TIGER

Journal Articles: 180 results
Using Tactile Learning Aids for Students with Visual Impairments in a First-Semester Organic Chemistry Course  Thomas Poon and Ronit Ovadia
This paper describes two techniques for rendering visual concepts encountered in an organic chemistry course into tactile representations for students with low vision.
Poon, Thomas; Ovadia, Ronit. J. Chem. Educ. 2008, 85, 240.
Molecular Modeling |
Molecular Properties / Structure |
Minorities in Chemistry |
Student-Centered Learning
Dancing Crystals: A Dramatic Illustration of Intermolecular Forces  Donald W. Mundell
Crystals of naphthalene form on the surface of an acetone solution and dance about in an animated fashion illustrating surface tension, crystallization, and intermolecular forces. Additional experiments reveal the properties of the solution and previous demonstrations of surface motion are explored.
Mundell, Donald W. J. Chem. Educ. 2007, 84, 1773.
Aromatic Compounds |
Liquids |
Molecular Mechanics / Dynamics |
Molecular Properties / Structure |
Physical Properties |
Surface Science |
Noncovalent Interactions
A2: Element or Compound?  Marilyne Stains and Vicente Talanquer
Particulate questions are used to investigate the mental association between the concepts of molecule and compound in chemistry students with different levels of academic preparation. A significant proportion of students misclassify molecular elements as chemical compounds, and this association is stronger in students with higher levels of preparation.
Stains, Marilyne; Talanquer, Vicente. J. Chem. Educ. 2007, 84, 880.
Molecular Properties / Structure
Teaching Structure–Property Relationships: Investigating Molecular Structure and Boiling Point  Peter M. Murphy
The boiling points for 392 organic compounds are tabulated by carbon chain length and functional group to facilitate a wide range of inquiry-based activities that correlate the effects of chemical structure on physical properties.
Murphy, Peter M. J. Chem. Educ. 2007, 84, 97.
Molecular Properties / Structure |
Physical Properties
Mentoring an Undergraduate Research Student in the Structural and Nonstructural Properties of Drugs  Julie B. Ealy and Veronica Kvarta
This article describes research, conducted with an undergraduate, to investigate the structural and nonstructural characteristics of drugs and their significance in drug research.
Ealy, Julie B.; Kvarta, Veronica. J. Chem. Educ. 2006, 83, 1779.
Applications of Chemistry |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Molecular Modeling |
Molecular Properties / Structure |
Undergraduate Research |
Student-Centered Learning
Molecular Model of Creatine Synthesis  William F. Coleman
The Featured Molecules for this month come from the synthesis of creatine and illustrate some of the limitations associated with the computation of molecular structure.
Coleman, William F. J. Chem. Educ. 2006, 83, 1657.
Molecular Modeling |
Molecular Properties / Structure |
Bioorganic Chemistry
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
Further Analysis of Boiling Points of Small Molecules, CHwFxClyBrz  Guy Beauchamp
Multiple linear regression analysis has proven useful in selecting predictor variables that could significantly clarify the boiling point variation of the CHwFxClyBrz molecules.
Beauchamp, Guy. J. Chem. Educ. 2005, 82, 1842.
Chemometrics |
Physical Properties |
Hydrogen Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Cotton Effect in Copper–Proline Complexes in the Visible Region  Victor Volkov and Rolf Pfister
This article suggests taking advantage of the visible dd electronic transition of Cu2+, which allows one to contrast the normal optical rotatory dispersion response of d- and l-proline in aqueous solution with the strong Cotton effect observed when these amino acids are complexed with a metal cation.
Volkov, Victor; Pfister, Rolf. J. Chem. Educ. 2005, 82, 1663.
Chirality / Optical Activity |
IR Spectroscopy |
Molecular Properties / Structure |
Spectroscopy |
Stereochemistry |
UV-Vis Spectroscopy |
Amino Acids |
Coordination Compounds |
Crystal Field / Ligand Field Theory
Menthol Stereoisomers  William F. Coleman
The JCE Featured Molecules for July come from the paper by Edward M. Treadwell and T. Howard Black on the use of commercially available stereoisomers of menthol to illustrate properties of enantiomers and diastereomers. The paper describes the use of four of the eight possible stereoisomers. Structures of all eight stereoisomers are included in this months molecule collection, labeled by the chirality of the three chiral atoms. In addition to the exercises described in the paper, students can be asked to match the appropriate structures to those shown in the paper, or to generate structures for the isomers that are not discussed.
Coleman, William F. J. Chem. Educ. 2005, 82, 1048.
Molecular Properties / Structure |
Molecular Modeling |
Alcohols
Electron Tunneling, a Quantum Probe for the Quantum World of Nanotechnology  K. W. Hipps and L. Scudiero
Key events and concepts in the development of tunneling spectroscopy, especially in the context of the scanning tunneling microscope, are reviewed. Focus is placed on the single-molecule spectroscopy of adsorbates on surfaces. Examples of molecular images with sub-molecular resolution are provided. Molecular electronic spectra obtained in the STM are displayed and contrasted with results from techniques requiring large numbers of molecules.
Hipps, K. W.; Scudiero, L. J. Chem. Educ. 2005, 82, 704.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Quantum Chemistry |
Electrochemistry
Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope  William F. Heinz and Jan H. Hoh
The atomic force microscope is an extremely powerful and versatile tool for probing the chemistry, material properties, and dynamics of surfaces and interfaces at the nanometer and picoNewton scale in a samples native environment. A description of the main components of current instruments, including cantilevers and their design, is presented, along with the modes of operation, origin of contrast, and factors which contribute to the spatial resolution.
Heinz, William F.; Hoh, Jan H. J. Chem. Educ. 2005, 82, 695.
Noncovalent Interactions |
Nanotechnology |
Surface Science
A Supramolecular Approach to Medicinal Chemistry: Medicine Beyond the Molecule  David K. Smith
This article emphasizes a conceptual view of medicinal chemistry, which has important implications for the future, as the supramolecular approach to medicinal-chemistry products outlined here is rapidly allowing nanotechnology to converge with medicine. In particular, this article discusses recent developments including the rational design of drugs such as Relenza and Tamiflu, the mode of action of vancomycin, and the mechanism by which bacteria develop resistance, drug delivery using cyclodextrins, and the importance of supramolecular chemistry in understanding protein aggregation diseases such as Alzheimer's and CreutzfieldJacob.
Smith, David K. J. Chem. Educ. 2005, 82, 393.
Drugs / Pharmaceuticals |
Noncovalent Interactions |
Medicinal Chemistry |
Nanotechnology |
Proteins / Peptides
A Solid–State NMR Experiment: Analysis of Local Structural Environments in Phosphate Glasses  Stanley E. Anderson, David Saiki, Hellmut Eckert, and Karin Meise-Gresch
The solid state 31P NMR wideline spectra of a series of student-prepared sodium phosphate glasses can easily be measured using a standard multinuclear FTNMR spectrometer.
Anderson, Stanley E.; Saiki, David; Eckert, Hellmut; Meise-Gresch, Karin. J. Chem. Educ. 2004, 81, 1034.
Solid State Chemistry |
NMR Spectroscopy |
Molecular Properties / Structure
Use of Optical Rotation and NMR Signal Counting To Identify Common Aldoses  John Almy
An inexpensive, small scale experiment for second semester organic students describes the unambiguous identification of a common aldose "unknown" from five possible candidates: glucose, mannose, galactose, arabinose, or xylose
Almy, John. J. Chem. Educ. 2004, 81, 708.
