TIGER

Journal Articles: 17 results
Pyrolysis of Aryl Sulfonate Esters in the Absence of Solvent: E1 or E2? A Puzzle for the Organic Laboratory  John J. Nash, Marnie A. Leininger, and Kurt Keyes
An aryl sulfonate ester is synthesized and then pyrolyzed at reduced pressure. The volatile products are analyzed using gas chromatography to determine whether the thermal decomposition occurs via an E1 or E2 mechanism.
Nash, John J.; Leininger, Marnie A.; Keyes, Kurt . J. Chem. Educ. 2008, 85, 552.
Alkenes |
Carbocations |
Elimination Reactions |
Gas Chromatography |
Mechanisms of Reactions |
Synthesis
A Discovery-Based Experiment Involving Rearrangement in the Conversion of Alcohols to Alkyl Halides  Richard A. Kjonaas and Ryand J. F. Tucker
This article reports a discovery-based experiment in which students convert three alcohols to alkyl halides under acidic conditions and record the 13C NMR spectrum in each case. By comparing the number of resonances observed with the number of resonances predicted for each possible product, students draw several conclusions about the resulting rearrangement.
Kjonaas, Richard A.; Tucker, Ryand J. F. J. Chem. Educ. 2008, 85, 100.
Alcohols |
Carbocations |
Gas Chromatography |
NMR Spectroscopy |
Nucleophilic Substitution
Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides  Jack R. Waas
Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the Hartree¬ĚFock method, and two DFT methods. All five methods agreed generally with the expected empirically known trends in the dissociation of alkyl halides.
Waas, Jack R. J. Chem. Educ. 2006, 83, 1017.
Alkanes / Cycloalkanes |
Computational Chemistry |
Mechanisms of Reactions |
Molecular Modeling |
Reactions |
Reactive Intermediates |
Thermodynamics |
Elimination Reactions |
Nucleophilic Substitution
The Substitution–Elimination Mechanistic Disc Method  Paul T. Buonora and Yu Jin Lim
In this manuscript a mnemonic device designed to facilitate presentation of the competing SN1, SN2, E1, and E2 mechanisms is presented.
Buonora, Paul T.; Lim, Yu Jin. J. Chem. Educ. 2004, 81, 368.
Mechanisms of Reactions |
Elimination Reactions |
Nucleophilic Substitution
Using Conductivity Devices in Nonaqueous Solutions I: Demonstrating the SN1 Mechanism  Thomas A. Newton and Beth Ann Hill
The use of a conductivity apparatus in nonaqueous solutions to demonstrate structure¬Ěreactivity correlations and solvent effects in the SN1 reaction is described.
Newton, Thomas A.; Hill, Beth Ann. J. Chem. Educ. 2004, 81, 58.
Conductivity |
Nucleophilic Substitution |
Mechanisms of Reactions
Spiral Puzzle for Organic Chemistry Students  Ender Erdik
Puzzle to review organic reactions and their reagents.
Erdik, Ender. J. Chem. Educ. 2003, 80, 428.
Synthesis |
Learning Theories |
Enrichment / Review Materials |
Addition Reactions |
Alkylation |
Electrophilic Substitution |
Elimination Reactions |
Reactions |
Nucleophilic Substitution |
Mechanisms of Reactions |
Grignard Reagents
A New Approach To Teaching Organic Chemical Mechanisms  Wentland, Stephen H.
Describing the mechanisms of organic reactions using five simple steps or operations.
Wentland, Stephen H. J. Chem. Educ. 1994, 71, 3.
Mechanisms of Reactions |
Addition Reactions |
Nucleophilic Substitution |
Electrophilic Substitution |
Elimination Reactions |
Resonance Theory |
Molecular Properties / Structure
GC/MS experiments for the organic chemistry laboratory: I. E2 elimination of 2-bromo-2-methyloctane   Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott
Two capillary GC/MS experiments that were designed for and tested in a sophomore organic laboratory course.
Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott J. Chem. Educ. 1993, 70, A103.
