TIGER

Journal Articles: 29 results
The Finkelstein Reaction: Quantitative Reaction Kinetics of an SN2 Reaction Using Nonaqueous Conductivity  R. David Pace and Yagya Regmi
Presents a quantitative kinetics laboratory exercise featuring the Finkelstein reaction (SN2) for use in the first-semester organic chemistry course that utilizes nonaqueous conductivity as the method by which relevant structuretemperaturesolvent effects are examined.
Pace, R. David; Regmi, Yagya. J. Chem. Educ. 2006, 83, 1344.
Calibration |
Kinetics |
Nucleophilic Substitution |
Rate Law |
Reactions |
Solutions / Solvents
Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides  Jack R. Waas
Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the HartreeFock method, and two DFT methods. All five methods agreed generally with the expected empirically known trends in the dissociation of alkyl halides.
Waas, Jack R. J. Chem. Educ. 2006, 83, 1017.
Alkanes / Cycloalkanes |
Computational Chemistry |
Mechanisms of Reactions |
Molecular Modeling |
Reactions |
Reactive Intermediates |
Thermodynamics |
Elimination Reactions |
Nucleophilic Substitution
The Tragedy of Hamlet, Son of an Organic Chemist of Denmark  Ronald G. Brisbois
Herein, Hamlet (the son of an organic chemist of Denmark) is the surrogate of any and every student as he uses a thoroughly Shakespearean approach to sorting out some of the key distinguishing features of SN2 versus SN1 reactions.
Brisbois, Ronald G. J. Chem. Educ. 2004, 81, 502.
Kinetics |
Mechanisms of Reactions |
Stereochemistry |
Nucleophilic Substitution
The Substitution–Elimination Mechanistic Disc Method  Paul T. Buonora and Yu Jin Lim
In this manuscript a mnemonic device designed to facilitate presentation of the competing SN1, SN2, E1, and E2 mechanisms is presented.
Buonora, Paul T.; Lim, Yu Jin. J. Chem. Educ. 2004, 81, 368.
Mechanisms of Reactions |
Elimination Reactions |
Nucleophilic Substitution
Using Conductivity Devices in Nonaqueous Solutions II: Demonstrating the SN2 Mechanism  Thomas A. Newton and Beth Ann Hill
The use of a conductivity apparatus in nonaqueous solutions to demonstrate structurereactivity correlations and solvent effects in the SN2 reaction is described.
Newton, Thomas A.; Hill, Beth Ann. J. Chem. Educ. 2004, 81, 61.
Conductivity |
Nucleophilic Substitution |
Mechanisms of Reactions
Using Conductivity Devices in Nonaqueous Solutions I: Demonstrating the SN1 Mechanism  Thomas A. Newton and Beth Ann Hill
The use of a conductivity apparatus in nonaqueous solutions to demonstrate structurereactivity correlations and solvent effects in the SN1 reaction is described.
Newton, Thomas A.; Hill, Beth Ann. J. Chem. Educ. 2004, 81, 58.
Conductivity |
Nucleophilic Substitution |
Mechanisms of Reactions
Dendrimers: Branching Out of Polymer Chemistry  Eric E. Simanek and Sergio O. Gonzalez
Addresses synthetic concepts surrounding dendrimers including the use of protecting groups, functional group interconversions, and convergent and divergent synthetic strategies.
Simanek, Eric E.; Gonzalez, Sergio O. J. Chem. Educ. 2002, 79, 1222.
Materials Science |
Synthesis |
Molecular Properties / Structure |
Addition Reactions |
Aromatic Compounds |
Alkylation |
Nucleophilic Substitution
Of Magnets and Mechanisms  Edward G. Neeland
Using magnets to demonstrate the electron flow (mechanism) of nucleophilic substitution reactions.
Neeland, Edward G. J. Chem. Educ. 2002, 79, 186.
Magnetic Properties |
Mechanisms of Reactions |
Learning Theories |
Nucleophilic Substitution
Intermediates, Transition States, Butterflies, and Frogs  Trevor M. Kitson
The changes that occur in typical simple SN1 and SN2 reactions are compared to the metamorphoses undergone by caterpillars and tadpoles, respectively.
Kitson, Trevor M. J. Chem. Educ. 2001, 78, 504.
Mechanisms of Reactions |
Reactive Intermediates |
Nucleophilic Substitution
Molecular Orbital Animations for Organic Chemistry  Steven A. Fleming, Greg R. Hart, and Paul B. Savage
Introduces the application of highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs) in animated form.
Fleming, Steven A.; Hart, Greg R.; Savage, Paul B. J. Chem. Educ. 2000, 77, 790.
MO Theory |
Molecular Modeling |
Mathematics / Symbolic Mathematics |
Mechanisms of Reactions |
Electrophilic Substitution |
Nucleophilic Substitution
Visualizing the SN2 Inversion  Rosan, Alan M.
Slight modification to the construction of the model presented.
Rosan, Alan M. J. Chem. Educ. 1996, 73, A228.
Nucleophilic Substitution |
Mechanisms of Reactions
A New Approach To Teaching Organic Chemical Mechanisms  Wentland, Stephen H.
Describing the mechanisms of organic reactions using five simple steps or operations.
Wentland, Stephen H. J. Chem. Educ. 1994, 71, 3.
Mechanisms of Reactions |
Addition Reactions |
Nucleophilic Substitution |
Electrophilic Substitution |
Elimination Reactions |
Resonance Theory |
Molecular Properties / Structure
Organic lecture demonstrations  Silversmith, Ernest F.
Organic chemistry may not be known for its spectacular, attention getting chemical reactions. Nevertheless, this author describes a few organic chemistry reactions that put points across and generate interest. This article provides a convenient sources of demonstrations and urges others to add to the collection. Demonstrations concerning: carbohydrates, spectroscopy, proteins, amines, carbohydrates, carboxylic acids, and much more.
Silversmith, Ernest F. J. Chem. Educ. 1988, 65, 70.
Molecular Properties / Structure |
Nucleophilic Substitution |
Acids / Bases |
Physical Properties |
Alkenes |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity |
Aldehydes / Ketones |
Alcohols
Two working models for the SN2 mechanism  Anderson, Martin M.
Design of an articulated physical model demonstrating the mechanism of the SN2 reaction.
Anderson, Martin M. J. Chem. Educ. 1987, 64, 1023.
Nucleophilic Substitution |
Mechanisms of Reactions |
Molecular Modeling
Characterizing a tetrahedral intermediate in an acyl transfer reaction: An undergraduate 1H NMR demonstration  Rzepa, Henry S.; Lobo, Ana M.; Marques, M. Matilde; Prabhakar, Sundaresan
A simple experiment involving the detection by 1H NMR spectroscopy of a stable intermediate formed by nucleophilic attack and its characterization as a chiral species.
Rzepa, Henry S.; Lobo, Ana M.; Marques, M. Matilde; Prabhakar, Sundaresan J. Chem. Educ. 1987, 64, 725.
NMR Spectroscopy |
Nucleophilic Substitution |
Chirality / Optical Activity
The reactivity selectivity principle: Should it ever be used?  Buncel, Erwin; Wilson, Harold
Applications and failures of the reactivity selectivity principle; quantitative aspects of the reactivity selectivity principle; and rationalization of reactivity selectivity principle failures.
Buncel, Erwin; Wilson, Harold J. Chem. Educ. 1987, 64, 475.
Mechanisms of Reactions |
Free Radicals |
Carbocations |
Nucleophilic Substitution
Nucleophilic substitution reactions: Modifications and an extension  Newton, T. A.; Warren, H. W.
Modifications to a procedure comparing the reaction of n-butyl and t-butyl alcohol with equimolar amounts of HCl and HBr.
Newton, T. A.; Warren, H. W. J. Chem. Educ. 1980, 57, 747.
Nucleophilic Substitution |
Reactions
Nucleophilic substitution by phase transfer catalysis  Reeves, W. Preston; White, Mitchell R.; Bier, Deana
The preparation of alkyl thiocyanates to be an excellent and versatile experiment for first year organic students.
Reeves, W. Preston; White, Mitchell R.; Bier, Deana J. Chem. Educ. 1978, 55, 56.
Nucleophilic Substitution |
Catalysis
The remarkable reactivity of aryl halides with nucleophiles   Bunnett, Joseph F.
Nucleophilic attack on carbon; nucleophilic attack on hydrogen; aryl formation by halide ion loss from o-halophenyl anions; nucleophilic attack on halogen; acceptance of an electron, and its consequences.
Bunnett, Joseph F. J. Chem. Educ. 1974, 51, 312.
Nucleophilic Substitution |
Reactions
Nucleophilic substitution reactions at secondary carbon atoms. A modification of accepted views  Raber, Douglas J.; Harris, J. Milton
Considers reaction mechanisms that are intermediate between SN1 and SN2 and the possible role of ion pairs.
Raber, Douglas J.; Harris, J. Milton J. Chem. Educ. 1972, 49, 60.
Nucleophilic Substitution |
Mechanisms of Reactions
Reaction mechanisms in organic chemistry. Concerted reactions  Caserio, Marjorie C.
Examines displacement and elimination, cyclization, and rearrangement reactions, as well as theoretical considerations and generalized selection rules.
Caserio, Marjorie C. J. Chem. Educ. 1971, 48, 782.
Mechanisms of Reactions |
Reactions |
Nucleophilic Substitution |
Elimination Reactions
Donor-acceptor interactions in organic chemistry  Sunderwirth, S. G.
The purpose of this article is to aid teachers in making even more effective use of theoretical considerations in teaching organic chemistry; the primary objective is to emphasize the underlying principles that are common to the following four basic types of reactions: substitution, addition, elimination, and rearrangement.
Sunderwirth, S. G. J. Chem. Educ. 1970, 47, 728.
Reactions |
Mechanisms of Reactions |
Addition Reactions |
Elimination Reactions |
Nucleophilic Substitution
A model to demonstrate the Walden inversion  Hamon, D. P. G.
Presents the design of a model capable of illustrating the Walden inversion.
Hamon, D. P. G. J. Chem. Educ. 1970, 47, 398.
Molecular Modeling |
Molecular Properties / Structure |
Nucleophilic Substitution |
Reactions
Resolution and stereochemistry of asymmetric silicon, germanium, tin, and lead compounds  Belloli, Robert
It is the purpose of this review to summarize the results of stereochemical studies on compounds containing an asymmetric group IVA atom.
Belloli, Robert J. Chem. Educ. 1969, 46, 640.
Stereochemistry |
Organometallics |
Enantiomers |
Mechanisms of Reactions |
Nucleophilic Substitution
Bimolecular nucleophilic displacement reactions  Edwards, John O.
The bimolecular nucleophilic displacement reaction is important and should be included in any detailed discussion of kinetics and mechanism at an early undergraduate level.
Edwards, John O. J. Chem. Educ. 1968, 45, 386.
Reactions |
Nucleophilic Substitution |
Kinetics |
Mechanisms of Reactions
Reaction mechanisms in organic chemistry. I. The experimental approach  Caserio, Marjorie C.
Reviews a variety of method that may be employed to determine the mechanism of organic reactions.
Caserio, Marjorie C. J. Chem. Educ. 1965, 42, 570.
Reactions |
Mechanisms of Reactions |
Reactive Intermediates |
Kinetics |
Nucleophilic Substitution |
Addition Reactions |
Elimination Reactions
A simple model for the SN2 mechanism.  Nyquist, H. LeRoy
Presents a simple, physical model for the SN2 mechanism.
Nyquist, H. LeRoy J. Chem. Educ. 1965, 42, 103.
Molecular Modeling |
Reactions |
Nucleophilic Substitution |
Mechanisms of Reactions
Nucleophilic reactions at trigonally bonded carbon  Cash, R. Vincent
Examines the mechanisms of nucleophilic displacement reactions, nucleophilic addition reactions, and nucleophilic addition with elimination, all at trigonally bonded carbon.
Cash, R. Vincent J. Chem. Educ. 1964, 41, 108.
Nucleophilic Substitution |
Reactions |
Mechanisms of Reactions |
Addition Reactions |
Elimination Reactions
Multicenter and assisted mechanistic pathways in the reactions of organometallic compounds  Dessy, Raymond E.; Paulik, Frank
Examines a variety of nucleophilic and electrophilic, multicenter and assisted mechanistic pathways in the reactions of organometallic compounds.
Dessy, Raymond E.; Paulik, Frank J. Chem. Educ. 1963, 40, 185.
Organometallics |
Mechanisms of Reactions |
Nucleophilic Substitution |
Electrophilic Substitution