NMR Spectroscopy |
Carbohydrates |
Microscale Lab |
Molecular Properties / Structure |
Stereochemistry
Boiling Point versus Mass  Michael Laing
I am very pleased that Ronald Rich has written making these comments, because he is pre-eminent in this field, beginning with his early book, Periodic Correlations.
Laing, Michael. J. Chem. Educ. 2004, 81, 642.
Atomic Properties / Structure |
Molecular Properties / Structure |
Noncovalent Interactions |
Liquids |
Phases / Phase Transitions / Diagrams
Boiling Point versus Mass   Ronald L. Rich
Laing gave a useful examination of the boiling points of small molecules versus molecular mass. However, a molecule escaping from a liquid is not closely analogous to a satellite breaking free from the earths gravitational field with the requirement of a minimum escape velocity, such that the required kinetic energy is proportional to the mass of the satellite at that escape velocity.
Rich, Ronald L. J. Chem. Educ. 2004, 81, 642.
Molecular Properties / Structure |
Atomic Properties / Structure |
Liquids |
Noncovalent Interactions |
Phases / Phase Transitions / Diagrams
The Singlet States of Molecular Oxygen   Jean-Pierre Puttemans and Georges Jannes
Although the purpose of the article The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory is an analysis of the two-moleculesone-photon absorption spectrum of oxygen, it nevertheless assigns arrangements of the electrons in an energy diagram to the two singlet states of molecular oxygen which do not seem to be correct in our opinion.
Puttemans, Jean-Pierre; Jannes, Georges. J. Chem. Educ. 2004, 81, 639.
Molecular Properties / Structure |
MO Theory |
UV-Vis Spectroscopy
The Singlet States of Molecular Oxygen   Jean-Pierre Puttemans and Georges Jannes
Although the purpose of the article The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory is an analysis of the two-moleculesone-photon absorption spectrum of oxygen, it nevertheless assigns arrangements of the electrons in an energy diagram to the two singlet states of molecular oxygen which do not seem to be correct in our opinion.
Puttemans, Jean-Pierre; Jannes, Georges. J. Chem. Educ. 2004, 81, 639.
Molecular Properties / Structure |
MO Theory |
UV-Vis Spectroscopy
The Big Picture  William F. Coleman
Fully manipulable Chime versions of important biological molecules (such as chlorophyll), inks (such as pen ink), CFCs, hydrocarbon fuels, plastics (such as Lexan polycarbonate), and molecules with medical applications (such as aspirin and novocaine).
Coleman, William F. J. Chem. Educ. 2004, 81, 604.
Molecular Modeling |
Molecular Properties / Structure
A Structure–Activity Investigation of Photosynthetic Electron Transport. An Interdisciplinary Experiment for the First-Year Laboratory  Kerry K. Karukstis, Gerald R. Van Hecke, Katherine A. Roth, and Matthew A. Burden
Investigation in which students measure the effect of several inhibitors (herbicides) on the electron transfer rate in chloroplasts and formulate a hypothesis between the inhibitor's activity and its structure as a means of using a physical technique to measure a chemical process in a biological system.
Karukstis, Kerry K.; Van Hecke, Gerald R.; Roth, Katherine A.; Burden, Matthew A. J. Chem. Educ. 2002, 79, 985.
Biophysical Chemistry |
Electrochemistry |
Noncovalent Interactions |
Molecular Properties / Structure |
UV-Vis Spectroscopy |
Aromatic Compounds |
Plant Chemistry
News from Online: What's New with Chime?  Liz Dorland
The Chime plug-in, resources, materials for student and classroom use, and structure libraries.
Dorland, Liz. J. Chem. Educ. 2002, 79, 778.
Molecular Properties / Structure
How We Teach Molecular Structure to Freshmen  Michael O. Hurst
Examination of how textbooks discuss various aspects of molecular structure; conclusion that much of general chemistry is taught the way it is for historical and not pedagogical reasons.
Hurst, Michael O. J. Chem. Educ. 2002, 79, 763.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure |
Lewis Structures |
VSEPR Theory |
Valence Bond Theory |
MO Theory
The Visible Spectrum of Liquid Oxygen in the General Chemistry Laboratory  Frazier Nyasulu, John Macklin, and William Cusworth III
Examination of the spectrum of liquid oxygen and testing several hypotheses to explain the pattern of spectral lines observed.
Nyasulu, Frazier; Macklin, John; Cusworth, William, III. J. Chem. Educ. 2002, 79, 356.
MO Theory |
UV-Vis Spectroscopy |
Molecular Properties / Structure
Effect of Anisotropy on the Chemical Shift of Vinyl Protons in trans- and cis-1,2-Dibenzoylethylenes. A Small-Group or Recitation Activity  Roosevelt Shaw, David Roane, and Sean Nedd
Procedure to help students explain chemical shift differences for vinyl protons in alkene diastereomers.
Shaw, Roosevelt; Roane, David; Nedd, Sean. J. Chem. Educ. 2002, 79, 67.
Magnetic Properties |
NMR Spectroscopy |
Undergraduate Research |
Diastereomers |
Aromatic Compounds |
Alkenes |
Photochemistry |
Molecular Properties / Structure
Tetrahedral Geometry and the Dipole Moment of Molecules  Sara N. Mendiara and L. J. Perissinotti
Determination of bond angles and moments of tetrahedral molecules.
Mendiara, Sara N.; Perissinotti, L. J. J. Chem. Educ. 2002, 79, 64.
Molecular Properties / Structure |
Chemometrics |
Covalent Bonding
Structure and Bonding (by Jack Barrett)  Michael Laing
Tutorial chemistry text.
Laing, Michael. J. Chem. Educ. 2001, 78, 1600.
Molecular Properties / Structure |
MO Theory |
Atomic Properties / Structure |
Group Theory / Symmetry |
Covalent Bonding |
VSEPR Theory
Boiling Points of the Family of Small Molecules CHwFxClyBrz: How Are They Related to Molecular Mass?  Michael Laing
Investigating the role of molecular mass in determining boiling points of small molecules.
Laing, Michael. J. Chem. Educ. 2001, 78, 1544.
Atomic Properties / Structure |
Noncovalent Interactions |
Liquids |
Molecular Properties / Structure |
Physical Properties
An Early Emphasis on Symmetry and a Three-Dimensional Perspective in the Chemistry Curriculum  Scott E. McKay and Steven R. Boone
Series of activities involving symmetry to improve the ability of students to visualize three-dimensional structures in and outside of chemistry.
McKay, Scott E.; Boone, Steven R. J. Chem. Educ. 2001, 78, 1487.
Group Theory / Symmetry |
Molecular Properties / Structure |
Molecular Modeling
The Importance of Non-Bonds in Coordination Compounds  Michael Laing
Significance of noncovalent interactions in determining the structure and behavior of coordination compounds.
Laing, Michael. J. Chem. Educ. 2001, 78, 1400.
Noncovalent Interactions |
Coordination Compounds |
Kinetics |
Stereochemistry |
Molecular Properties / Structure
Investigation of Secondary Metabolites in Plants. A General Protocol for Undergraduate Research in Natural Products  Jonathan Cannon, Du Li, Steven G. Wood, Noel L. Owen, Alexandra Gromova, and Vladislav Lutsky
Typical experimental procedures to extract and isolate individual chemical constituents from a plant, suggestions for some simple procedures to test for selected bioactivity, and explain how the molecular structures of natural products may be determined using spectroscopic techniques.