Gas Chromatography |
Alkenes |
Alkanes / Cycloalkanes |
Alcohols |
Elimination Reactions |
Synthesis
The aromatic substitution game  Zanger, Murray; Gennaro, Alfonso R.; McKee, James R.
This paper describes a game used to bring attention to the need for students to reconsider substitution theories learned in earlier chapters.
Zanger, Murray; Gennaro, Alfonso R.; McKee, James R. J. Chem. Educ. 1993, 70, 985.
Nucleophilic Substitution |
Synthesis
The dehydrohalogenation of 2-bromobutane: A simple illustration of anti-Saytzeff elimination as a laboratory experiment for organic chemistry.  Leone, Stephen A.; Davis, J. David.
A quantitative microscale experiment of the dehydrohalogenation of 2-bromobutane to explore how increasing the base size affects the distribution of products.
Leone, Stephen A.; Davis, J. David. J. Chem. Educ. 1992, 69, A175.
Microscale Lab |
Elimination Reactions |
Mechanisms of Reactions
The reactivity selectivity principle: Should it ever be used?  Buncel, Erwin; Wilson, Harold
Applications and failures of the reactivity selectivity principle; quantitative aspects of the reactivity selectivity principle; and rationalization of reactivity selectivity principle failures.
Buncel, Erwin; Wilson, Harold J. Chem. Educ. 1987, 64, 475.
Mechanisms of Reactions |
Free Radicals |
Carbocations |
Nucleophilic Substitution
Aromatic substitution reactions: when you've said ortho, meta, and para you haven't said it all  Traynham, James G.
The author presents a range of examples for nucleophilic, electrophilic, and free-radical reactions where the ipso is an important, predominant, or even exclusive site of reaction.
Traynham, James G. J. Chem. Educ. 1983, 60, 937.
Nucleophilic Substitution |
Electrophilic Substitution |
Free Radicals |
Diastereomers |
Stereochemistry |
Reactions
Phase transfer catalysis. Part II: Synthetic applications  Gokel, George W.; Weber, William P.
In this month's continuation of an article, the authors have catalogued a number of illustrative examples so that the range of applicability of phase transfer catalysis will be.
Gokel, George W.; Weber, William P. J. Chem. Educ. 1978, 55, 429.
Phases / Phase Transitions / Diagrams |
Catalysis |
Aromatic Compounds |
Organometallics |
Nucleophilic Substitution |
Synthesis |
Esters |
Oxidation / Reduction |
Alkylation
Reaction mechanisms in organic chemistry. Concerted reactions  Caserio, Marjorie C.
Examines displacement and elimination, cyclization, and rearrangement reactions, as well as theoretical considerations and generalized selection rules.
Caserio, Marjorie C. J. Chem. Educ. 1971, 48, 782.
Mechanisms of Reactions |
Reactions |
Nucleophilic Substitution |
Elimination Reactions
Donor-acceptor interactions in organic chemistry  Sunderwirth, S. G.
The purpose of this article is to aid teachers in making even more effective use of theoretical considerations in teaching organic chemistry; the primary objective is to emphasize the underlying principles that are common to the following four basic types of reactions: substitution, addition, elimination, and rearrangement.
Sunderwirth, S. G. J. Chem. Educ. 1970, 47, 728.
Reactions |
Mechanisms of Reactions |
Addition Reactions |
Elimination Reactions |
Nucleophilic Substitution
Reaction mechanisms in organic chemistry. I. The experimental approach  Caserio, Marjorie C.
Reviews a variety of method that may be employed to determine the mechanism of organic reactions.
Caserio, Marjorie C. J. Chem. Educ. 1965, 42, 570.
Reactions |
Mechanisms of Reactions |
Reactive Intermediates |
Kinetics |
Nucleophilic Substitution |
Addition Reactions |
Elimination Reactions
Nucleophilic substitution in aromatic systems  Gillis, Richard G.
Classifies and examines various categories of nucleophilic substitution in aromatic systems.
Gillis, Richard G. J. Chem. Educ. 1955, 32, 296.
Nucleophilic Substitution |
Aromatic Compounds