TIGER

Journal Articles: 19 results
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
The Substitution–Elimination Mechanistic Disc Method  Paul T. Buonora and Yu Jin Lim
In this manuscript a mnemonic device designed to facilitate presentation of the competing SN1, SN2, E1, and E2 mechanisms is presented.
Buonora, Paul T.; Lim, Yu Jin. J. Chem. Educ. 2004, 81, 368.
Mechanisms of Reactions |
Elimination Reactions |
Nucleophilic Substitution
Molecular Orbital Animations for Organic Chemistry  Steven A. Fleming, Greg R. Hart, and Paul B. Savage
Introduces the application of highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs) in animated form.
Fleming, Steven A.; Hart, Greg R.; Savage, Paul B. J. Chem. Educ. 2000, 77, 790.
MO Theory |
Molecular Modeling |
Mathematics / Symbolic Mathematics |
Mechanisms of Reactions |
Electrophilic Substitution |
Nucleophilic Substitution
Chart for Deciding Mechanism for Reaction of Alkyl Halide with Nucleophile/Base  McClelland, Bruce W.
The decision chart offered here is based upon the well-known and accepted characteristics of the reaction system mechanisms described in typical introductory organic chemistry textbooks.
McClelland, Bruce W. J. Chem. Educ. 1994, 71, 1047.
Mechanisms of Reactions |
Nucleophilic Substitution
Two working models for the SN2 mechanism  Anderson, Martin M.
Design of an articulated physical model demonstrating the mechanism of the SN2 reaction.
Anderson, Martin M. J. Chem. Educ. 1987, 64, 1023.
Nucleophilic Substitution |
Mechanisms of Reactions |
Molecular Modeling
The reactivity selectivity principle: Should it ever be used?  Buncel, Erwin; Wilson, Harold
Applications and failures of the reactivity selectivity principle; quantitative aspects of the reactivity selectivity principle; and rationalization of reactivity selectivity principle failures.
Buncel, Erwin; Wilson, Harold J. Chem. Educ. 1987, 64, 475.
Mechanisms of Reactions |
Free Radicals |
Carbocations |
Nucleophilic Substitution
Phase transfer catalysis. Part II: Synthetic applications  Gokel, George W.; Weber, William P.
In this month's continuation of an article, the authors have catalogued a number of illustrative examples so that the range of applicability of phase transfer catalysis will be.
Gokel, George W.; Weber, William P. J. Chem. Educ. 1978, 55, 429.
Phases / Phase Transitions / Diagrams |
Catalysis |
Aromatic Compounds |
Organometallics |
Nucleophilic Substitution |
Synthesis |
Esters |
Oxidation / Reduction |
Alkylation
A simple lecture demonstration of aromatic nucleophilic substitution  Smith, N. H. P.
Colors produced when various aromatic substrates are attacked by various nucleophiles (DMF, DMSO, EtOH).
Smith, N. H. P. J. Chem. Educ. 1975, 52, 238.
Aromatic Compounds |
Nucleophilic Substitution
The remarkable reactivity of aryl halides with nucleophiles   Bunnett, Joseph F.
Nucleophilic attack on carbon; nucleophilic attack on hydrogen; aryl formation by halide ion loss from o-halophenyl anions; nucleophilic attack on halogen; acceptance of an electron, and its consequences.
Bunnett, Joseph F. J. Chem. Educ. 1974, 51, 312.
Nucleophilic Substitution |
Reactions
Nucleophilic substitution reactions at secondary carbon atoms. A modification of accepted views  Raber, Douglas J.; Harris, J. Milton
Considers reaction mechanisms that are intermediate between SN1 and SN2 and the possible role of ion pairs.
Raber, Douglas J.; Harris, J. Milton J. Chem. Educ. 1972, 49, 60.
Nucleophilic Substitution |
Mechanisms of Reactions
Free-radical bromination of p-toluic acid. An experiment in organic chemistry  Tuleen, D. L.; Hess, B. A., Jr.
This paper describes the synthesis of a-bromo-p-toluic acid (II) and the subsequent displacement of bromide ion by three nucleophiles.
Tuleen, D. L.; Hess, B. A., Jr. J. Chem. Educ. 1971, 48, 476.
Free Radicals |
Nucleophilic Substitution
Hydrolysis of benzenediazonium ion  Sheats, John E.; Harbison, Kenneth G.
Presents a more convenient approach to studying the kinetics of the hydrolysis of benzenediazonium ion.
Sheats, John E.; Harbison, Kenneth G. J. Chem. Educ. 1970, 47, 779.
Aromatic Compounds |
Nucleophilic Substitution |
Kinetics
Nucleophilic reactivities of the halide anions  Puar, Mohindar S.
Ranks the nucleophilic reactivities of free halide ions in various solvents.
Puar, Mohindar S. J. Chem. Educ. 1970, 47, 473.
Nucleophilic Substitution
Resolution and stereochemistry of asymmetric silicon, germanium, tin, and lead compounds  Belloli, Robert
It is the purpose of this review to summarize the results of stereochemical studies on compounds containing an asymmetric group IVA atom.
Belloli, Robert J. Chem. Educ. 1969, 46, 640.
Stereochemistry |
Organometallics |
Enantiomers |
Mechanisms of Reactions |
Nucleophilic Substitution
Bimolecular nucleophilic displacement reactions  Edwards, John O.
The bimolecular nucleophilic displacement reaction is important and should be included in any detailed discussion of kinetics and mechanism at an early undergraduate level.
Edwards, John O. J. Chem. Educ. 1968, 45, 386.
Reactions |
Nucleophilic Substitution |
Kinetics |
Mechanisms of Reactions
Substitution reactions in octahedral complexes  Banerjea, D.
Commentary on the cited article by one of the authors that article referenced.
Banerjea, D. J. Chem. Educ. 1967, 44, 485.
Coordination Compounds |
Nucleophilic Substitution
Substitution reactions in octahedral complexes  Jones, G. R. H.
Examines the possibility of direct substitution, in aqueous solution, of a ligand in an octahedral complex by a nucleophile other than water or OH-.
Jones, G. R. H. J. Chem. Educ. 1966, 43, 657.
Coordination Compounds |
Mechanisms of Reactions |
Aqueous Solution Chemistry |
Nucleophilic Substitution |
Transition Elements |
Metals
Nucleophilic reactions at trigonally bonded carbon  Cash, R. Vincent
Examines the mechanisms of nucleophilic displacement reactions, nucleophilic addition reactions, and nucleophilic addition with elimination, all at trigonally bonded carbon.
Cash, R. Vincent J. Chem. Educ. 1964, 41, 108.
Nucleophilic Substitution |
Reactions |
Mechanisms of Reactions |
Addition Reactions |
Elimination Reactions
Multicenter and assisted mechanistic pathways in the reactions of organometallic compounds  Dessy, Raymond E.; Paulik, Frank
Examines a variety of nucleophilic and electrophilic, multicenter and assisted mechanistic pathways in the reactions of organometallic compounds.
Dessy, Raymond E.; Paulik, Frank J. Chem. Educ. 1963, 40, 185.
Organometallics |
Mechanisms of Reactions |
Nucleophilic Substitution |
Electrophilic Substitution