Cannon, Jonathan; Li, Du; Wood, Steven G.; Owen, Noel L.; Gromova, Alexandra; Lutsky, Vladislav. J. Chem. Educ. 2001, 78, 1234.
Chromatography |
Natural Products |
NMR Spectroscopy |
Separation Science |
Plant Chemistry |
Molecular Properties / Structure |
Drugs / Pharmaceuticals |
Separation Science
Blood-Chemistry Tutorials: Teaching Biological Applications of General Chemistry Material  Rachel E. Casiday, Dewey Holten, Richard Krathen, and Regina F. Frey
Four, Web-based tutorials that deal with chemical processes in the blood and provide an integrated biological context for a variety of chemical concepts.
Casiday, Rachel E.; Holten, Dewey; Krathen, Richard; Frey, Regina F. J. Chem. Educ. 2001, 78, 1210.
Applications of Chemistry |
Medicinal Chemistry |
Proteins / Peptides |
Acids / Bases |
Equilibrium |
Molecular Properties / Structure
Correction to Computational Investigations for Undergraduate Organic Chemistry: Modeling a TLC Exercise to Investigate Molecular Structure and Intermolecular Forces (J. Chem. Educ. 2000, 77, 203-205)  Rita K. Hessley
Corrections to original article.
Hessley, Rita K. J. Chem. Educ. 2001, 78, 1183.
Chromatography |
Computational Chemistry |
Noncovalent Interactions |
Separation Science
How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?  J. Henderleiter, R. Smart, J. Anderson, and O. Elian
Examination of how students completing a two-semester organic sequence understand, explain, and apply hydrogen bonding to determine the physical attributes of molecules.
Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O. J. Chem. Educ. 2001, 78, 1126.
Noncovalent Interactions |
Learning Theories |
Hydrogen Bonding |
Molecular Properties / Structure
The Bullvalene Story. The Conception of Bullvalene, a Molecule That Has No Permanent Structure  Addison Ault
Properties and chemistry of bullvalene, C10H10, a hydrocarbon with no permanent carbon-carbon bonds.
Ault, Addison. J. Chem. Educ. 2001, 78, 924.
Molecular Properties / Structure |
Aromatic Compounds
Designing Advanced Materials As Simple As Assembling Lego® Blocks!  C. V. Krishnamohan Sharma
The parallels between strategies for materials design and the construction of architectures using Lego building blocks are used to illustrate the principles and problems associated with predicting crystal structure; applying rational design strategies to the design of advanced materials such as porous solids, ion exchange materials, molecular metals, conductors, and optical materials.
Sharma, C. V. Krishnamohan. J. Chem. Educ. 2001, 78, 617.
Coordination Compounds |
Crystals / Crystallography |
Noncovalent Interactions |
Materials Science |
Molecular Recognition |
Solid State Chemistry
WebSpectra: Online NMR and IR Spectra for Students  Craig A. Merlic, Barry C. Fam, and Michael M. Miller
WebSpectra is a World Wide Web site at UCLA through which organic chemistry students have convenient access to a library of problems in NMR and IR spectroscopy, ranging in difficulty from introductory to advanced. Students are presented with high-resolution spectra of unknown compounds in addition to the molecular formula.
Merlic, Craig A.; Fam, Barry C.; Miller, Michael M. J. Chem. Educ. 2001, 78, 118.
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
Hybridization and Structural Properties
(re
J. Chem. Educ. 1998, 75, 888-890)  Victor M. S. Gil
Clarifying cause-effect relationships between orbital hybridization and structural properties.
Gil, Victor M. S. J. Chem. Educ. 2001, 78, 31.
MO Theory |
Instrumental Methods |
NMR Spectroscopy |
Molecular Properties / Structure
Hybridization and Structural Properties
(re
J. Chem. Educ. 1998, 75, 888-890)  Victor M. S. Gil
Clarifying cause-effect relationships between orbital hybridization and structural properties.
Gil, Victor M. S. J. Chem. Educ. 2001, 78, 31.
MO Theory |
Instrumental Methods |
NMR Spectroscopy |
Molecular Properties / Structure
Infrared Spectroscopy in the General Chemistry Lab  Margaret A. Hill
Three laboratory exercises in which students learn to interpret infrared spectra for simple structural identification. A polymer identification lab uses familiar household polymer samples and teaches students how to use infrared spectral data to determine what bond types are present in the polymers. In a second lab, students learn to prepare potassium bromide pellets of fluorene derivatives and identify them by their functional group differences. The final exercise combines IR with several other lab techniques to identify an organic acid from a field of fourteen possibilities.
Hill, Margaret A. J. Chem. Educ. 2001, 78, 26.
Instrumental Methods |
IR Spectroscopy |
Molecular Properties / Structure
An Introductory Polymer Chemistry Course for Plastics Technology Students  Mary G. Chisholm and Paul E. Koch
Teaching the fundamentals of organic chemistry using a molecular drawing and modeling software package interfaced with a polymer database, which can predict polymer properties based on their structure.
Chisholm, Mary G.; Koch, Paul E. J. Chem. Educ. 2000, 77, 1147.
Molecular Properties / Structure |
Molecular Modeling
Should Gaseous BF3 and SiF4 Be Described as Ionic Compounds?  Arne Haaland, Trygve Helgaker, Kenneth Ruud, and D. J. Shorokhov
Analysis suggesting that representing BF3 and SiF3 as ionic compounds may be misleading.
Haaland, Arne; Helgaker, Trygve; Ruud, Kenneth; Shorokhov, D. J. J. Chem. Educ. 2000, 77, 1076.
Molecular Properties / Structure |
Covalent Bonding |
Ionic Bonding
Elucidation of Molecular Structure Using NMR Long-Range Coupling: Determination of the Single Isomer Formed in a Regiospecific Reaction  Samuel Delagrange and Françoise Nepveu
The experiment presented in this article introduces students to the main concepts of two essential NMR techniques for investigating molecular structure. Heteronuclear multiple bond connectivity (HMBC) and proton-coupled 13C NMR are used to determine which isomer, from a possible two, is formed by a regiospecific reaction. The demonstration, based on long-range coupling between quaternary carbons and protons on neighboring carbons, is presented step by step.
Delagrange, Samuel; Nepveu, Françoise. J. Chem. Educ. 2000, 77, 895.
Molecular Properties / Structure |
NMR Spectroscopy |
Synthesis |
Carboxylic Acids |
Reactions |
Diastereomers
Application of the Correlation Method to Vibrational Spectra of C60 and Other Fullerenes: Predicting the Number of IR- and Raman-Active Bands  Kazuo Nakamoto and Michael A. McKinney
The C60 molecule (Buckyball/soccer ball) exhibits only 4 IR and 10 Raman bands although it possesses 174 (3 x 60 - 6) normal vibrations. This striking reduction in the number of observed bands is evidently due to the molecule's extremely high symmetry (Ih point group).
Nakamoto, Kazuo; McKinney, Michael A. J. Chem. Educ. 2000, 77, 775.
