TIGER

Journal Articles: 51 results
Orbital Exponent Optimization in Elementary VB Calculations of the Chemical Bond in the Ground State of Simple Molecular Systems  Valerio Magnasco
Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H2+, H2, He2+, and He2 gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region.
Magnasco, Valerio. J. Chem. Educ. 2008, 85, 1686.
Atomic Properties / Structure |
Computational Chemistry |
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Valence Bond Theory
Relativistic Effects and the Chemistry of the Heaviest Main-Group Elements  John S. Thayer
The heaviest main-group elements often show markedly different chemical properties than their lighter counterparts. Most of these differences arise from changes in the relative energies of the outer-shell atomic orbitals that can be explained by application of Einstein's theory of special relativity to electrons in atoms.
Thayer, John S. J. Chem. Educ. 2005, 82, 1721.
Main-Group Elements |
Atomic Properties / Structure |
Metals |
Organometallics |
Periodicity / Periodic Table
Effects of Exchange Energy and Spin-Orbit Coupling on Bond Energies  Derek W. Smith
It is shown that the ground states of atoms having pn configurations are stabilized by exchange energy (n = 2, 3, or 4) and/or spin┬Łorbit coupling (n = 1, 2, 4, or 5).
Smith, Derek W. J. Chem. Educ. 2004, 81, 886.
Atomic Properties / Structure |
Main-Group Elements |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Descriptive Chemistry |
Ionic Bonding |
Covalent Bonding |
Metallic Bonding
ORBITAL  Robert M. Hanson
Software for producing probability-based three-dimensional representations of atomic orbitals of the hydrogen atom and other single-electron systems; found on the Advanced Chemistry Collection CD-ROM, 3rd Edition.
Hanson, Robert M. J. Chem. Educ. 2003, 80, 109.
Atomic Properties / Structure |
Atomic Spectroscopy |
Computational Chemistry
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
Colorful Azulene and Its Equally Colorful Derivatives  Robert S. H. Liu
Analysis of azulene and related compounds for an explanation of their respective colors.
Liu, Robert S. H. J. Chem. Educ. 2002, 79, 183.
Atomic Properties / Structure |
MO Theory |
UV-Vis Spectroscopy |
Aromatic Compounds |
Alkenes
Structure and Bonding (by Jack Barrett)  Michael Laing
Tutorial chemistry text.
Laing, Michael. J. Chem. Educ. 2001, 78, 1600.
Molecular Properties / Structure |
MO Theory |
Atomic Properties / Structure |
Group Theory / Symmetry |
Covalent Bonding |
VSEPR Theory
Letters  
Consideration of kinetic energy in interpreting atomic ionization energies is redundant.
Richman, Robert M. J. Chem. Educ. 1999, 76, 605.
Atomic Properties / Structure |
Quantum Chemistry
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Experimental 4s and 3d Energies in Atomic Ground States  James L. Bills
A new definition is given for the effective charge Zf. HF orbital energies e4s and e3d are used in concert with I4s and I3d to answer four questions: Why does the 4s sublevel fill before 3d? Why is ionization easier for 4s than 3d? When 4s23dn has e3d < e4s, why doesn't 4s23dn -> 4s13dn+1? Why are Cr and Cu each 4s13dn+1 instead of 4s23dn?
Bills, James L. J. Chem. Educ. 1998, 75, 589.
Atomic Properties / Structure
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Examining the Shapes of Atomic Orbitals Using Mathcad  Ramachandran, B.
180. Bits and pieces, 55. Describes how three-dimensional contour plots of spherical harmonics may be generated using MathCad.
Ramachandran, B. J. Chem. Educ. 1995, 72, 1082.
Atomic Properties / Structure |
Quantum Chemistry |
Mathematics / Symbolic Mathematics
Moseley's Work on X-Rays and Atomic Number  C. W. Haigh
Explanation of the relationship between Moseley's work in determining atomic numbers, the spectrum of the hydrogen atom, the Bohr theory, and Slater's rules for screening constants.
Haigh, C. W. J. Chem. Educ. 1995, 72, 1012.
