Journal Articles: 26 results
Mass-Elastic Band Thermodynamics: A Visual Teaching Aid at the Introductory Level  William C. Galley
Demonstrations of five spontaneous isothermal processes involving the coupling of a mass and elastic band and arising from combinations of enthalpy and entropy changes are presented and then dissected. Analogies are drawn between these processes and common spontaneous molecular events such as chemical reactions and phase transitions.
Galley, William C. J. Chem. Educ. 2007, 84, 1147.
Calorimetry / Thermochemistry |
Microscopic Description of Le Châtelier's Principle  Igor Novak
The analysis based on microscopic descriptors (energy levels and their populations) is given that provides visualization of free energies and conceptual rationalization of Le Châtelier's principle. The misconception "nature favors equilibrium" is highlighted.
Novak, Igor. J. Chem. Educ. 2005, 82, 1190.
Equilibrium |
Let's Drive "Driving Force" Out of Chemistry  Norman C. Craig
"Driving force" is identified as a misleading concept in analyzing spontaneous change. Driving force wrongly suggests that Newtonian mechanics and determinism control and explain spontaneous processes. The usefulness of the competition of ?H versus ?S in discussing chemical change is also questioned. Entropy analyseswhich consider the contributions to the total change in entropyare advocated.
Craig, Norman C. J. Chem. Educ. 2005, 82, 827.
Natural Products |
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Teaching Entropy Analysis in the First-Year High School Course and Beyond  Thomas H. Bindel
A 16-day teaching unit is presented that develops chemical thermodynamics at the introductory high school level and beyond from exclusively an entropy viewpoint referred to as entropy analysis. Many concepts are presented, such as: entropy, spontaneity, the second law of thermodynamics, qualitative and quantitative entropy analysis, extent of reaction, thermodynamic equilibrium, coupled equilibria, and Gibbs free energy. Entropy is presented in a nontraditional way, using energy dispersal.
Bindel, Thomas H. J. Chem. Educ. 2004, 81, 1585.
Using Science Fiction To Teach Thermodynamics: Vonnegut, Ice-nine, and Global Warming  Charles A. Liberko
When covering the topic of thermodynamics at the introductory level, an example from Kurt Vonnegut, Jr's, fictional novel, Cat's Cradle, is used to take what the students have learned and apply it to a new situation.
Liberko, Charles A. J. Chem. Educ. 2004, 81, 509.
Thermodynamics |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams |
Noncovalent Interactions |
Calorimetry / Thermochemistry
Three Forms of Energy  Sigthór Pétursson
Calculations comparing the energy involved in three forms: heat, mechanical energy, and expansion against pressure.
Pétursson, Sigthór . J. Chem. Educ. 2003, 80, 776.
Calorimetry / Thermochemistry |
Nutrition |
Rubber Bands, Free Energy, and Le Châtelier's Principle  Warren Hirsch
Using a rubber band to illustrate Gibbs free energy, entropy, and enthalpy.
Hirsch, Warren. J. Chem. Educ. 2002, 79, 200A.
Noncovalent Interactions |
Thermodynamics |
Energy as Money, Chemical Bonding as Business, and Negative ΔH and ΔG as Investment   Evguenii I. Kozliak
Analogy for explaining the sign (+ or -) of ?H, ?G, and ?S to introductory students.
Kozliak, Evguenii I. J. Chem. Educ. 2002, 79, 1435.
Nonmajor Courses |
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
A Chemically Relevant Model for Teaching the Second Law of Thermodynamics  Bryce E. Williamson and Tetsuo Morikawa
Presentation of a chemically relevant model that exemplifies many aspects of the second law: reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry.
Williamson, Bryce E.; Morikawa, Tetsuo. J. Chem. Educ. 2002, 79, 339.
Calorimetry / Thermochemistry |
Electrochemistry |
Disorder--A Cracked Crutch for Supporting Entropy Discussions  Frank L. Lambert
Arguments against using disorder as a means of introducing and teaching entropy.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 187.