Chirality / Optical Activity |
Group Theory / Symmetry |
IR Spectroscopy |
NMR Spectroscopy |
Raman Spectroscopy |
Molecular Properties / Structure |
Molecular Modeling
Melting Point and Molecular Symmetry  R. J. C. Brown and R. F. C. Brown
In 1882 Thomas Carnelley observed that high molecular symmetry is associated with high melting point. The application of the rule to a number of different molecular crystals is discussed. The rule applies to different categories of crystal for different reasons, which can be explained by thermodynamic analysis.
Brown, R. J. C.; Brown, R. F. C. J. Chem. Educ. 2000, 77, 724.
Liquids |
Molecular Properties / Structure |
Phases / Phase Transitions / Diagrams |
Solids |
Thermodynamics |
Physical Properties |
Aromatic Compounds |
Crystals / Crystallography
RasMol and Mage in the Undergraduate Biochemistry Curriculum  Steven W. Weiner, Paul F. Cerpovicz, Dabney W. Dixon, Donald B. Harden, Donna S. Hobbs, and Donna L. Gosnell
Mage and RasMol, free visualization software used to view and manipulate three-dimensional images of proteins and nucleic acids, have been incorporated extensively in the undergraduate biochemistry courses at several institutions in the University System of Georgia. Some teaching and learning activities using RasMol and Mage, and new educational resources, including the GLACTONE Web site and a CD-ROM, are described.
Weiner, Steven W.; Cerpovicz, Paul F.; Dixon, Dabney W.; Harden, Donald B.; Hobbs, Donna S.; Gosnell, Donna L. J. Chem. Educ. 2000, 77, 401.
Molecular Modeling |
Molecular Properties / Structure
Quantifying Molecular Character  P. G. Nelson
Wells and Jensen's classification of substances according to structure type is quantified, enabling substances having an intermediate structure to be classified precisely. Jensen's concept of the "degree of nonmolecularity" of a substance and the opposite quality, degree of molecular character, are also quantified.
Nelson, Peter G. J. Chem. Educ. 2000, 77, 245.
Noncovalent Interactions |
Molecular Properties / Structure |
Solid State Chemistry
Computational Investigations for Undergraduate Organic Chemistry: Modeling a TLC Exercise to Investigate Molecular Structure and Intermolecular Forces  Rita K. Hessley
In this exercise students carry out a pre-lab exercise in which they compute the dipole moment for a set of similar models representing a variety of functional group categories. Using their data, and supported by guided class discussion, students propose a working hypothesis about how TLC can be used to demonstrate the manner in which the relevant forces lead to predictable rates (extent, Rf) of elution.
Hessley, Rita K. J. Chem. Educ. 2000, 77, 203.
Computational Chemistry |
Noncovalent Interactions |
Thin Layer Chromatography
A Visual Demonstration of Supramolecular Chemistry: Observable Fluorescence Enhancement upon Guest-Host Inclusion  Brian D. Wagner, Penny J. MacDonald, and Maryam Wagner
A simple yet striking demonstration of supramolecular host-guest inclusion and fluorescence based on the extraordinarily large observed fluorescence enhancement of the probe ANS by a modified -cyclodextrin.
Wagner, Brian D.; MacDonald, Penny J.; Wagner, Maryam. J. Chem. Educ. 2000, 77, 178.
Photochemistry |
Molecular Properties / Structure
Keep Going with Cyclooctatetraene!  Addison Ault
This paper shows how some simple properties of cyclooctatetraene can indicate important ideas about the structure of cyclooctatetraene.
Ault, Addison. J. Chem. Educ. 2000, 77, 55.
Aromatic Compounds |
NMR Spectroscopy |
Mechanisms of Reactions |
Molecular Properties / Structure
The Use of Molecular Modeling and VSEPR Theory in the Undergraduate Curriculum to Predict the Three-Dimensional Structure of Molecules  Brian W. Pfennig and Richard L. Frock
Despite the simplicity and elegance of the VSEPR model, however, students often have difficulty visualizing the three-dimensional shapes of molecules and learning the more subtle features of the model, such as the bond length and bond angle deviations from ideal geometry that accompany the presence of lone pair or multiple bond domains or that result from differences in the electronegativity of the bonded atoms, partial charges and molecular dipole moments, and site preferences in the trigonal bipyramidal electron geometry.
Pfennig, Brian W.; Frock, Richard L. J. Chem. Educ. 1999, 76, 1018.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
An Integrated Molecular Modeling and Melting Point Experiment for the Organic Chemistry Laboratory  Thomas Poon, Sheri A. Bodolosky, and Cynthia M. Norris
An introductory organic chemistry laboratory experiment that introduces students to the utility and caveats of computational chemistry is described. Molecular modeling software is used to determine the net dipoles and surface areas of six unknown solids. These and other noncomputational results are then correlated with data from melting point determinations of the unknowns.
Poon, Thomas; Bodolosky, Sheri A.; Norris, Cynthia M. J. Chem. Educ. 1999, 76, 983.
Computational Chemistry |
Noncovalent Interactions |
Molecular Properties / Structure |
Instrumental Methods
Hydrogen Bonds Involving Transition Metal Centers Acting As Proton Acceptors  Antonio Martín
A short review of the most remarkable results which have recently reported M----H-X hydrogen bonds, along with a systematization of their structural and spectroscopic properties, is provided in this paper. These M----H interactions are substantially different from the "agostic" M----H ones, and their differences are commented on, setting up criteria that permit their clear differentiation in order to avoid some of the misidentifications that occurred in the past.
Tello, Antonio Martín. J. Chem. Educ. 1999, 76, 578.
Coordination Compounds |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions |
Metals |
Organometallics |
Hydrogen Bonding
Melting Point Range and Phase Diagrams- Confusing Laboratory Textbook Descriptions  Kenn E. Harding
This paper proposes use of a modified phase diagram as a better tool for students to understand the relationship of observed melting point behavior and a physically correct phase diagram.
Harding, Kenn E. J. Chem. Educ. 1999, 76, 224.
Molecular Properties / Structure |
Phases / Phase Transitions / Diagrams
Effect of Experience on Retention and Elimination of Misconceptions about Molecular Structure and Bonding  James P. Birk and Martha J. Kurtz
A test designed to uncover misconceptions in molecular structure and bonding was administered to students from high school through graduate school and to some college faculty. The study tracked the disappearance of these misconceptions over a time span of 10 years of student experience, along with the development of accepted conceptions.
Birk, James P.; Kurtz , Martha J. J. Chem. Educ. 1999, 76, 124.
Molecular Properties / Structure |
Learning Theories
Spectroscopy of Simple Molecules  C. Baer and K. Cornely
A spectroscopy experiment in which students utilize IR and NMR spectroscopy to identify the structures of three unknowns from a list of 15 carefully chosen simple organic molecules. In taking IR and NMR spectra, students learn to use state-of-the-art instrumentation that is used by practicing chemists.
Baer, Carl; Cornely, Kathleen. J. Chem. Educ. 1999, 76, 89.
Instrumental Methods |
IR Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
A Strategy for Incorporating 13C NMR into the Organic Chemistry Lecture and Laboratory Courses  Perry C. Reeves and Chris P. Chaney
The use of spectroscopy in establishing the structures of molecules is an important component of the first course in Organic Chemistry. However, the point in the course at which these techniques are best introduced remains uncertain. We suggest that carbon nuclear magnetic resonance spectroscopy should be introduced at an early stage of the lecture course, specifically while studying the alkanes, and used extensively for structure determination throughout the course.
Reeves, Perry C.; Chaney, Chris P. J. Chem. Educ. 1998, 75, 1006.
Instrumental Methods |
NMR Spectroscopy |
Fourier Transform Techniques |
Alkanes / Cycloalkanes |
Molecular Properties / Structure
Covalent and Ionic Molecules: Why Are BeF2 and AlF3 High Melting Point Solids whereas BF3 and SiF4 Are Gases?  Ronald J. Gillespie
Calculated ionic charges show that BF3 and SiF4 are predominately ionic molecules yet in contrast to BeF2 and AlF3 they exist as gases at room temperature and form molecular solids rather than infinite three-dimensional "ionic" solids at low temperature. Whether or not ionic molecules form a three-dimensional infinite ionic lattice or a molecular solid depends more on relative atomic (ionic) sizes than on the nature of the bonding in the isolated molecule.
Gillespie, Ronald J. J. Chem. Educ. 1998, 75, 923.
Covalent Bonding |
Molecular Properties / Structure |
Solids |
Gases |
Ionic Bonding
A Simple Qualitative Molecular-Orbital/Valence-Bond Description of the Bonding in Main Group "Hypervalent" Molecules  Owen J. Curnow
A multicenter valence-bond/molecular-orbital bonding scheme for main group "hypervalent" molecules is proposed which extends the 3-center-4-electron (3c-4e) bonding model of Rundle and Pimentel to include 4c-6e, 5c-8e, and 6c-10e bonds. This model allows the determination of bond orders and a rationalisation of bond distances.
Curnow, Owen J. J. Chem. Educ. 1998, 75, 910.
Covalent Bonding |
MO Theory |
Theoretical Chemistry |
Main-Group Elements |
Molecular Properties / Structure
The Diels-Alder Reaction of 2,4-Hexadien-1-ol with Maleic Anhydride: A Novel Preparation for the Undergraduate Organic Chemistry Laboratory Course  Keith F. McDaniel and R. Matthew Weekly
The reaction of 2,4-hexadien-1-ol with maleic anhydride provides an excellent exercise for undergraduate laboratory courses. In addition to the expected Diels-Alder reaction, which takes place readily in refluxing toluene, subsequent intramolecular cleavage of the resulting bicyclic anhydride by the pendant hydroxy group generates a lactone. Thus, two important organic reactions can be carried out in a single laboratory session.
McDaniel, Keith F.; Weekley, R. Matthew. J. Chem. Educ. 1997, 74, 1465.
Synthesis |
NMR Spectroscopy |
Molecular Properties / Structure |
Alcohols
Pi-Electron Delocatlization in Organic Molecules with C-N Bonds  Vernon G. S. Box and Hing Wan Yu
Molecular modeling can provide great stimulation to the pedagogical process if students and teachers use this tool to examine the structural aspects of organic molecules whose structures have been determined by X-ray crystallography. An example of this is provided by one of our undergraduate research projects that examined delocalization in p-systems.
Box, Vernon G. S.; Yu, Hing Wan. J. Chem. Educ. 1997, 74, 1293.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
X-ray Crystallography
Fostering Curiosity-Driven Learning through Interactive Multimedia Representations of Biological Molecules  Abby L. Parrill and Jacquelyn Gervay
A series of QuickTime movies have been developed and are available over the World Wide Web (WWW) to help evoke student curiosity about organic chemistry. When viewed in series the movies start with a 'big picture' view based on crystallographic data and narrow in on the basic concepts needed to understand that scientific observation.
Parrill, Abby L.; Gervay, Jacquelyn. J. Chem. Educ. 1997, 74, 1141.
Molecular Properties / Structure |
Molecular Modeling
Organic Chemistry, 2nd ed. and Core Organic Chemistry by Marye Anne Fox and James K. Whitesell  reviewed by Samuel S. Stradling
An introductory organic text developed around the structure/mechanism format.
Stradling, Samuel S. J. Chem. Educ. 1997, 74, 1045.
Molecular Properties / Structure |
Mechanisms of Reactions
Atomic and Molecular Structure in Chemical Education: A Critical Analysis from Various Perspectives of Science Education  Georgios Tsaparlis
The perspectives employed in this paper are (i) the Piagetian developmental perspective, (ii) the Ausbelian theory of meaningful learning, (iii) the information processing theory, and (iv) the alternative conceptions movement. The implications for teaching and curriculums are discussed.
Tsaparlis, Georgios. J. Chem. Educ. 1997, 74, 922.
Learning Theories |
Atomic Properties / Structure |
Molecular Properties / Structure |
Constructivism
Hot and Spicy versus Cool and Minty as an Example of Organic Structure-Activity Relationships  Doris R. Kimbrough
Structures of substances found in spices and food that we normally associate with "hot" (or spicy) and "cool" (or minty) flavors are presented and discussed. Functional group similarities within the two groups provide an interesting example of the relationship between molecular structure and molecular function.
Kimbrough, Doris R. J. Chem. Educ. 1997, 74, 861.
Molecular Properties / Structure |
Natural Products |
Plant Chemistry |
Applications of Chemistry
Molecules, Crystals, and Chirality  Il-Hwan Suh, Koon Ha Park, William P. Jensen, David E. Lewis*
The development of the concept of chirality from the early work of Pasteur, van't Hoff and Le Bel to the work of Cahn, Ingold and Prelog is presented, and the constraints that chirality imposes on the symmetry of molecules - that chiral molecules may not possess an improper axis of rotation - is discussed.
Suh, Il-Hwan; Park, Koon Ha ; Jensen, William P.; Lewis, David E. J. Chem. Educ. 1997, 74, 800.
Crystals / Crystallography |
Molecular Properties / Structure |
Stereochemistry |
X-ray Crystallography
Old MacDonald Named a Compound: Branched Enynenynols  Dennis Ryan
An imaginary teacher of organic chemistry thinks up some whimsical compounds for his students to name using IUPAC nomenclature rules.
Ryan, Dennis. J. Chem. Educ. 1997, 74, 782.
Learning Theories |
Nomenclature / Units / Symbols |
Alcohols |
Alkenes |
Alkynes |
Molecular Properties / Structure
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
An Organoleptic Laboratory Experiment  John M. Risley
Compounds in ten different classes of organic molecules that are used in the fragrance and food industry are provided to students. Students whiff the vapors of each compound and describe the organoleptic properties using a set of terms utilized in the fragrance and food industry. A set of questions guides students to an understanding of the relationship between structure of molecules and smell.
Risley, John M. J. Chem. Educ. 1996, 73, 1181.
Molecular Properties / Structure |
Consumer Chemistry |
Physical Properties |
Nonmajor Courses |
Alcohols |
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Carboxylic Acids |
Esters |
Ethers |
Phenols
Abuses of Molecular Mechanics: Pitfalls to Avoid  Kenny Lipkowitz
Delineation of the common abuses and pitfalls to avoid when using molecular mechanics.
Lipkowitz, Kenny B. J. Chem. Educ. 1995, 72, 1070.
Molecular Modeling |
Molecular Properties / Structure |
Computational Chemistry |
Molecular Mechanics / Dynamics
Chemical Topology: The Ins and Outs of Molecular Structure  Dennis K. Mitchell and Jean-Claude Chambron
Using models of macromolecules to develop and broaden an understanding of bonding and structure; includes many examples of molecules of topological interest.
Mitchell, Dennis K.; Chambron, Jean-Claude. J. Chem. Educ. 1995, 72, 1059.
Molecular Properties / Structure |
Molecular Modeling |
Stereochemistry |
Molecular Mechanics / Dynamics |
Covalent Bonding
Lewis Structures of Oxygen Compounds of 3p-5p Nonmetals  Darel K. Straub
Procedure for writing Lewis structures of oxygen compounds of 3p-5p nonmetals.
Straub, Darel K. J. Chem. Educ. 1995, 72, 889.
Lewis Structures |
Molecular Properties / Structure |
Covalent Bonding |
Main-Group Elements
Animation of Imaginary Frequencies at the Transition State  Robert H. Higgins
176. Software tutorial for strengthening spatial skills and an understanding of stereochemistry in exploring molecular structures.
Higgins, Robert H. J. Chem. Educ. 1995, 72, 699.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling
Chemical Education via MOLGEN  Benecke, C.; Grund, R.; Kerber, A.; Laue, R.; Wieland, T.
173. Bits and pieces, 53. Software used to produce all the isomers for a given chemical formula.
Benecke, C.; Grund, R.; Kerber, A.; Laue, R.; Wieland, T. J. Chem. Educ. 1995, 72, 403.
Molecular Properties / Structure |
Chirality / Optical Activity |
Stereochemistry |
Molecular Modeling
A Self-Paced Computer Tutorial on the Concepts of Symmetry  Potillo, Loretta A.; Kantardjieff, Katherine A.
173. Bits and pieces, 53. Computerized, animated, interactive tutorial for physical chemistry students on topics of symmetry.
Potillo, Loretta A.; Kantardjieff, Katherine A. J. Chem. Educ. 1995, 72, 399.
Crystals / Crystallography |
Molecular Properties / Structure |
Group Theory / Symmetry
Put the Body to Them!  Perkins, Robert R.
Examples of chemistry demonstrations involving student participation, including quantized states and systems, boiling point trends, intermolecular vs. intramolecular changes, polar/nonpolar molecules, enantiomers and diastereomers, and chromatography.
Perkins, Robert R. J. Chem. Educ. 1995, 72, 151.
Chromatography |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Molecular Properties / Structure |
Chirality / Optical Activity |
Quantum Chemistry |
Diastereomers |
Enantiomers
Which Organic Molecule Should I Pick?  Perkins, Robert
Examples of questions requiring students to demonstrate their understanding of organic structures, nomenclature, isomerism, and chemical reactivity.
Perkins, Robert J. Chem. Educ. 1995, 72, 124.
Molecular Properties / Structure |
Chirality / Optical Activity |
Nomenclature / Units / Symbols |
Enantiomers |
Diastereomers
Using Formal Charges in Teaching Descriptive Inorganic Chemistry  DeWit, David G.
Using the concept of formal charges to predict bond properties, determine molecular structure, and explain reactivities and the tendency to polymerize.
DeWit, David G. J. Chem. Educ. 1994, 71, 750.
Descriptive Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Polymerization
Models of 2-Butanone: Using Graphics To Illustrate Complementary Approaches to Molecular Structure and Reactivity  Hanks, T. W.
157. Ways in which a graphics workstation can be used to illustrate various concepts of molecular structure.
Hanks, T. W. J. Chem. Educ. 1994, 71, 62.
Aldehydes / Ketones |
Molecular Properties / Structure |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Stereochemistry |
Quantum Chemistry |
MO Theory
Teaching molecular modeling: An introductory course for chemists, implemented at the Universite de Montreal  Dugas, Hermann
139. Objectives of molecular modeling in chemistry, and purpose, goal, and outline of a molecular modeling course.
Dugas, Hermann J. Chem. Educ. 1992, 69, 533.
Molecular Modeling |
Computational Chemistry |
Molecular Properties / Structure
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Illustration of Mn and Mw in chain-growth polymerization using a simplified model: An undergraduate polymer chemistry laboratory exercise  Snyder, Donald M.
This exercise helps to attain three pedagogical objectives. Laying out the chains illustrates that a polymer is composed of a mixture of various chain lengths, the random-number assembly of the chain illustrates the statistical aspects of chain growth, the limited number of chains and chain length of the chain allows direct calculation of the number of chains and the weight averages of the chains.
Snyder, Donald M. J. Chem. Educ. 1992, 69, 422.
Physical Properties |
Molecular Properties / Structure
A least-squares technique for determining the van der Waals parameters from the critical constants.  Eberhart, J. G.
The author reviews three of the six methods for calculating the van der Waals constants for a fluid.
Eberhart, J. G. J. Chem. Educ. 1992, 69, 220.
Noncovalent Interactions |
Physical Properties
Molecular anthropomorphism: A creative writing exercise  Miller, Larry L.

Miller, Larry L. J. Chem. Educ. 1992, 69, 141.
Molecular Properties / Structure
Molecular mechanics in the undergraduate curriculum  Sauers, Ronald R.
The author outlines recent experience with the introduction of molecular mechanics methodology via computer aided analysis of molecular geometry and energy. Students gained appreciation for the interplay of molecular forces that govern equilibrium energy and molecular forces of organic molecules.
Sauers, Ronald R. J. Chem. Educ. 1991, 68, 816.
Noncovalent Interactions |
Thermodynamics |
Molecular Properties / Structure |
Molecular Modeling |
Laboratory Computing / Interfacing
An internal comparison of the intermolecular forces of common organic functional groups: A thin-layer chromatography experiment  Beauvais, Robert; Holman, R. W.
Due to the latest trends in organic chemistry textbook content sequences, it has become desirable to develop an experiment that is rapid, simple, and general, that would compare and contrast the various functional group classes of organic molecules in terms of their relative polarities, dipole moments, and intermolecular forces of attraction.
Beauvais, Robert; Holman, R. W. J. Chem. Educ. 1991, 68, 428.
Alkanes / Cycloalkanes |
Alkenes |
Alcohols |
Carboxylic Acids |
Aldehydes / Ketones |
Esters |
Qualitative Analysis |
Thin Layer Chromatography |
Noncovalent Interactions |
Molecular Properties / Structure
Proton NMR simulator  Black, Kersey A.
Software designed to help students learn how to correlate proton NMR spectral data with molecular structure.
Black, Kersey A. J. Chem. Educ. 1990, 67, 589.
NMR Spectroscopy |
Molecular Properties / Structure
Molecular structure and chirality (Author response)  Lechner, Joseph H.
When right and left hands are perceived as isolated segments of the body, possessing a mirror-image relationship, with the understanding that they cannot be superimposed, then the true sense of chirality is imparted.
Lechner, Joseph H. J. Chem. Educ. 1990, 67, 358.
Chirality / Optical Activity |
Molecular Properties / Structure
Molecular structure and chirality   Brand, David J.
The statement that a pair of hands is "chiral" was misleading and would unnecessarily frustrate students.
Brand, David J. J. Chem. Educ. 1990, 67, 358.
Chirality / Optical Activity |
Molecular Properties / Structure
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Independent coordinates of molecular structures and group theory  Ermer, Otto
The author describes a simple and safe group theoretical method for the systematic evaluation of the number of independent structural parameters.
Ermer, Otto J. Chem. Educ. 1990, 67, 209.
MO Theory |
Molecular Properties / Structure
Identifying polar and nonpolar molecules  Tykodi, R. J.
A scheme based on the ideas of molecular symmetry for determining the polar / nonpolar nature of simple molecules.
Tykodi, R. J. J. Chem. Educ. 1989, 66, 1007.
Molecular Properties / Structure |
Physical Properties
The significance of the bond angle in sulfur dioxide  Purser, Gordon H.
Discussion of the bonding in and structure of SO2.
Purser, Gordon H. J. Chem. Educ. 1989, 66, 710.
Molecular Properties / Structure |
Covalent Bonding
Fourier analysis and structure determination. Part III. X-ray crystal structure analysis  Chesick, John P.
We wish to continue the discussion on imaging tools with the discussion of single crystal X-ray crystal analysis.
Chesick, John P. J. Chem. Educ. 1989, 66, 413.
Fourier Transform Techniques |
Crystals / Crystallography |
Molecular Properties / Structure
Searching Chemical Abstracts Online in undergraduate chemistry: Part 2. Registry (structure) File: molecular formulas, names, and name fragments  Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie
This data base, essentially a subject index, consists of substance names, their Registry Numbers and characteristics, and actual structural representations.
Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie J. Chem. Educ. 1989, 66, 26.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Molecular graphics, version 1.0 (Robinson, B.H.; Connell,E.; Gladden, J.)  Pearson, Myrna S.; Houser, John J.
Two reviews for a program for displaying molecular structure on the PC family of computers.
Pearson, Myrna S.; Houser, John J. J. Chem. Educ. 1988, 65, A330.
Molecular Modeling |
Molecular Properties / Structure
Organic lecture demonstrations  Silversmith, Ernest F.
Organic chemistry may not be known for its spectacular, attention getting chemical reactions. Nevertheless, this author describes a few organic chemistry reactions that put points across and generate interest. This article provides a convenient sources of demonstrations and urges others to add to the collection. Demonstrations concerning: carbohydrates, spectroscopy, proteins, amines, carbohydrates, carboxylic acids, and much more.
Silversmith, Ernest F. J. Chem. Educ. 1988, 65, 70.
Molecular Properties / Structure |
Nucleophilic Substitution |
Acids / Bases |
Physical Properties |
Alkenes |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity |
Aldehydes / Ketones |
Alcohols
On the boiling points of the alkyl halides  Correla, John
Most textbooks spend some time discussing the relationship between boiling point and molecular structure, however, their reasons behind this relationship differ. This variation among textbooks warrants further investigation and discussion in order to uncover which of the factors are the major contributors to the variation of boiling point.
Correla, John J. Chem. Educ. 1988, 65, 62.
Alkanes / Cycloalkanes |
Physical Properties |
Noncovalent Interactions |
Molecular Properties / Structure
The mounting of stereo slides for projecting molecular models  Hayman, H. J. G.
Procedure for successfully mounting stereo slides for projecting molecular models.
Hayman, H. J. G. J. Chem. Educ. 1987, 64, 1041.
Molecular Properties / Structure |
Molecular Modeling
Molecular structure and chirality  Brand, David J.; Fisher, Jed
Clarification of the meaning of the term chiral and its application to both chiral and achiral molecules.
Brand, David J.; Fisher, Jed J. Chem. Educ. 1987, 64, 1035.
Molecular Properties / Structure |
Chirality / Optical Activity |
Stereochemistry |
Enantiomers
Structural theories applied to taste chemistry  Kuang-chih, Tseng; Hua-zhong, He
Explaining various tastes from viewpoints of structural theories in chemistry.
Kuang-chih, Tseng; Hua-zhong, He J. Chem. Educ. 1987, 64, 1003.
Molecular Properties / Structure |
Stereochemistry
Werner and Jorgensen: Presenting history with a computer  Whisnant, David M.
85. A computer simulation designed to illustrate the process of science - how theories develop, how change occurs, and how scientists behave.
Whisnant, David M. J. Chem. Educ. 1987, 64, 688.
Molecular Properties / Structure |
Coordination Compounds
Molecular structure: Property relationships  Seybold, Paul G.; May, Michael; Bagal, Ujjvala A.
How molecular structure can be represented mathematically and how this can lead to a better understanding of the connection between molecular structures and properties.
Seybold, Paul G.; May, Michael; Bagal, Ujjvala A. J. Chem. Educ. 1987, 64, 575.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alcohols
Use of polar maps in conformational analysis  Ounsworth, James P.; Weller, Larry
A relatively simple procedure to identify different or similar conformations of large ring structures (generating polar maps of torsional angles).
Ounsworth, James P.; Weller, Larry J. Chem. Educ. 1987, 64, 568.
Conformational Analysis |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
No rabbit ears on water. The structure of the water molecule: What should we tell the students?  Laing, Michael
Analysis of the bonding found in water and how it results in the observed geometry of the water molecule.
Laing, Michael J. Chem. Educ. 1987, 64, 124.
Molecular Properties / Structure |
MO Theory |
Covalent Bonding
Classroom demonstrations of polymer principles. Part I. Molecular structure and molecular mass  Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr.
Suggestions for models and techniques to illustrate the structure of polymers, copolymers, molecular mass, osmotic pressure, light scattering, and dilute solution viscosity.
Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr. J. Chem. Educ. 1987, 64, 72.
Molecular Properties / Structure |
Physical Properties
FACES (features associated with chemical entities): II. Hydrocarbon isomers and their graphs  Larsen, Russell D.
The FACES program is modified in order to be able to display the structural features of compounds.
Larsen, Russell D. J. Chem. Educ. 1986, 63, 1067.
Molecular Properties / Structure
Coulombic models in chemical bonding. II. Dipole moments of binary hydrides  Sacks, Lawrence J.
A discussion of Coulumbic models and their aid in understanding chemical bonding.
Sacks, Lawrence J. J. Chem. Educ. 1986, 63, 373.
Electrochemistry |
Molecular Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
Stereoscopic projection in organic chemistry: Bridging the gap between two and three dimensions  Rozzelle, Arlene A.; Rosenfeld, Stuart M.
Using stereo slide projections in presenting molecular structure in organic chemistry, and how to make stereo slides with a 35 mm SLR camera.
Rozzelle, Arlene A.; Rosenfeld, Stuart M. J. Chem. Educ. 1985, 62, 1084.
Molecular Properties / Structure
The molecular structure conundrum  Woolley, R. G.
Further discussion on two key points made in the original, referenced article.
Woolley, R. G. J. Chem. Educ. 1985, 62, 1082.
Molecular Properties / Structure |
Theoretical Chemistry |
Quantum Chemistry |
Stereochemistry
MOLEC, Review II (Owen, G. Scott; Currie, James O.)  Hull, Leslie
A molecular structures graphics program that offers a variety of different ways of looking at molecular geometries.
Hull, Leslie J. Chem. Educ. 1984, 61, A246.
Molecular Properties / Structure
MOLEC, Review I (Owen, G. Scott; Currie, James O.)  Coleman, William F.
A molecular structures graphics program that offers a variety of different ways of looking at molecular geometries.
Coleman, William F. J. Chem. Educ. 1984, 61, A245.
Molecular Properties / Structure
Three-dimensional pointers for stereoscopic projection  Hayman, H. J. G.
Three solutions to the problem of pointing at parts of a stereoscopic projection.
Hayman, H. J. G. J. Chem. Educ. 1984, 61, 1065.
Laboratory Equipment / Apparatus |
Molecular Properties / Structure |
Molecular Modeling
Using the QCPE holdings in chemical education: Molecular models in the organic chemistry laboratory  Lipkowitz, Kenny
A laboratory experiment that compares the strengths and weaknesses of mechanical and computer models.