Enrichment / Review Materials |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Quantum Chemistry
Three-Dimensional Graphical Visualization of One-Electron Atomic Orbitals  Ramachandran, B.; Kong, P. C.
173. Bits and pieces, 53. Software to produce contour plots of atomic orbitals.
Ramachandran, B.; Kong, P. C. J. Chem. Educ. 1995, 72, 406.
Atomic Properties / Structure
Where the Electrons Are  Barth, Roger
173. Bits and pieces, 53. Software for realistic modeling of electronic orbitals using contour plots of probability densities.
Barth, Roger J. Chem. Educ. 1995, 72, 401.
Atomic Properties / Structure
Orbital Bartending  Barbaro, John
This analogy is a means for students to better understand the the hybridization of carbon's atomic orbitals.
Barbaro, John J. Chem. Educ. 1994, 71, 1012.
Atomic Properties / Structure
The Periodic Table of Atoms: Arranging the Elements by a Different Set of Rules  Treptow, Richard S.
The periodic table found in this paper is based on the properties of free gaseous atoms rather than atoms in a chemical environment.
Treptow, Richard S. J. Chem. Educ. 1994, 71, 1007.
Periodicity / Periodic Table |
Atomic Properties / Structure
Electronegativity and atomic charge  Reed, James L.
Because electronegativity is such a fundamental concept, it should be continually developed in sophistication throughout the curriculum; considers the energy function, atomic charges, and chemical reactivities.
Reed, James L. J. Chem. Educ. 1992, 69, 785.
Atomic Properties / Structure
Periodic chart pedagogy  Yoder, Claude H.; Yoder, Carolyn S.
Questions based upon a hypothetical set of quantum numbers and their relationships; includes answers.
Yoder, Claude H.; Yoder, Carolyn S. J. Chem. Educ. 1990, 67, 759.
Periodicity / Periodic Table |
Atomic Properties / Structure
Keeping track of directions of atomic orbitals: A useful device in organic chemistry  Talaty, Erach R.
The usefulness of keeping track of the directions of atomic orbitals.
Talaty, Erach R. J. Chem. Educ. 1990, 67, 655.
Atomic Properties / Structure |
Alkenes |
Alkynes
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Teaching the shapes of the hydrogenlike and hybrid atomic orbitals  Allendoerfer, Robert D.
The purpose of this article to show that, in this age of computer graphics, the "difficult to obtain" argument no longer has merit and to give an example of where the standard treatment gives insufficient attention to detail in describing the nodal surfaces of hybrid orbitals.
Allendoerfer, Robert D. J. Chem. Educ. 1990, 67, 37.
Atomic Properties / Structure
Transition metal configurations and limitations of the orbital approximation  Scerri, Eric R.
Points out a misconception concerning the "building up" of the transition elements and their first ionization energies that is reinforced by many chemistry texts.
Scerri, Eric R. J. Chem. Educ. 1989, 66, 481.
Transition Elements |
Atomic Properties / Structure
Electron spectroscopic methods in teaching  Allan, Michael
Presents several spectra in a format suitable for teaching applications with the intention of promoting the use of electron energy-loss spectroscopy in teaching the electronic structure of atoms and molecules at an elementary level.
Allan, Michael J. Chem. Educ. 1987, 64, 418.
Spectroscopy |
Quantum Chemistry |
Photochemistry |
Atomic Properties / Structure |
Molecular Properties / Structure |
MO Theory
A novel pictorial approach to teaching molecular motions in polyatomic molecules  Verkade, John G.
A procedure in which the "generator orbital" approach can be utilized to teach students how to generate the vibrational, rotational, and translational modes of molecules in a completely pictorial manner.
Verkade, John G. J. Chem. Educ. 1987, 64, 411.
Molecular Properties / Structure |
Atomic Properties / Structure
Orbital shape representations  Kikuchi, Osamu; Suzuki, Keizo
The use of two-dimensional polar plots and three-dimensional contour surfaces to represent atomic orbitals.
Kikuchi, Osamu; Suzuki, Keizo J. Chem. Educ. 1985, 62, 206.
Atomic Properties / Structure
Models to depict hybridization of atomic orbitals  Stubblefield, C. T.
