Conformational Analysis |
Stereochemistry |
Diastereomers
Reaction mechanisms in organic chemistry. I. The experimental approach  Caserio, Marjorie C.
Reviews a variety of method that may be employed to determine the mechanism of organic reactions.
Caserio, Marjorie C. J. Chem. Educ. 1965, 42, 570.
Reactions |
Mechanisms of Reactions |
Reactive Intermediates |
Kinetics |
Nucleophilic Substitution |
Addition Reactions |
Elimination Reactions
Nucleophilic reactions at trigonally bonded carbon  Cash, R. Vincent
Examines the mechanisms of nucleophilic displacement reactions, nucleophilic addition reactions, and nucleophilic addition with elimination, all at trigonally bonded carbon.
Cash, R. Vincent J. Chem. Educ. 1964, 41, 108.
Nucleophilic Substitution |
Reactions |
Mechanisms of Reactions |
Addition Reactions |
Elimination Reactions
The principle of minimum bending of orbitals  Stewart, George H.; Eyring, Henry
The authors present a theory of valency that accounts for a variety of organic and inorganic structures in a clear and easily understood manner.
Stewart, George H.; Eyring, Henry J. Chem. Educ. 1958, 35, 550.
Atomic Properties / Structure |
Molecular Properties / Structure |
Elimination Reactions
Comparative organic chemistry: Carbon and silicon  Wilk, I. J.
Contrasts silicone chemistry with that of regular organic compounds.
Wilk, I. J. J. Chem. Educ. 1957, 34, 463.
Covalent Bonding |
Ionic Bonding |
Mechanisms of Reactions |
Stereochemistry