TIGER

Journal Articles: 82 results
Dancing Crystals: A Dramatic Illustration of Intermolecular Forces  Donald W. Mundell
Crystals of naphthalene form on the surface of an acetone solution and dance about in an animated fashion illustrating surface tension, crystallization, and intermolecular forces. Additional experiments reveal the properties of the solution and previous demonstrations of surface motion are explored.
Mundell, Donald W. J. Chem. Educ. 2007, 84, 1773.
Aromatic Compounds |
Liquids |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
Physical Properties |
Surface Science |
Noncovalent Interactions
Teaching Structure–Property Relationships: Investigating Molecular Structure and Boiling Point  Peter M. Murphy
The boiling points for 392 organic compounds are tabulated by carbon chain length and functional group to facilitate a wide range of inquiry-based activities that correlate the effects of chemical structure on physical properties.
Murphy, Peter M. J. Chem. Educ. 2007, 84, 97.
Molecular Properties / Structure |
Physical Properties
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
Further Analysis of Boiling Points of Small Molecules, CHwFxClyBrz  Guy Beauchamp
Multiple linear regression analysis has proven useful in selecting predictor variables that could significantly clarify the boiling point variation of the CHwFxClyBrz molecules.
Beauchamp, Guy. J. Chem. Educ. 2005, 82, 1842.
Chemometrics |
Physical Properties |
Hydrogen Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Menthol Stereoisomers  William F. Coleman
The JCE Featured Molecules for July come from the paper by Edward M. Treadwell and T. Howard Black on the use of commercially available stereoisomers of menthol to illustrate properties of enantiomers and diastereomers. The paper describes the use of four of the eight possible stereoisomers. Structures of all eight stereoisomers are included in this months molecule collection, labeled by the chirality of the three chiral atoms. In addition to the exercises described in the paper, students can be asked to match the appropriate structures to those shown in the paper, or to generate structures for the isomers that are not discussed.
Coleman, William F. J. Chem. Educ. 2005, 82, 1048.
Molecular Properties / Structure |
Molecular Modeling |
Alcohols
A Solid–State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses  Stanley E. Anderson, David Saiki, Hellmut Eckert, and Karin Meise-Gresch
The solid state 31P NMR wideline spectra of a series of student-prepared sodium phosphate glasses can easily be measured using a standard multinuclear FTNMR spectrometer.
Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin. J. Chem. Educ. 2004, 81, 1034.
Solid State Chemistry |
NMR Spectroscopy |
Molecular Properties / Structure
Boiling Point versus Mass  Michael Laing
I am very pleased that Ronald Rich has written making these comments, because he is pre-eminent in this field, beginning with his early book, Periodic Correlations.
Laing, Michael. J. Chem. Educ. 2004, 81, 642.
Atomic Properties / Structure |
Molecular Properties / Structure |
Noncovalent Interactions |
Liquids |
Phases / Phase Transitions / Diagrams
Boiling Point versus Mass   Ronald L. Rich
Laing gave a useful examination of the boiling points of small molecules versus molecular mass. However, a molecule escaping from a liquid is not closely analogous to a satellite breaking free from the earths gravitational field with the requirement of a minimum escape velocity, such that the required kinetic energy is proportional to the mass of the satellite at that escape velocity.
Rich, Ronald L. J. Chem. Educ. 2004, 81, 642.
Molecular Properties / Structure |
Atomic Properties / Structure |
Liquids |
Noncovalent Interactions |
Phases / Phase Transitions / Diagrams
A Structure–Activity Investigation of Photosynthetic Electron Transport. An Interdisciplinary Experiment for the First-Year Laboratory  Kerry K. Karukstis, Gerald R. Van Hecke, Katherine A. Roth, and Matthew A. Burden
Investigation in which students measure the effect of several inhibitors (herbicides) on the electron transfer rate in chloroplasts and formulate a hypothesis between the inhibitor's activity and its structure as a means of using a physical technique to measure a chemical process in a biological system.
Karukstis, Kerry K.; Van Hecke, Gerald R.; Roth, Katherine A.; Burden, Matthew A. J. Chem. Educ. 2002, 79, 985.
Biophysical Chemistry |
Electrochemistry |
Noncovalent Interactions |
Molecular Properties / Structure |
UV-Vis Spectroscopy |
Aromatic Compounds |
Plant Chemistry
Boiling Points of the Family of Small Molecules CHwFxClyBrz: How Are They Related to Molecular Mass?  Michael Laing
Investigating the role of molecular mass in determining boiling points of small molecules.
Laing, Michael. J. Chem. Educ. 2001, 78, 1544.
Atomic Properties / Structure |
Noncovalent Interactions |
Liquids |
Molecular Properties / Structure |
Physical Properties
The Importance of Non-Bonds in Coordination Compounds  Michael Laing
Significance of noncovalent interactions in determining the structure and behavior of coordination compounds.
Laing, Michael. J. Chem. Educ. 2001, 78, 1400.
Noncovalent Interactions |
Coordination Compounds |
Kinetics |
Stereochemistry |
Molecular Properties / Structure
Investigation of Secondary Metabolites in Plants. A General Protocol for Undergraduate Research in Natural Products  Jonathan Cannon, Du Li, Steven G. Wood, Noel L. Owen, Alexandra Gromova, and Vladislav Lutsky
Typical experimental procedures to extract and isolate individual chemical constituents from a plant, suggestions for some simple procedures to test for selected bioactivity, and explain how the molecular structures of natural products may be determined using spectroscopic techniques.
Cannon, Jonathan; Li, Du; Wood, Steven G.; Owen, Noel L.; Gromova, Alexandra; Lutsky, Vladislav. J. Chem. Educ. 2001, 78, 1234.
Chromatography |
Natural Products |
NMR Spectroscopy |
Separation Science |
Plant Chemistry |
Molecular Properties / Structure |
Drugs / Pharmaceuticals |
Separation Science
How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?  J. Henderleiter, R. Smart, J. Anderson, and O. Elian
Examination of how students completing a two-semester organic sequence understand, explain, and apply hydrogen bonding to determine the physical attributes of molecules.
Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O. J. Chem. Educ. 2001, 78, 1126.
Noncovalent Interactions |
Learning Theories |
Hydrogen Bonding |
Molecular Properties / Structure
Designing Advanced Materials As Simple As Assembling Lego® Blocks!  C. V. Krishnamohan Sharma
The parallels between strategies for materials design and the construction of architectures using Lego building blocks are used to illustrate the principles and problems associated with predicting crystal structure; applying rational design strategies to the design of advanced materials such as porous solids, ion exchange materials, molecular metals, conductors, and optical materials.
Sharma, C. V. Krishnamohan. J. Chem. Educ. 2001, 78, 617.
Coordination Compounds |
Crystals / Crystallography |
Noncovalent Interactions |
Materials Science |
Molecular Recognition |
Solid State Chemistry
WebSpectra: Online NMR and IR Spectra for Students  Craig A. Merlic, Barry C. Fam, and Michael M. Miller
WebSpectra is a World Wide Web site at UCLA through which organic chemistry students have convenient access to a library of problems in NMR and IR spectroscopy, ranging in difficulty from introductory to advanced. Students are presented with high-resolution spectra of unknown compounds in addition to the molecular formula.
Merlic, Craig A.; Fam, Barry C.; Miller, Michael M. J. Chem. Educ. 2001, 78, 118.
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
An Introductory Polymer Chemistry Course for Plastics Technology Students  Mary G. Chisholm and Paul E. Koch
Teaching the fundamentals of organic chemistry using a molecular drawing and modeling software package interfaced with a polymer database, which can predict polymer properties based on their structure.
Chisholm, Mary G.; Koch, Paul E. J. Chem. Educ. 2000, 77, 1147.
Molecular Properties / Structure |
Molecular Modeling
Application of the Correlation Method to Vibrational Spectra of C60 and Other Fullerenes: Predicting the Number of IR- and Raman-Active Bands  Kazuo Nakamoto and Michael A. McKinney
The C60 molecule (Buckyball/soccer ball) exhibits only 4 IR and 10 Raman bands although it possesses 174 (3 x 60 - 6) normal vibrations. This striking reduction in the number of observed bands is evidently due to the molecule's extremely high symmetry (Ih point group).