Six models of hybridization: linear, trigonal, tetrahedral, planar, trigonal bipyrimidal, and octahedral.
Stubblefield, C. T. J. Chem. Educ. 1984, 61, 158.
Atomic Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Coordination Compounds
Theoretical justification of Madelung's rule  Wong, D. Pan
Provides theoretical and physical meaning to the sequence of filling electron shells of neutral atoms in the periodic table dictated by Madelung's rule.
Wong, D. Pan J. Chem. Educ. 1979, 56, 714.
Atomic Properties / Structure |
Periodicity / Periodic Table
Electrons, bonding, orbitals, and light: A unified approach to the teaching of structure and bonding in organic chemistry courses  Lenox, Ronald S.
A suggested list of topics and methods for teaching introductory organic students bonding concepts.
Lenox, Ronald S. J. Chem. Educ. 1979, 56, 298.
Atomic Properties / Structure |
Lewis Structures |
Spectroscopy |
Covalent Bonding
Novel pictorial approach to teaching MO concepts in polyatomic molecules  Hoffman, D. K.; Ruedenberg, K.; Verkade, J. G.
Methods used in a one-quarter course to familiarize students with the general applicability of delocalized and localized molecular orbitals to polyatomic systems; includes examples of delocalized and localized molecular orbitals of XeF2, C3H3+, CH4, and CO2.
Hoffman, D. K.; Ruedenberg, K.; Verkade, J. G. J. Chem. Educ. 1977, 54, 590.
MO Theory |
Atomic Properties / Structure
Huckel calculations using a programmable pocket calculator  Murgich, Juan
Programmable calculators allow the direct calculations of simple pi-molecular orbitals of the Huckel or Mulliken-Wolfsberg-Helmholz type.
Murgich, Juan J. Chem. Educ. 1977, 54, 421.
Chemometrics |
Atomic Properties / Structure
Simple models for tough concepts  Cavagnol, Richard M.; Barnett, Thomas
One of the most challenging aspects of instructional interaction is the presentation of dynamic chemical concepts interaction is the presentation of dynamic chemical concepts in a way that is both believable and understandable. The authors have devised a series of models that are simple, inexpensive, and require very little time or skill to construct. They allow students to visualize a whole spectrum of phenomena from atomic structure to enzyme-substrate interactions.
Cavagnol, Richard M.; Barnett, Thomas J. Chem. Educ. 1976, 53, 643.
Enzymes |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Atomic Properties / Structure |
Transport Properties
Model to illustrate bonding and symmetry of transition metal complexes  Betteridge, D.
Describes a physical model used to demonstrate the combination of atomic orbitals of the transition metal ion with those on surrounding ligands to give molecular orbitals.
Betteridge, D. J. Chem. Educ. 1970, 47, 824.
Transition Elements |
Metals |
Coordination Compounds |
Molecular Modeling |
Atomic Properties / Structure |
Group Theory / Symmetry
Increased-valence theory of valence  Harcourt, R. D.
Describes several "increased valence" formulas for molecular systems with one or more sets of pour electrons distributed among three atomic orbitals of three atoms.
Harcourt, R. D. J. Chem. Educ. 1968, 45, 779.
Atomic Properties / Structure |
Valence Bond Theory
Computer programs for the calculation of overlap integrals  Offenhartz, Peter O'Donnell
Describes three programs developed for the calculation of the overlap of atomic orbitals.
Offenhartz, Peter O'Donnell J. Chem. Educ. 1967, 44, 604.
Atomic Properties / Structure
The electron repulsion theory of the chemical bond. I. New models of atomic structure  Luder, W. F.
Describes the electron repulsion theory of electron configuration and applies it to representative elements.
Luder, W. F. J. Chem. Educ. 1967, 44, 206.
Atomic Properties / Structure |
Covalent Bonding |
Metals
Some aspects of d-orbital participation in phosphorus and silicon chemistry  Bissey, Jack Edwin
Investigates several aspects of d-orbital participation in phosphorus and silicon chemistry.
Bissey, Jack Edwin J. Chem. Educ. 1967, 44, 95.