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
Concept Maps in Chemistry Education  Alberto Regis, Pier Giorgio Albertazzi, Ezio Roletto
This article presents and illustrates a proposed application of concept maps in chemistry teaching in high schools. Three examples of the use of concept maps in chemistry teaching are reported and discussed with reference to: atomic structure, oxidation-reduction and thermodynamics.
Regis, Alberto; Albertazzi, Pier Giorgio; Roletto, Ezio. J. Chem. Educ. 1996, 73, 1084.
Learning Theories |
Atomic Properties / Structure |
Oxidation / Reduction |
Thermodynamics and Spontaneity  Raymond S. Ochs
Despite the importance of thermodynamics as the foundation of chemistry, most students emerge from introductory courses with only a dim understanding of this subject.
Ochs, Raymond S. J. Chem. Educ. 1996, 73, 952.
Thermodynamics |
Learning Theories |
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes  Anil C. Banerjee
Discussion of the conceptual difficulties experienced by undergraduates when dealing with equilibrium and thermodynamics, along with teaching strategies for dealing with these difficulties.
Banerjee, Anil C. J. Chem. Educ. 1995, 72, 879.
Equilibrium |
Probing Student Misconceptions in Thermodynamics with In-Class Writing  Beall, Herbert
Examples of the use of in-class writing assignments in the teaching of thermodynamics in general chemistry are presented.
Beall, Herbert J. Chem. Educ. 1994, 71, 1056.
Thermodynamic irreversibility  Hollinger, Henry B.; Zenzen, Michael J.
Concepts of "reversible" and "irreversible" start out seeming simple enough, but students often become confused. This article tackles areas of confusion in hopes of providing clarity.
Hollinger, Henry B.; Zenzen, Michael J. J. Chem. Educ. 1991, 68, 31.
Kinetics |
Thermodynamics should be built on energy-not on heat and work  Barrow, Gordon M.
This author looks closely at the concepts of heat, work, energy, and the laws of thermodynamics to back up his title argument.
Barrow, Gordon M. J. Chem. Educ. 1988, 65, 122.
Converting sunlight to mechanical energy: A polymer example of entropy  Mathias, Lon J.
Demonstrating entropy using an elastomer and a virtual foolproof "light engine".
Mathias, Lon J. J. Chem. Educ. 1987, 64, 889.
The entropy of dissolution of urea  Pickering, Miles
This experiment combines colorimetric techniques, thermochemical techniques, some volumetric work, and actual measurements of entropy.
Pickering, Miles J. Chem. Educ. 1987, 64, 723.
Energy interconversions in photosynthesis  Bering, Charles L.
Reviews the energetics of the light reactions of photosynthesis.
Bering, Charles L. J. Chem. Educ. 1985, 62, 659.
Photosynthesis |
Photochemistry |
Thermodynamics |
Brief introduction to the three laws of thermodynamics  Stevenson, Kenneth L.
Brief descriptions of the three laws of thermodynamics.
Stevenson, Kenneth L. J. Chem. Educ. 1975, 52, 330.
Our freshmen like the second law  Craig, Norman C.
The author affirms the place of thermodynamics in the introductory chemistry course and outlines a presentation that has been used with students at this level.
Craig, Norman C. J. Chem. Educ. 1970, 47, 342.
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) Is there such a thing as a negative pH value? Or one above 14? (2) What is entropy, in terms a beginner may understand? (3) On calculating the molecular weight of a solute from concentration and freezing point depression.
Young, J. A.; Malik, J. G. J. Chem. Educ. 1969, 46, 36.
Acids / Bases |
Aqueous Solution Chemistry |
pH |
Thermodynamics |
Molecular Properties / Structure
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
How can you tell whether a reaction will occur?  MacWood, George E.; Verhoek, Frank H.
This paper attempts to answer the title question in a clear and direct fashion.
MacWood, George E.; Verhoek, Frank H. J. Chem. Educ. 1961, 38, 334.