Nakamoto, Kazuo; McKinney, Michael A. J. Chem. Educ. 2000, 77, 775.
Chirality / Optical Activity |
Group Theory / Symmetry |
IR Spectroscopy |
NMR Spectroscopy |
Raman Spectroscopy |
Molecular Properties / Structure |
Molecular Modeling
Melting Point and Molecular Symmetry  R. J. C. Brown and R. F. C. Brown
In 1882 Thomas Carnelley observed that high molecular symmetry is associated with high melting point. The application of the rule to a number of different molecular crystals is discussed. The rule applies to different categories of crystal for different reasons, which can be explained by thermodynamic analysis.
Brown, R. J. C.; Brown, R. F. C. J. Chem. Educ. 2000, 77, 724.
Liquids |
Molecular Properties / Structure |
Phases / Phase Transitions / Diagrams |
Solids |
Thermodynamics |
Physical Properties |
Aromatic Compounds |
Crystals / Crystallography
Quantifying Molecular Character  P. G. Nelson
Wells and Jensen's classification of substances according to structure type is quantified, enabling substances having an intermediate structure to be classified precisely. Jensen's concept of the "degree of nonmolecularity" of a substance and the opposite quality, degree of molecular character, are also quantified.
Nelson, Peter G. J. Chem. Educ. 2000, 77, 245.
Noncovalent Interactions |
Molecular Properties / Structure |
Solid State Chemistry
Computational Investigations for Undergraduate Organic Chemistry: Modeling a TLC Exercise to Investigate Molecular Structure and Intermolecular Forces  Rita K. Hessley
In this exercise students carry out a pre-lab exercise in which they compute the dipole moment for a set of similar models representing a variety of functional group categories. Using their data, and supported by guided class discussion, students propose a working hypothesis about how TLC can be used to demonstrate the manner in which the relevant forces lead to predictable rates (extent, Rf) of elution.
Hessley, Rita K. J. Chem. Educ. 2000, 77, 203.
Computational Chemistry |
Noncovalent Interactions |
Thin Layer Chromatography
The Use of Molecular Modeling and VSEPR Theory in the Undergraduate Curriculum to Predict the Three-Dimensional Structure of Molecules  Brian W. Pfennig and Richard L. Frock
Despite the simplicity and elegance of the VSEPR model, however, students often have difficulty visualizing the three-dimensional shapes of molecules and learning the more subtle features of the model, such as the bond length and bond angle deviations from ideal geometry that accompany the presence of lone pair or multiple bond domains or that result from differences in the electronegativity of the bonded atoms, partial charges and molecular dipole moments, and site preferences in the trigonal bipyramidal electron geometry.
Pfennig, Brian W.; Frock, Richard L. J. Chem. Educ. 1999, 76, 1018.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
An Integrated Molecular Modeling and Melting Point Experiment for the Organic Chemistry Laboratory  Thomas Poon, Sheri A. Bodolosky, and Cynthia M. Norris
An introductory organic chemistry laboratory experiment that introduces students to the utility and caveats of computational chemistry is described. Molecular modeling software is used to determine the net dipoles and surface areas of six unknown solids. These and other noncomputational results are then correlated with data from melting point determinations of the unknowns.
Poon, Thomas; Bodolosky, Sheri A.; Norris, Cynthia M. J. Chem. Educ. 1999, 76, 983.
Computational Chemistry |
Noncovalent Interactions |
Molecular Properties / Structure |
Instrumental Methods
Hydrogen Bonds Involving Transition Metal Centers Acting As Proton Acceptors  Antonio Martín
A short review of the most remarkable results which have recently reported M----H-X hydrogen bonds, along with a systematization of their structural and spectroscopic properties, is provided in this paper. These M----H interactions are substantially different from the "agostic" M----H ones, and their differences are commented on, setting up criteria that permit their clear differentiation in order to avoid some of the misidentifications that occurred in the past.
Tello, Antonio Martín. J. Chem. Educ. 1999, 76, 578.
Coordination Compounds |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions |
Metals |
Organometallics |
Hydrogen Bonding
Melting Point Range and Phase Diagrams- Confusing Laboratory Textbook Descriptions  Kenn E. Harding
This paper proposes use of a modified phase diagram as a better tool for students to understand the relationship of observed melting point behavior and a physically correct phase diagram.
Harding, Kenn E. J. Chem. Educ. 1999, 76, 224.
Molecular Properties / Structure |
Phases / Phase Transitions / Diagrams
A Strategy for Incorporating 13C NMR into the Organic Chemistry Lecture and Laboratory Courses  Perry C. Reeves and Chris P. Chaney
The use of spectroscopy in establishing the structures of molecules is an important component of the first course in Organic Chemistry. However, the point in the course at which these techniques are best introduced remains uncertain. We suggest that carbon nuclear magnetic resonance spectroscopy should be introduced at an early stage of the lecture course, specifically while studying the alkanes, and used extensively for structure determination throughout the course.
Reeves, Perry C.; Chaney, Chris P. J. Chem. Educ. 1998, 75, 1006.
Instrumental Methods |
NMR Spectroscopy |
Fourier Transform Techniques |
Alkanes / Cycloalkanes |
Molecular Properties / Structure
The Diels-Alder Reaction of 2,4-Hexadien-1-ol with Maleic Anhydride: A Novel Preparation for the Undergraduate Organic Chemistry Laboratory Course  Keith F. McDaniel and R. Matthew Weekly
The reaction of 2,4-hexadien-1-ol with maleic anhydride provides an excellent exercise for undergraduate laboratory courses. In addition to the expected Diels-Alder reaction, which takes place readily in refluxing toluene, subsequent intramolecular cleavage of the resulting bicyclic anhydride by the pendant hydroxy group generates a lactone. Thus, two important organic reactions can be carried out in a single laboratory session.
McDaniel, Keith F.; Weekley, R. Matthew. J. Chem. Educ. 1997, 74, 1465.
Synthesis |
NMR Spectroscopy |
Molecular Properties / Structure |
Alcohols
Old MacDonald Named a Compound: Branched Enynenynols  Dennis Ryan
An imaginary teacher of organic chemistry thinks up some whimsical compounds for his students to name using IUPAC nomenclature rules.
Ryan, Dennis. J. Chem. Educ. 1997, 74, 782.
Learning Theories |
Nomenclature / Units / Symbols |
Alcohols |
Alkenes |
Alkynes |
Molecular Properties / Structure
Put the Body to Them!  Perkins, Robert R.
Examples of chemistry demonstrations involving student participation, including quantized states and systems, boiling point trends, intermolecular vs. intramolecular changes, polar/nonpolar molecules, enantiomers and diastereomers, and chromatography.
Perkins, Robert R. J. Chem. Educ. 1995, 72, 151.
Chromatography |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Molecular Properties / Structure |
Chirality / Optical Activity |
Quantum Chemistry |
Diastereomers |
Enantiomers
Using Formal Charges in Teaching Descriptive Inorganic Chemistry  DeWit, David G.
Using the concept of formal charges to predict bond properties, determine molecular structure, and explain reactivities and the tendency to polymerize.
DeWit, David G. J. Chem. Educ. 1994, 71, 750.
Descriptive Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Polymerization
Teaching molecular modeling: An introductory course for chemists, implemented at the Universite de Montreal  Dugas, Hermann
139. Objectives of molecular modeling in chemistry, and purpose, goal, and outline of a molecular modeling course.
Dugas, Hermann J. Chem. Educ. 1992, 69, 533.
Molecular Modeling |
Computational Chemistry |
Molecular Properties / Structure
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Illustration of Mn and Mw in chain-growth polymerization using a simplified model: An undergraduate polymer chemistry laboratory exercise  Snyder, Donald M.
This exercise helps to attain three pedagogical objectives. Laying out the chains illustrates that a polymer is composed of a mixture of various chain lengths, the random-number assembly of the chain illustrates the statistical aspects of chain growth, the limited number of chains and chain length of the chain allows direct calculation of the number of chains and the weight averages of the chains.
Snyder, Donald M. J. Chem. Educ. 1992, 69, 422.
Physical Properties |
Molecular Properties / Structure
A least-squares technique for determining the van der Waals parameters from the critical constants.  Eberhart, J. G.
The author reviews three of the six methods for calculating the van der Waals constants for a fluid.
Eberhart, J. G. J. Chem. Educ. 1992, 69, 220.
Noncovalent Interactions |
Physical Properties
Molecular mechanics in the undergraduate curriculum  Sauers, Ronald R.
The author outlines recent experience with the introduction of molecular mechanics methodology via computer aided analysis of molecular geometry and energy. Students gained appreciation for the interplay of molecular forces that govern equilibrium energy and molecular forces of organic molecules.
Sauers, Ronald R. J. Chem. Educ. 1991, 68, 816.
Noncovalent Interactions |
Thermodynamics |
Molecular Properties / Structure |
Molecular Modeling |
Laboratory Computing / Interfacing
An internal comparison of the intermolecular forces of common organic functional groups: A thin-layer chromatography experiment  Beauvais, Robert; Holman, R. W.
Due to the latest trends in organic chemistry textbook content sequences, it has become desirable to develop an experiment that is rapid, simple, and general, that would compare and contrast the various functional group classes of organic molecules in terms of their relative polarities, dipole moments, and intermolecular forces of attraction.
Beauvais, Robert; Holman, R. W. J. Chem. Educ. 1991, 68, 428.
Alkanes / Cycloalkanes |
Alkenes |
Alcohols |
Carboxylic Acids |
Aldehydes / Ketones |
Esters |
Qualitative Analysis |
Thin Layer Chromatography |
Noncovalent Interactions |
Molecular Properties / Structure
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Identifying polar and nonpolar molecules  Tykodi, R. J.
A scheme based on the ideas of molecular symmetry for determining the polar / nonpolar nature of simple molecules.
Tykodi, R. J. J. Chem. Educ. 1989, 66, 1007.
Molecular Properties / Structure |
Physical Properties
On the boiling points of the alkyl halides  Correla, John
Most textbooks spend some time discussing the relationship between boiling point and molecular structure, however, their reasons behind this relationship differ. This variation among textbooks warrants further investigation and discussion in order to uncover which of the factors are the major contributors to the variation of boiling point.
Correla, John J. Chem. Educ. 1988, 65, 62.
Alkanes / Cycloalkanes |
Physical Properties |
Noncovalent Interactions |
Molecular Properties / Structure
Use of polar maps in conformational analysis  Ounsworth, James P.; Weller, Larry
A relatively simple procedure to identify different or similar conformations of large ring structures (generating polar maps of torsional angles).
Ounsworth, James P.; Weller, Larry J. Chem. Educ. 1987, 64, 568.
Conformational Analysis |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Classroom demonstrations of polymer principles. Part I. Molecular structure and molecular mass  Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr.
Suggestions for models and techniques to illustrate the structure of polymers, copolymers, molecular mass, osmotic pressure, light scattering, and dilute solution viscosity.
Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr. J. Chem. Educ. 1987, 64, 72.
Molecular Properties / Structure |
Physical Properties
FACES (features associated with chemical entities): II. Hydrocarbon isomers and their graphs  Larsen, Russell D.
The FACES program is modified in order to be able to display the structural features of compounds.
Larsen, Russell D. J. Chem. Educ. 1986, 63, 1067.
Molecular Properties / Structure
Coulombic models in chemical bonding. II. Dipole moments of binary hydrides  Sacks, Lawrence J.
A discussion of Coulumbic models and their aid in understanding chemical bonding.
Sacks, Lawrence J. J. Chem. Educ. 1986, 63, 373.
Electrochemistry |
Molecular Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
The dependence of strength in plastics upon polymer chain length and chain orientation, an experiment emphasizing the statistical handling and evaluation of data  Spencer, R. Donald
Experiment to give students a practical understanding of how statistics can be applied to the evaluation of experimental results and greatly enhance the ability to solve scientific problems.
Spencer, R. Donald J. Chem. Educ. 1984, 61, 555.
Molecular Properties / Structure |
Physical Properties |
Chemometrics
Molecular association and structure of hydrogen peroxide  Gigure, Paul A.
The typical textbook treatment of molecular association and structure of hydrogen peroxide, and the implications of these concepts for the physical properties of hydrogen peroxide tend to be oversimplified and inaccurate.
Gigure, Paul A. J. Chem. Educ. 1983, 60, 399.
Molecular Properties / Structure |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Hydrogen Bonding
Sulcatol: Synthesis of an aggregation pheromone  Black, Shirley-Ann; Slessor, Keith N.
Synthesis of the aggregation pheromone of the ambrosia beetle, an insect pest of harvested timber in the Pacific North Coast.
Black, Shirley-Ann; Slessor, Keith N. J. Chem. Educ. 1982, 59, 255.
Synthesis |
Natural Products |
Molecular Properties / Structure |
Chirality / Optical Activity |
NMR Spectroscopy |
IR Spectroscopy |
Applications of Chemistry
Rubber gloves, rubber balls, and optical activity  Perkins, Robert
Several demonstrations aimed at helping students to understand optical activity.
Perkins, Robert J. Chem. Educ. 1980, 57, 809.
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers
Bioactivity in organic chemistry courses  Ferguson, Lloyd N.
Considers the antibacterial activity of hydroxy compounds, the carcinogenicity of polycyclic aromatic hydrocarbons, structure-activity correlations, and bioactivity.
Ferguson, Lloyd N. J. Chem. Educ. 1980, 57, 46.
Aromatic Compounds |
Bioorganic Chemistry |
Molecular Properties / Structure
The resolution of racemic acid: A classic stereochemical experiment for the undergraduate laboratory  Kauffman, George B.; Myers, Robin D.
Includes historical background of Pasteur's work and a procedure for investigating the relations between the tartaric acids, racemic acid, and their sodium ammonium salts.
Kauffman, George B.; Myers, Robin D. J. Chem. Educ. 1975, 52, 777.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
Conformational analysis - The last 25 years  Eliel, Ernest L.
Reviews the development of conformational analysis.
Eliel, Ernest L. J. Chem. Educ. 1975, 52, 762.
Conformational Analysis |
Molecular Properties / Structure
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Hormones
The low cost construction of inorganic polymer models using polyurethane  Mrvosh, M. E.; Daugherty, K. E.
Procedures for constructing inorganic polymer models using polyurethane.
Mrvosh, M. E.; Daugherty, K. E. J. Chem. Educ. 1975, 52, 239.
Molecular Properties / Structure |
Molecular Modeling
The odor of optical isomers. An experiment in organic chemistry  Murov, Steven L.; Pickering, Miles
The experiment described involves the separation and characterization of l-carvone from spearmint oil and d-carvone from caraway seed oil.
Murov, Steven L.; Pickering, Miles J. Chem. Educ. 1973, 50, 74.
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Stereochemistry |
Separation Science
Spectral exercises in structural determination of organic compounds (Shapiro, Robert H.)  Rienheimer, J. D.

Rienheimer, J. D. J. Chem. Educ. 1970, 47, A598.
Molecular Properties / Structure |
Spectroscopy
Is ammonia like water?  Gill, J. B.
This article sets out to compare some of the properties of the two most widely studied solvents, water and liquid ammonia, and in particular illustrate some comparative aspects that are not normally considered.
Gill, J. B. J. Chem. Educ. 1970, 47, 619.
Water / Water Chemistry |
Molecular Properties / Structure |
Aqueous Solution Chemistry
Models for tertiary structures: Myoglobin and lysozyme  Smith, Ivor; Smith, Margaret J.; Roberts, Lynne
Presents the design details for constructing three dimensional models of proteins, including myoglobin and lysozyme.
Smith, Ivor; Smith, Margaret J.; Roberts, Lynne J. Chem. Educ. 1970, 47, 302.
Molecular Properties / Structure |
Molecular Modeling |
Proteins / Peptides |
Hydrogen Bonding |
Noncovalent Interactions
Wooden models of asymmetric structures  Nye, Martin J.
Wooden blocks are cut to represent molecules of a pair of enantiomers, and are constructed so that they may be readily stacked together to show crystal structure.
Nye, Martin J. J. Chem. Educ. 1969, 46, 175.
Molecular Modeling |
Molecular Properties / Structure |
Enantiomers |
Crystals / Crystallography
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
Interactions of enzymes and inhibitors  Baker, B. R.
Examines the kinetics and interactions of enzymes and inhibitors and considers specifically lactic dehydrogenase, dihydrofolic reductase, thymidine phosphorylate, guanase, and xanthine oxidase.
Baker, B. R. J. Chem. Educ. 1967, 44, 610.
Enzymes |
Catalysis |
Noncovalent Interactions |
Molecular Properties / Structure |
Molecular Recognition |
Hydrogen Bonding
A unified theory of bonding for cyclopropanes  Bernett, William A.
Examines various models for bonding in cyclopropanes.
Bernett, William A. J. Chem. Educ. 1967, 44, 17.
Covalent Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
MO Theory |
Molecular Modeling
Extensions in the use of plastic tetrahedral models  Fieser, Louis F.
Describes the modification of existing models to provide for the construction of specialized organic and inorganic structures and their use in teaching.
Fieser, Louis F. J. Chem. Educ. 1965, 42, 408.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Hybridization in the description of homonuclear diatomic molecules  George, John W.
Presents energy levels for B2 and C2 molecules using hybrid atomic orbitals.
George, John W. J. Chem. Educ. 1965, 42, 152.
Molecular Properties / Structure |
MO Theory
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Atomic structure and chemical bonding (Seel, F.; Greenwood, N. N.; Stadler, H. P.)  Murmann, R. Kent

Murmann, R. Kent J. Chem. Educ. 1964, 41, 518.
Atomic Properties / Structure |
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Noncovalent Interactions
A sophomore-level course in valence and molecular structure  Colter, Allan K.
Describes a course entitled "Valency and Structure" at the Carnegie Institute of Technology.
Colter, Allan K. J. Chem. Educ. 1964, 41, 127.
Molecular Properties / Structure
Teaching organic stereochemistry  Eliel, Ernest L.
Focusses on suggestions for the teaching of stereochemistry in general chemistry.
Eliel, Ernest L. J. Chem. Educ. 1964, 41, 73.
Molecular Properties / Structure |
Stereochemistry
Structures and reactions of organic compounds: An introduction (Grundon, M. F.; Henbest, H. B.)  James, Floyd L.

James, Floyd L. J. Chem. Educ. 1963, 40, 670.
Molecular Properties / Structure |
Reactions
Cyclobutane chemistry. 1. Structure and strain energy  Wilson, Armin; Goldhamer, David
Examines the various conformations that have been proposed for particular four-membered rings.
Wilson, Armin; Goldhamer, David J. Chem. Educ. 1963, 40, 504.
Alkanes / Cycloalkanes |
Molecular Properties / Structure
Some recent developments in the theory of bonding in complex compounds of the transition metals  Sutton, Leslie E.
Examines the ligand field and the molecular orbital theories of complexes, particularly involving transition metals.
Sutton, Leslie E. J. Chem. Educ. 1960, 37, 498.
Noncovalent Interactions |
Transition Elements |
Metals |
Crystal Field / Ligand Field Theory |
Coordination Compounds |
MO Theory |
Covalent Bonding
Conformational analysis in mobile systems  Eliel, Ernest L.
A review of conformational analysis and its application to mobile systems.
Eliel, Ernest L. J. Chem. Educ. 1960, 37, 126.
Conformational Analysis |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
The unraveling of geometric isomerism and tautomerism  Ihde, Aaron J.
Examines the work of Van't Hoff in unraveling isomerism due to carbon-carbon double bonds using fumaric and maleic acids as exemplars.
Ihde, Aaron J. J. Chem. Educ. 1959, 36, 330.
Molecular Properties / Structure |
Stereochemistry |
Diastereomers
The geometry of giant molecules  Price, Charles C.
The author examines a variety of specific examples of natural and synthetic polymer molecules and describes how their geometric molecular arrangements influence their properties.
Price, Charles C. J. Chem. Educ. 1959, 36, 160.
Molecular Properties / Structure |
Proteins / Peptides |
Carbohydrates
On the origin of characteristic group frequencies in infrared spectra  Dows, David A.
Examines the mechanics and energetics of vibrations in small and large molecules.
Dows, David A. J. Chem. Educ. 1958, 35, 629.
IR Spectroscopy |
Molecular Properties / Structure |
Covalent Bonding
The principle of minimum bending of orbitals  Stewart, George H.; Eyring, Henry
The authors present a theory of valency that accounts for a variety of organic and inorganic structures in a clear and easily understood manner.
Stewart, George H.; Eyring, Henry J. Chem. Educ. 1958, 35, 550.
Atomic Properties / Structure |
Molecular Properties / Structure |
Elimination Reactions
Isoelectronic molecules: The effect of number of outer-shell electrons on structure  Gillis, Richard G.
The purpose of this discussion is to demonstrate that the concept isoelectric molecules can be of considerable value to the instructor in developing the principles of structural chemistry, to the student in bridging the apparent gap between inorganic and organic chemistry, and the researcher in suggesting analogies that may yield interesting fields for investigation.
Gillis, Richard G. J. Chem. Educ. 1958, 35, 66.
Molecular Properties / Structure
Hydrogen bonding and physical properties of substances  Ferguson, Lloyd N.
Physical properties influenced by hydrogen bonding considered in this paper include transition temperatures, vapor pressure, water solubility, the ionization of carboxylic acids, stereoisomerism, adsorption, and infrared spectra.
Ferguson, Lloyd N. J. Chem. Educ. 1956, 33, 267.
Hydrogen Bonding |
Noncovalent Interactions |
Physical Properties |
Aqueous Solution Chemistry |
Carboxylic Acids |
Stereochemistry |
IR Spectroscopy
Nature of adhesion  Reinhart, Frank W.
Examines the theory of adhesion and the variety of attractive forces involved.
Reinhart, Frank W. J. Chem. Educ. 1954, 31, 128.
Surface Science |
Covalent Bonding |
Metallic Bonding |
Noncovalent Interactions
Aspects of isomerism and mesomerism. II. Structural isomerism  Bent, Richard L.
Examines the relationship between structural, optical, and geometric isomerism.
Bent, Richard L. J. Chem. Educ. 1953, 30, 284.
Molecular Properties / Structure |
Constitutional Isomers |
Enantiomers |
Diastereomers
The chemical properties of the methyl group  Bartlett, Paul D.
Summarizes the work that has gone into characterizing the properties and chemical behavior of the simple and ubiquitous methyl group.
Bartlett, Paul D. J. Chem. Educ. 1953, 30, 22.
Molecular Properties / Structure
Structural chemistry of the interhalogen compounds  Fessenden, Elizabeth
Examines trends in the properties of the interhalogen compounds.
Fessenden, Elizabeth J. Chem. Educ. 1951, 28, 619.
Molecular Properties / Structure
Valence and formulas taught with playing cards  Lionetti, Fabian
Describes the use of playing cards and a game called "Valence" to help students in organic chemistry understand valence, bonding, and molecular structure.
Lionetti, Fabian J. Chem. Educ. 1951, 28, 599.
Covalent Bonding |
Molecular Properties / Structure
A method of estimating the boiling points of organic liquids  Pearson, D. E.
Discusses the relationship between the molecular structure of organic liquids and their boiling point.
Pearson, D. E. J. Chem. Educ. 1951, 28, 60.
Liquids |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Molecular Properties / Structure
Molecular models of silicates for lecture demonstrations  Noyce, William K.
Describes the construction and use of molecular models of silicates for lecture demonstrations.
Noyce, William K. J. Chem. Educ. 1951, 28, 29.
Molecular Properties / Structure |
Molecular Modeling