Atomic Properties / Structure
Electronegativities and group IVA chemistry  Payne, Dwight A., Jr.; Fink, Frank Hall
The teacher of inorganic chemistry should present the representative elements of group IVA and their properties as an intellectual and empirical form of investigation rather than as a mere collection of information.
Payne, Dwight A., Jr.; Fink, Frank Hall J. Chem. Educ. 1966, 43, 654.
Atomic Properties / Structure |
Periodicity / Periodic Table
V - Atomic orbitals  Berry, R. Stephen
Examines atomic orders of magnitude and the Bohr atom, matter waves, one- and many-electron systems, and the correlation problem.
Berry, R. Stephen J. Chem. Educ. 1966, 43, 283.
Atomic Properties / Structure |
Quantum Chemistry
Atomic orbitals: Limitations and variations  Cohen, Irwin; Bustard, Thomas
The three most widely used methods of arriving at a set of atomic orbitals afford respective hydrogen-like orbitals, self-consistent field orbitals, and various analytical approximations such as the Slater or Morse orbitals, all of which may differ greatly in shape and size from each other.
Cohen, Irwin; Bustard, Thomas J. Chem. Educ. 1966, 43, 187.
Atomic Properties / Structure |
Quantum Chemistry
Atomic orbital molecular models  Martins, George
Atomic orbital molecular models are constructed using molded white expanded polystyrene in the form of spheres and teardrops.
Martins, George J. Chem. Educ. 1964, 41, 658.
Atomic Properties / Structure |
MO Theory
Geometry of the f orbitals  Becker, Clifford
Presents physical models of the f orbitals.
Becker, Clifford J. Chem. Educ. 1964, 41, 358.
Atomic Properties / Structure
Electronic structure, properties, and the periodic law (Sisler, Harry H.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1964, 41, 172.
Periodicity / Periodic Table |
Atomic Properties / Structure
A simple model of the d orbitals  Douglas, Bodie E.
Presents a simple model of the d orbitals constructed from plastic sponges.
Douglas, Bodie E. J. Chem. Educ. 1964, 41, 40.
Atomic Properties / Structure
Contour surfaces for atomic and molecular orbitals  Ogryzlo, E. A.; Porter, Gerald B.
Describes the determination of and illustrates contour surfaces for atomic and molecular orbitals.
Ogryzlo, E. A.; Porter, Gerald B. J. Chem. Educ. 1963, 40, 256.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling
Three-dimensional models of atomic orbitals  Hoogenboom, Bernard E.
Using balloons to illustrate three-dimensional models of atomic orbitals.
Hoogenboom, Bernard E. J. Chem. Educ. 1962, 39, 40.
Atomic Properties / Structure
Molecular models featuring molecular orbitals  Brumlik, George C.
Molecular models have been constructed that attempt to represent atomic and molecular orbitals as accurately as the current theories of valence and pertinent experimental evidence permit.
Brumlik, George C. J. Chem. Educ. 1961, 38, 502.
Molecular Modeling |
Atomic Properties / Structure |
MO Theory
Distribution of atomic s character in molecules and its chemical implications  Bent, Henry A.
Explains the shape of simple molecules using the distribution of atomic s character.
Bent, Henry A. J. Chem. Educ. 1960, 37, 616.
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding
Dynamic projector display for atomic orbitals and the covalent bond  Thompson, H. Bradford
An overhead projector is used to display the combination of simple atomic orbitals to form hybrid and molecular orbitals.
Thompson, H. Bradford J. Chem. Educ. 1960, 37, 118.
Atomic Properties / Structure |
Covalent Bonding
The principle of minimum bending of orbitals  Stewart, George H.; Eyring, Henry
The authors present a theory of valency that accounts for a variety of organic and inorganic structures in a clear and easily understood manner.
Stewart, George H.; Eyring, Henry J. Chem. Educ. 1958, 35, 550.
Atomic Properties / Structure |
Molecular Properties / Structure |
Elimination Reactions
Atomic and molecular orbital models  Lambert, Frank L.
Describes the design and use of atomic and molecular orbital models made from styrofoam.
Lambert, Frank L. J. Chem. Educ. 1957, 34, 217.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling