TIGER

Journal Articles: 73 results
Data Pooling in a Chemical Kinetics Experiment: The Aquation of a Series of Cobalt(III) Complexes  Richard S. Herrick, Kenneth V. Mills, and Lisa P. Nestor
Describes an experiment that introduces students to integrated rate laws, the search for a mechanism that is consistent with chemical and kinetic data, and the concept of activation barriers and their measurement in a curriculum whose pedagogical philosophy makes the laboratory the center of learning for undergraduates in their first two years of instruction.
Herrick, Richard S.; Mills, Kenneth V.; Nestor, Lisa P. J. Chem. Educ. 2008, 85, 1120.
Coordination Compounds |
Kinetics |
Mechanisms of Reactions |
Rate Law |
UV-Vis Spectroscopy
Study of Metal–NH3 Interfaces (Metal = Cu, Ni, Ag) Using Potentiostatic Curves  Nelson Nunes, Angela Martins, and Ruben Elvas Leitão
Students determine kinetic and thermodynamic parameters of different metalsolution interfaces obtained from potentiostatic curves using the Tafel and the Arrhenius equations.
Nunes, Nelson; Martins, Angela; Leitão, Ruben Elvas. J. Chem. Educ. 2007, 84, 1017.
Aqueous Solution Chemistry |
Electrochemistry |
Kinetics |
Metals
The Finkelstein Reaction: Quantitative Reaction Kinetics of an SN2 Reaction Using Nonaqueous Conductivity  R. David Pace and Yagya Regmi
Presents a quantitative kinetics laboratory exercise featuring the Finkelstein reaction (SN2) for use in the first-semester organic chemistry course that utilizes nonaqueous conductivity as the method by which relevant structuretemperaturesolvent effects are examined.
Pace, R. David; Regmi, Yagya. J. Chem. Educ. 2006, 83, 1344.
Calibration |
Kinetics |
Nucleophilic Substitution |
Rate Law |
Reactions |
Solutions / Solvents
Colorful Chemical Demonstrations on the Extraction of Anionic Species from Water into Ether Mediated by Tricaprylylmethylammonium Chloride (Aliquat 336), a Liquid–Liquid Phase-Transfer Agent  Anil Joseph Pezhathinal, Kerensa Rocke, Louis Susanto, Derek Handke, Roch Chan-Yu-King, and Patrick Gordon
Provides a list of safe and easy experiments to demonstrate the extraction of colorful, water-soluble reagents by Aliquat 336 into ether. The demonstrations simulate the preliminary extractive step of an ionic species in liquidliquid phase transfer-catalyzed reactions and introduce various undergraduate chemistry concepts and principles to students.
Pezhathinal, Anil Joseph; Rocke, Kerensa; Susanto, Louis; Handke, Derek; Chan-Yu-King, Roch; Gordon, Patrick. J. Chem. Educ. 2006, 83, 1161.
Alkanes / Cycloalkanes |
Amines / Ammonium Compounds |
Catalysis |
Dyes / Pigments |
Reactions |
Mechanisms of Reactions
Monitoring the Rate of Solvolytic Decomposition of Benzenediazonium Tetrafluoroborate in Aqueous Media Using a pH Electrode  Floyd L. Wiseman
This article discusses the use of pH electrodes to monitor the aqueous solvolysis of the benzenediazonium ion and shows that the results are in reasonable agreement with literature values.
Wiseman, Floyd L. J. Chem. Educ. 2005, 82, 1841.
Calorimetry / Thermochemistry |
Kinetics |
Thermodynamics |
Amines / Ammonium Compounds |
Aqueous Solution Chemistry |
Mechanisms of Reactions |
pH |
Rate Law
Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy. An Experiment for the Physical Chemistry Laboratory  Madalena S. C. Dionísio, Hermínio P. Diogo, J. P. S. Farinha, and Joaquim J. Moura-Ramos
In this article we present a laboratory experiment for an undergraduate physical chemistry course. The purpose of this experiment is the study of molecular mobility in a crystal using the technique of dielectric relaxation spectroscopy. The experiment illustrates important physical chemistry concepts. The background of the experimental technique deals with the concepts of orientational and induced polarization and frequency-dependent relative permittivity (or dielectric constant). The kinetic concepts of temperature-dependent relaxation time, activation energy, and activation entropy are involved in the concept of molecular mobility.
Dionísio, Madalena S. C.; Diogo, Hermínio P.; Farinha, J. P. S.; Moura-Ramos, Joaquim J. J. Chem. Educ. 2005, 82, 1355.
Kinetics |
Phases / Phase Transitions / Diagrams |
Solids |
Crystals / Crystallography
A Simple, Inexpensive Water-Jacketed Cuvette for the Spectronic 20  Jonathan E. Thompson and Jason Ting
A simple, inexpensive, water-jacketed cuvette for the Spectronic 20 is described. The cuvette and associated flow system can easily be constructed from materials commonly found in an undergraduate chemistry laboratory. As a demonstration of the cuvette's utility, we used the cuvette for the determination of the activation energy for the reaction between crystal violet and hydroxide ion. However, the cuvette may prove useful in a variety of applications in which a sample must be thermostated within a spectrophotometer.
Thompson, Jonathan E.; Ting, Jason. J. Chem. Educ. 2004, 81, 1341.
Laboratory Equipment / Apparatus |
Kinetics |
Spectroscopy
Pressure Dependence of Gas-Phase Reaction Rates  Stéphanie de Persis, Alain Dollet, and Francis Teyssandier
This article is intended to show that only simple concepts are required to qualitatively explain and describe the pressure dependence of gas-phase reaction rates.
de Persis, Stéphanie; Dollet, Alain; Teyssandier, Francis. J. Chem. Educ. 2004, 81, 832.
Qualitative Analysis |
Gases |
Kinetics |
Mechanisms of Reactions
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
The Anomalous Reactivity of Fluorobenzene in Electrophilic Aromatic Substitution and Related Phenomena  Joel Rosenthal and David I. Schuster
Extensive analysis of the reactivity of fluorobenzene (electrophilic substitution); includes resonance and other inductive effects, acidities of fluorinated aromatic compounds, and properties of other organofluorine compounds.
Rosenthal, Joel; Schuster, David I. J. Chem. Educ. 2003, 80, 679.
Aromatic Compounds |
Mechanisms of Reactions |
Synthesis |
Electrophilic Substitution |
Enrichment / Review Materials |
Resonance Theory
Rate Controlling Factors in a Bunsen Burner Flame  Julio Andrade-Gamboa, Hugo L. Corso, and Fabiana C. Gennari
Analysis of a Bunsen burner flame and the kinetics of its combustion.
Andrade-Gamboa, Julio; Corso, Hugo L.; Gennari, Fabiana C. J. Chem. Educ. 2003, 80, 524.
Transport Properties |
Kinetics |
Gases |
Molecular Mechanics / Dynamics |
Thermal Analysis |
Thermodynamics |
Reactions |
Rate Law
Visualizing the Photochemical Steady State with UV-Sensitive Beads (re J. Chem. Educ. 2001, 77, 648A-648B)  Jerry A. Bell
Analysis of the temperature dependence of the color intensity of UV-sensitive beads.
Bell, Jerry A. J. Chem. Educ. 2001, 78, 1594.
Atomic Properties / Structure |
Kinetics |
Photochemistry |
Chemometrics
An Inexpensive Water Jacket for a Polarimeter Tube  F. A. Kundell and W. A. Adkins
Design and construction of an inexpensive water jacket for a polarimeter tube.
Kundell, F. A.; Adkins, W. A. J. Chem. Educ. 2001, 78, 1516.
Carbohydrates |
Kinetics |
Laboratory Equipment / Apparatus |
Laboratory Management
Mechanisms of Pentacoordinate Pseudorotation. A Molecular Modeling Study of PF5  Craig D. Montgomery
This exercise in molecular modeling allows students to compare the two commonly suggested mechanisms for pseudorotation in pentacoordinate compounds--the Berry and turnstile mechanisms.
Montgomery, Craig D. J. Chem. Educ. 2001, 78, 844.
Computational Chemistry |
Mechanisms of Reactions |
Molecular Modeling |
Stereochemistry
Evaporation Kinetics in Short-Chain Alcohols by Optical Interference  Ian M. Rosbrugh, S. Y. Nishimura, and A. M. Nishimura
The evaporation rates of volatile organic liquids may be determined through the observation of optical interference of spatially coincident light that is reflected from the top (air-liquid) and bottom (liquid-surface) of a liquid drop on a glass surface. As an example of what is possible with this technique, the evaporation for a series of short-chain alcohols and acetone is investigated.
Rosbrugh, Ian M.; Nishimura, S. Y.; Nishimura, Allan M. J. Chem. Educ. 2000, 77, 1047.
Kinetics |
Laboratory Equipment / Apparatus |
Liquids
Kinetic Isotope Effect in the Chromic Acid Oxidation of Secondary Alcohols  Charles E. Harding, Christopher W. Mitchell, and Jozsef Devenyi
The kinetic isotope effect is an invaluable tool in studying certain organic reaction mechanisms. Two activities involving the technique that are suitable for introductory organic laboratory students are described. A simple competition experiment utilizing the benzhydrol?benzhydrol-d1 system and chromic acid oxidation is used to demonstrate qualitatively that there is a kinetic isotope effect involved in this process.
Harding, Charles E.; Mitchell, Christopher W.; Devenyi, Jozsef. J. Chem. Educ. 2000, 77, 1042.
Isotopes |
Kinetics |
Mechanisms of Reactions |
Alcohols |
Oxidation / Reduction
Paradoxes, Puzzles, and Pitfalls of Incomplete Combustion Demonstrations  Ed Vitz
Paper is burned in a closed container containing sufficient oxygen to consume all the paper. Paradoxically, the flame expires while half of the paper remains. This demonstrates that thermodynamics or stoichiometry is insufficient to explain everyday chemical processes, and that kinetics is often necessary. The gases in the container are analyzed by GC before and after combustion, and the results are examined in detail.
Vitz, Ed. J. Chem. Educ. 2000, 77, 1011.
Gases |
Kinetics |
Stoichiometry
Molecular Modeling to Predict Regioselectivity of Hydration Reactions  Kate J. Graham, Kathleen Skoglund, Chris P. Schaller, William P. Muldoon, and John B. Klassen
Students oxidize several isomeric alkenes using acid-catalyzed hydration, oxymercuration/demercuration, and hydroboration to compare the regioselectivity of the different techniques. The product mixtures are subsequently analyzed by GC and IR. To explain the results fully, students use the Spartan 5.0 molecular modeling package to predict the regioselectivity of these hydration reactions.
Graham, Kate J.; Skoglund, Kathleen; Schaller, Chris P.; Muldoon, William P.; Klassen, John B. J. Chem. Educ. 2000, 77, 396.
Computational Chemistry |
Mechanisms of Reactions |
Reactive Intermediates |
IR Spectroscopy |
Gas Chromatography |
Molecular Recognition |
Molecular Properties / Structure |
Molecular Modeling
Organizing Organic Reactions: The Importance of Antibonding Orbitals  David E. Lewis
It is proposed that unoccupied molecular orbitals arbitrate much organic reactivity, and that they provide the basis for a reactivity-based system for organizing organic reactions. Such a system is proposed for organizing organic reactions according to principles of reactivity, and the system is discussed with examples of the frontier orbitals involved.
Lewis, David E. J. Chem. Educ. 1999, 76, 1718.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
Old Rule of Thumb and the Arrhenius Equation  I. A. Leenson
The empirical rule (doubling of the reaction rate upon every 10 increase in temperature) is discussed on the basis of the Arrhenius equation and experimental data. A graph is plotted that shows the applicability limits of the empirical rule in terms of activation energies and temperatures.
Leenson, Ilya A. J. Chem. Educ. 1999, 76, 1459.
Kinetics
Chemiluminescence Demonstration Illustrating Principles of Ester Hydrolysis Reactions  Andrew G. Hadd, David W. Lehmpuhl, Laura R. Kuck, and John W. Birks
Peroxyoxalate chemiluminescence, the most efficient nonenzymatic chemiluminescence reaction known, is used to demonstrate mechanistic features of analogous ester hydrolysis reactions.
Hadd, Andrew G.; Lehmpuhl, David W.; Kuck, Laura R.; Birks, John W. J. Chem. Educ. 1999, 76, 1237.
Kinetics |
Photochemistry |
Mechanisms of Reactions |
Atomic Properties / Structure |
Esters
Motivating Students in Sophomore Organic Chemistry by Examining Nature's Way- Why Are Vitamins E and C Such Good Antioxidants?  Bruce D. Beaver
Motivating students in sophomore organic chemistry by integrating material from an area of contemporary research activity into the course. This article contains an overview of the antioxidant function of vitamins E and C.
Beaver, Bruce D. J. Chem. Educ. 1999, 76, 1108.
Nutrition |
Mechanisms of Reactions |
Free Radicals |
Learning Theories |
Applications of Chemistry
Why the Arrhenius Equation Is Always in the "Exponentially Increasing" Region in Chemical Kinetic Studies  Harvey F. Carroll
The Arrhenius equation in chemical kinetics, k = Ae-Ea/RT, has, as T gets larger, an inflection point where it changes from an "exponentially increasing" curve to one approaching an asymptote of A. The inflection point occurs at T = Ea/2R. For any activation energy, the inflection point occurs at such a high temperature that chemical kinetic studies would not be possible. Thus, the Arrhenius equation always appears to be exponentially increasing in any chemical kinetic studies of interest.
Carroll, Harvey F. J. Chem. Educ. 1998, 75, 1186.
Kinetics
A History of the Double-Bond Rule  Bernard E. Hoogenboom
From his experience as an industrial chemist, Otto Schmidt recognized the bond weakening in hydrocarbons and in 1932 postulated the "Double-Bond Rule," stating that the presence of a double bond in a hydrocarbon has an alternating strengthening and weakening effect on single bonds throughout the molecule, diminishing with distance from the double bond.
Hoogenboom, Bernard E. J. Chem. Educ. 1998, 75, 596.
Learning Theories |
Mechanisms of Reactions |
Alkenes
Why Don't Things Go Wrong More Often? Activation Energies: Maxwell's Angels, Obstacles to Murphy's Law  Frank L. Lambert
The micro-complexity of fracturing utilitarian or beautiful objects prevents assigning a characteristic activation energy even to chemically identical artifacts. Nevertheless, a qualitative EACT SOLID can be developed. Its surmounting is correlated with the radical drop in human valuation of an object when it is broken.
Lambert, Frank L. J. Chem. Educ. 1997, 74, 947.
Kinetics |
Nonmajor Courses |
Thermodynamics
Organic Qualitative Analysis at the Microscale Level  Craig, Rhoda E. R.; Kaufman, Kurt K.
Project requiring students to identify pure unknowns and the components of mixtures using a variety of chromatography and spectrometry techniques.
Craig, Rhoda E. R.; Kaufman, Kurt K. J. Chem. Educ. 1995, 72, A102.
NMR Spectroscopy |
IR Spectroscopy |
Chromatography |
Separation Science |
Qualitative Analysis |
Acids / Bases
Thermal Dehydration of Crystalline Hydrates: Microscopic Studies and Introductory Experiments to the Kinetics of Solid-State Reactions  Tanaka, Haruhiko; Koga, Nobuyoshi; Galwey, Andrew K.
Description of solid-state reactions, particularly decompositions/dehydration, and sample studies of dehydration of several hydrates through the microscope; includes pictures and experimental procedure.
Tanaka, Haruhiko; Koga, Nobuyoshi; Galwey, Andrew K. J. Chem. Educ. 1995, 72, 251.
Kinetics |
Solids |
Crystals / Crystallography |
Solid State Chemistry
Temperature Control for a Small-Scale Kinetics Experiment  Flash, Patrick
A microscale version of the iodine clock kinetics experiment with iodine and peroxydisulfate under temperature- controlled conditions that also permits calculating the activation energy.
Flash, Patrick J. Chem. Educ. 1994, 71, A66.
Kinetics |
Rate Law |
Microscale Lab
A Unified Equation for Chemical Kinetics  Tan, Xinyi; Lindenbaum, Siegfried; Meltzer, Noel
An equation from which equations for zero-, first-, and higher order reactions can be readily derived that is also amenable to more complex situations not covered by simple rate law expressions.
Tan, Xinyi; Lindenbaum, Siegfried; Meltzer, Noel J. Chem. Educ. 1994, 71, 566.
Kinetics |
Rate Law
On the Use of Least Squares To Fit Data in Linear Form  Chong, Delano P.
Analysis of Michaelis-Menten kinetics as an example of using least squares to fit data in a linear form.
Chong, Delano P. J. Chem. Educ. 1994, 71, 489.
Chemometrics |
Enzymes |
Kinetics
An Oscillating Reaction as a Demonstration of Principles Applied in Chemistry and Chemical Engineering  Weimer, Jeffrey J.
Platinum catalyzed decomposition of methanol.
Weimer, Jeffrey J. J. Chem. Educ. 1994, 71, 325.
Thermodynamics |
Catalysis |
Transport Properties |
Kinetics |
Reactions
TITRATE: A Learning Tool for Acid-Base Titrations  Ramette, Richard W.
Software that calculates and simulates the plot of a titration curve for any base or acid (up to hexaprotic) or any mixture (up to five substances).
Ramette, Richard W. J. Chem. Educ. 1994, 71, 238.
Acids / Bases |
Titration / Volumetric Analysis |
Aqueous Solution Chemistry
KineticsLab: The Crystal Violet/Sodium Hydroxide Reaction  Cannon, John F.; Gammon, Steven D.; Hunsberger, Lynn R.
A computer-assisted experiment to collect and analyze data for a kinetic study of the decolorization of crystal violet in basic solution.
Cannon, John F.; Gammon, Steven D.; Hunsberger, Lynn R. J. Chem. Educ. 1994, 71, 238.
Kinetics |
Rate Law |
Reactions
A kinetic study of the isomerization of eugenol: The quantitative use of NMR, GC, and HPLC in a single organic laboratory experiment that demonstrates alternative approaches to solving a problem   Peterson, Thomas H.; Bryan, James H.; Keevil, Thomas A.
Description of an experiment that allows students to be aware that there is often more than one approach to designing an experiment,and that the quality of the experimental results often depend on the proper choice of instrument(s).
Peterson, Thomas H.; Bryan, James H.; Keevil, Thomas A. J. Chem. Educ. 1993, 70, A96.
Aromatic Compounds |
NMR Spectroscopy |
Alcohols |
Kinetics
Polymer spherulites: II. Crystallization kinetics  Marentette, J. M.; Brown, G. R.
A commonplace polarized light microscope equipped with a hot stage permits examination of crystallization kinetics in addition to morphology and birefringence.
Marentette, J. M.; Brown, G. R. J. Chem. Educ. 1993, 70, 539.
Kinetics |
Crystals / Crystallography |
Polymerization
Monitoring self-association of a hydrophobic peptide with high performance liquid chromatography: An undergraduate kinetic experiment using the antibiotic gramicidin A  Braco, Lorenzo; Ba, M. Carmen; Abad, Concepcin
The authors propose a kinetic experiment that uses high performance liquid chromatography to determine the rate and equilibrium constants in a very simple manner, and separate the molecular species under study.
Braco, Lorenzo; Ba, M. Carmen; Abad, Concepcin J. Chem. Educ. 1992, 69, A113.
HPLC |
Kinetics |
Proteins / Peptides |
Rate Law |
Equilibrium
Endocharm and its production in organic chemistry by mastery learning  Afzal, Dawood; Delaware, Dana L.; Fountain, Kenneth R.
Using concept maps in organic chemistry and the difference between rote and meaningful learning.
Afzal, Dawood; Delaware, Dana L.; Fountain, Kenneth R. J. Chem. Educ. 1990, 67, 1011.
Learning Theories |
Acids / Bases
Ants and chemical kinetics  Myers, R. Thomas
Data regarding the speed of ants at various temperatures are amenable to standards treatment on chemical kinetics.
Myers, R. Thomas J. Chem. Educ. 1990, 67, 761.
Kinetics |
Rate Law
The kinetics of isotopic exchange reactions  Logan, S. R.
An isotopic exchange reaction progress toward equilibrium follows an equation comparable to that applicable to many reversible isomerization reactions.
Logan, S. R. J. Chem. Educ. 1990, 67, 371.
Kinetics |
Isotopes |
Reactions |
Equilibrium
Ferrimyoglobin-fluoride: An undergraduate kinetics experiment  Russo, Steven O.; Hanania, George I. H.
The authors propose an experiment which concerns the reaction of the protein ferrimyoglobin with fluoride ion, in dilute aqueous solution.
Russo, Steven O.; Hanania, George I. H. J. Chem. Educ. 1990, 67, 352.
Kinetics |
Proteins / Peptides |
Aqueous Solution Chemistry
Recent advances in the concept of hard and soft acids and bases  Pearson, Ralph G.
The hard / soft acids / bases principle has been justifiably criticized because of the lack of a precise definition of hardness and the inability to quantify this property; recent developments have overcome these objections, however.
Pearson, Ralph G. J. Chem. Educ. 1987, 64, 561.
Acids / Bases |
Coordination Compounds |
MO Theory |
Oxidation / Reduction
Kinetics and mechanism of the iodine azide reaction: A videotaped experiment  Haight, Gilbert P.; Jones, Loretta L.
A clock reaction suitable for videotaping and presenting to a large lecture class of general chemistry for analysis.
Haight, Gilbert P.; Jones, Loretta L. J. Chem. Educ. 1987, 64, 271.
Kinetics |
Mechanisms of Reactions |
Rate Law
Ligand replacement at a square planar metal center: A kinetic experiment for the inorganic chemistry laboratory  Kruger, H.; de Waal, D. J. A.
The ligand triphenyl phosphine is replaced from a rhodium metal center by a series of pyridine derivatives; this system will introduce students to stopped-flow spectrophotometry as a technique to study the kinetics of very fast reactions.
Kruger, H.; de Waal, D. J. A. J. Chem. Educ. 1987, 64, 262.
Coordination Compounds |
Crystal Field / Ligand Field Theory |
Kinetics |
Transition Elements |
Metals
Kinetics of oxidation of bromcresol green  Pickering, Miles; Heiler, David
Study of the bleaching of bromcresol green by hypochlorite.
Pickering, Miles; Heiler, David J. Chem. Educ. 1987, 64, 81.
Kinetics |
Oxidation / Reduction |
Dyes / Pigments |
Acids / Bases |
Mechanisms of Reactions
Doing the dishes: An analogy for use in teaching reaction kinetics  Last, Arthur M.
An analogy between doing dishes and a two-step reaction.
Last, Arthur M. J. Chem. Educ. 1985, 62, 1015.
Kinetics |
Reactions
The catalytic function of enzymes  Splittgerber, Allan G.
Review of the structure, function, and factors that influence the action of enzymes.
Splittgerber, Allan G. J. Chem. Educ. 1985, 62, 1008.
Catalysis |
Enzymes |
Mechanisms of Reactions |
Proteins / Peptides |
Molecular Properties / Structure
The production of oxygen gas: A student catalysis experiment  Onuchukwu, A. I.; Mshelia, P. B.
Synthesizing copper ferrite spinnel and using it as a catalyst in the decomposition of hydrogen peroxide to generate oxygen; the rate of generation is used to determine the kinetic activity of the catalyst.
Onuchukwu, A. I.; Mshelia, P. B. J. Chem. Educ. 1985, 62, 809.
Catalysis |
Synthesis |
Kinetics
Thermodynamic changes, kinetics, equilibrium, and LeChatelier's principle  Hansen, Robert C.
A series of demonstrations in which water in beakers and the flow of water between beakers is used to represent the components of an exothermic chemical reaction and the flow and quantity of thermal energy involved in chemical changes.
Hansen, Robert C. J. Chem. Educ. 1984, 61, 804.
Equilibrium |
Kinetics |
Thermodynamics
The synthesis of 4,4'-di-tertbutyl biphenyl: a sophomore organic chemistry experiment  Horne, Deane A.
A brief note providing a sequence of experiments for an introductory organic course that is inexpensive and does not pose a health hazard.
Horne, Deane A. J. Chem. Educ. 1983, 60, 246.
Acids / Bases |
Aromatic Compounds |
Catalysis |
Alkylation |
Solutions / Solvents
The mechanism of the formaldehyde clock reaction: Methylene glycol dehydration  Burnett, M. G.
Results of investigation to determine the mechanism of the formaldehyde clock reaction.
Burnett, M. G. J. Chem. Educ. 1982, 59, 160.
Mechanisms of Reactions |
Kinetics |
Rate Law
Collision and transition state theory approaches to acid-base catalysis  Dunford, H. B.
Shows that the description of acid-catalyzed chemical reactions in terms of transition state acid dissociation constants is formally equivalent to the collision theory approach, in which dissociation constants of acid groups on initial reactants are utilized.
Dunford, H. B. J. Chem. Educ. 1975, 52, 578.
Acids / Bases |
Catalysis |
Kinetics |
Equilibrium
Reaction mechanisms in organic chemistry. Concerted reactions  Caserio, Marjorie C.
Examines displacement and elimination, cyclization, and rearrangement reactions, as well as theoretical considerations and generalized selection rules.
Caserio, Marjorie C. J. Chem. Educ. 1971, 48, 782.
Mechanisms of Reactions |
Reactions |
Nucleophilic Substitution |
Elimination Reactions
Nonlinear Hammett relationships  Schreck, James 0.
The author provides examples of nonlinear structure-reactivity , Hammett correlation's, and summarize most of the types of reactions in which deviations due to change in mechanism or rate-controlling step occur.
Schreck, James 0. J. Chem. Educ. 1971, 48, 103.
Mechanisms of Reactions |
Aromatic Compounds
Kinetics as an introductory course  Beatty, James W.; Powers, Jack W.; Scamehorn, Richard G.
Describes an introductory course entitled "Reaction Kinetics and the Mechanisms of Reactions."
Beatty, James W.; Powers, Jack W.; Scamehorn, Richard G. J. Chem. Educ. 1970, 47, 797.
Kinetics |
Mechanisms of Reactions
Hydrolysis of benzenediazonium ion  Sheats, John E.; Harbison, Kenneth G.
Presents a more convenient approach to studying the kinetics of the hydrolysis of benzenediazonium ion.
Sheats, John E.; Harbison, Kenneth G. J. Chem. Educ. 1970, 47, 779.
Aromatic Compounds |
Nucleophilic Substitution |
Kinetics
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A.
(1) When is the rule valid that the rate of reaction approximately doubles with a ten-degree temperature rise? - answer by House. (2) On the colors of transition metal complexes. (3) On an electrolysis experiment in which an acid solution is used to minimize the hydrolysis of Cu 2+. - answer by Campbell.
Young, J. A.; Malik, J. G.; House, J. E., Jr.; Campbell, J. A. J. Chem. Educ. 1969, 46, 674.
Rate Law |
Kinetics |
Transition Elements |
Coordination Compounds |
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases
The principle of exponential change: Applications in chemistry, biochemistry, and radioactivity  Green, Frank O.
Examines the nature of exponential change and its applications to chemistry, biochemistry, and radioactivity, including radioactive decay, enzyme kinetics, colorimetry, spectrophotometry, and first order reaction kinetics.
Green, Frank O. J. Chem. Educ. 1969, 46, 451.
Nuclear / Radiochemistry |
Kinetics |
Enzymes |
Spectroscopy
The thermal decomposition of 2,5-dihydrofuran vapor: An experiment in gas kinetics  Rubin, Jay A.; Filseth, Stephen V.
Describes an experiment designed to illustrate manipulations with a vacuum system and the conduct of kinetic measurements.
Rubin, Jay A.; Filseth, Stephen V. J. Chem. Educ. 1969, 46, 57.
Kinetics |
Gases
Bimolecular nucleophilic displacement reactions  Edwards, John O.
The bimolecular nucleophilic displacement reaction is important and should be included in any detailed discussion of kinetics and mechanism at an early undergraduate level.
Edwards, John O. J. Chem. Educ. 1968, 45, 386.
Reactions |
Nucleophilic Substitution |
Kinetics |
Mechanisms of Reactions
Chemical reaction cross sections and rate constants  Kuppermann, A.; Greene, E. F.
Examines bimolecular collisions in a gas and the collision cross section; reaction rates and cross sections for chemical reactions; calculations of reaction cross sections; and experimental methods for the determination of reaction cross sections.
Kuppermann, A.; Greene, E. F. J. Chem. Educ. 1968, 45, 361.
Kinetics |
Rate Law
Recent developments in theoretical chemical kinetics  Marcus, R. A.
Examines some of the recent experiments, topics, and questions in theoretical kinetics.
Marcus, R. A. J. Chem. Educ. 1968, 45, 356.
Theoretical Chemistry |
Kinetics
Bromination of alkanes: Experiment illustrating relative reactivities and synthetic utility  Warkentin, J.
The radical halogenation of alkanes lend themselves well to the teaching of basic material such as bond dissociation energies, potential energy profiles, enthalpy of reaction, activation energy, and reaction rate.
Warkentin, J. J. Chem. Educ. 1966, 43, 331.
Electrochemistry |
Alkanes / Cycloalkanes |
Rate Law |
Kinetics |
Synthesis |
Alkenes |
Mechanisms of Reactions |
Free Radicals
Aromatic substitution  Duewell, H.
Reports on the use of the molecular orbit theory in a qualitative approach to the activation and orientation of substitution in aromatic systems.
Duewell, H. J. Chem. Educ. 1966, 43, 138.
Aromatic Compounds |
MO Theory |
Mechanisms of Reactions
Device for measuring instantaneous rates of gas-evolving reactions  Steiner, Edwin C.; Hartzell, Gordon E.
Presents a device for measuring instantaneous rates of gas-evolving reactions that relies on a hypodermic syringe capable of responding to extremely small pressure changes.
Steiner, Edwin C.; Hartzell, Gordon E. J. Chem. Educ. 1965, 42, 559.
Laboratory Equipment / Apparatus |
Gases |
Reactions |
Rate Law |
Kinetics
Formation of the chromium-EDTA complex: An undergraduate kinetics experiment  Hedrick, C. E.
The formation of the chromium-EDTA complex serves as the basis for a kinetics experiment in analytical chemistry.
Hedrick, C. E. J. Chem. Educ. 1965, 42, 479.
Coordination Compounds |
Kinetics |
Rate Law
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
A simple kinetic investigation of an organic reaction mechanism  Landgrebe, John A.
This kinetic experiment allows the student to determine what factors affect the rate of a reaction and how this information can be rationalized in terms of a logical sequence of molecular events.
Landgrebe, John A. J. Chem. Educ. 1964, 41, 567.
Kinetics |
Reactions |
Mechanisms of Reactions
The oxidation of iodide ion by persulfate ion  Moews, P. C., Jr.; Petrucci, R. H.
Presents the oxidation of iodide ion by persulfate ion as an ideal reaction to study as part of an experiment on kinetics.
Moews, P. C., Jr.; Petrucci, R. H. J. Chem. Educ. 1964, 41, 549.
Oxidation / Reduction |
Reactions |
Kinetics |
Rate Law
KineticsEarly and often  Campbell, J. A.
Describes an approach to investigating kinetics and its application to the "blue bottle" experiment.
Campbell, J. A. J. Chem. Educ. 1963, 40, 578.
Kinetics |
Equilibrium |
Mechanisms of Reactions
Reaction kinetics from conductivity data: An apparatus for the student laboratory  Greenberg, David B.
In this paper a conductivity experiment in chemical reaction kinetics is described using an indicating type electrical instrument of simple circuit design.
Greenberg, David B. J. Chem. Educ. 1962, 39, 140.
Conductivity |
Kinetics
Crystal field theory and substitution reactions of metal ions  Pearson, Ralph G.
This article illustrates crystal field theory in studying substitution reactions of compounds of the metal ions.
Pearson, Ralph G. J. Chem. Educ. 1961, 38, 164.
Crystal Field / Ligand Field Theory |
Metals |
Kinetics |
Aqueous Solution Chemistry
A constant temperature reaction vessel for the thermal decomposition of solids  Prout, E. G.; Herley, P. J.
Describes an apparatus suitable for studying the thermal decomposition of potassium permanganate in high vacuum.
Prout, E. G.; Herley, P. J. J. Chem. Educ. 1960, 37, 643.
Laboratory Equipment / Apparatus |
Solids |
Rate Law |
Kinetics
Determination of reaction rates with an A.C. conductivity bridge: A student experiment  Chesick, J. P.; Patterson, A., Jr.
Describes a quantitative experiment in chemical kinetics suitable for advanced freshmen or physical chemistry; it involves a study of the solvolysis of tertiary butyl chloride by means of conductance measurements.
Chesick, J. P.; Patterson, A., Jr. J. Chem. Educ. 1960, 37, 242.
Conductivity |
Kinetics |
Rate Law