Lipkowitz, Kenny J. Chem. Educ. 1984, 61, 1051.
Molecular Modeling |
Molecular Properties / Structure |
Conformational Analysis |
NMR Spectroscopy
The molecular structure conundrum: Can classical chemistry be reduced to quantum chemistry?  Weininger, Stephen J.
An analysis of the fundamental questions raised by author R. G. Woolley about how molecular structure should be understood in quantum mechanical terms.
Weininger, Stephen J. J. Chem. Educ. 1984, 61, 939.
Quantum Chemistry |
Molecular Properties / Structure
Use of Plexiglas planes with molecular model kits  Fulkrod, John E.
Using Plexiglass to serve as a plane of reference in molecular models of organic molecules.
Fulkrod, John E. J. Chem. Educ. 1984, 61, 773.
Molecular Modeling |
Molecular Properties / Structure
The dependence of strength in plastics upon polymer chain length and chain orientation, an experiment emphasizing the statistical handling and evaluation of data  Spencer, R. Donald
Experiment to give students a practical understanding of how statistics can be applied to the evaluation of experimental results and greatly enhance the ability to solve scientific problems.
Spencer, R. Donald J. Chem. Educ. 1984, 61, 555.
Molecular Properties / Structure |
Physical Properties |
Chemometrics
Molecular association and structure of hydrogen peroxide  Gigure, Paul A.
The typical textbook treatment of molecular association and structure of hydrogen peroxide, and the implications of these concepts for the physical properties of hydrogen peroxide tend to be oversimplified and inaccurate.
Gigure, Paul A. J. Chem. Educ. 1983, 60, 399.
Molecular Properties / Structure |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Hydrogen Bonding
Drawing of ball and stick type molecular models with hidden line elimination   Nakano, Hidehiko; Sangen, Osamu; Yamamoto, Yoshitake
37. Bits and pieces, 14. These authors have developed a simple computer program for drawing molecular structures by microcomputers.
Nakano, Hidehiko; Sangen, Osamu; Yamamoto, Yoshitake J. Chem. Educ. 1983, 60, 98.
Molecular Mechanics / Dynamics |
Molecular Properties / Structure
Structural parameters of methyl iodide by infrared spectroscopy  McNaught, Ian J.
A study of the rotation-vibration spectrum of methyl chloride permits calculation of band origins of the fundamentals, Coriolis coupling constants of the degenerate modes, rotation constants, and bond lengths and force constants.
McNaught, Ian J. J. Chem. Educ. 1982, 59, 879.
IR Spectroscopy |
Spectroscopy |
Molecular Properties / Structure |
Covalent Bonding
Sulcatol: Synthesis of an aggregation pheromone  Black, Shirley-Ann; Slessor, Keith N.
Synthesis of the aggregation pheromone of the ambrosia beetle, an insect pest of harvested timber in the Pacific North Coast.
Black, Shirley-Ann; Slessor, Keith N. J. Chem. Educ. 1982, 59, 255.
Synthesis |
Natural Products |
Molecular Properties / Structure |
Chirality / Optical Activity |
NMR Spectroscopy |
IR Spectroscopy |
Applications of Chemistry
Rubber gloves, rubber balls, and optical activity  Perkins, Robert
Several demonstrations aimed at helping students to understand optical activity.
Perkins, Robert J. Chem. Educ. 1980, 57, 809.
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers
Bioactivity in organic chemistry courses  Ferguson, Lloyd N.
Considers the antibacterial activity of hydroxy compounds, the carcinogenicity of polycyclic aromatic hydrocarbons, structure-activity correlations, and bioactivity.
Ferguson, Lloyd N. J. Chem. Educ. 1980, 57, 46.
Aromatic Compounds |
Bioorganic Chemistry |
Molecular Properties / Structure
Drinking-straw polyhedral models in structural chemistry  Mak, Thomas C. W.; Lam, C. N.; Lau, O. W.
Instructions for constructing a variety of molecular and crystal structures based on various ways of packing regular and semi-regular polyhedra made from plastic drinking straws.
Mak, Thomas C. W.; Lam, C. N.; Lau, O. W. J. Chem. Educ. 1977, 54, 438.
Molecular Properties / Structure |
Molecular Modeling
Chemical aspects of Bohr's 1913 theory  Kragh, Helge
The chemical content of Bohr's 1913 theory has generally been neglected in the treatises on the history of chemistry; this paper regards Bohr as a theoretical chemist and discusses the chemical aspects of his atomic theory.
Kragh, Helge J. Chem. Educ. 1977, 54, 208.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding |
Theoretical Chemistry
Stereoscopic diagrams prepared by a desk calculator and plotter  Hayman, H. J. G.
Using a programmable desk calculator with plotter for drawing "ball and line" stereopairs.
Hayman, H. J. G. J. Chem. Educ. 1977, 54, 31.
Molecular Properties / Structure |
Molecular Modeling
The resolution of racemic acid: A classic stereochemical experiment for the undergraduate laboratory  Kauffman, George B.; Myers, Robin D.
Includes historical background of Pasteur's work and a procedure for investigating the relations between the tartaric acids, racemic acid, and their sodium ammonium salts.
Kauffman, George B.; Myers, Robin D. J. Chem. Educ. 1975, 52, 777.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
Some reflections on the topological structure of covalent molecules  Rouvray, D. H.
Presents a method that involves a description of the possible topological structures a chemical species may adopt, subject to the constraints imposed by the valence.
Rouvray, D. H. J. Chem. Educ. 1975, 52, 768.
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Conformational analysis - The last 25 years  Eliel, Ernest L.
Reviews the development of conformational analysis.
Eliel, Ernest L. J. Chem. Educ. 1975, 52, 762.
Conformational Analysis |
Molecular Properties / Structure
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Hormones
A simple procedure for point group classification  Krubsack, Arnold J.
A flow chart that allows anyone with a basic knowledge of symmetry to deduce rapidly the specific point group of any given compound.
Krubsack, Arnold J. J. Chem. Educ. 1975, 52, 368.
Group Theory / Symmetry |
Molecular Properties / Structure
The low cost construction of inorganic polymer models using polyurethane  Mrvosh, M. E.; Daugherty, K. E.
Procedures for constructing inorganic polymer models using polyurethane.
Mrvosh, M. E.; Daugherty, K. E. J. Chem. Educ. 1975, 52, 239.
Molecular Properties / Structure |
Molecular Modeling
Films of rotating molecular models. The stereoscopic effect  McGrew, LeRoy; Kitzman, Kathy
A method of motion picture photography that offers a three-dimensional effect useful for the illustration of molecular structure with less effort than previous methods of stereo photography.
McGrew, LeRoy; Kitzman, Kathy J. Chem. Educ. 1973, 50, 407.
Molecular Properties / Structure |
Molecular Modeling |
Stereochemistry
Sterospecificity in the palm of your hand  Treptow, Richard S.
A simple demonstration to illustrate the reaction between two optically active agents.
Treptow, Richard S. J. Chem. Educ. 1973, 50, 131.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers |
Molecular Properties / Structure
The odor of optical isomers. An experiment in organic chemistry  Murov, Steven L.; Pickering, Miles
The experiment described involves the separation and characterization of l-carvone from spearmint oil and d-carvone from caraway seed oil.
Murov, Steven L.; Pickering, Miles J. Chem. Educ. 1973, 50, 74.
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Stereochemistry |
Separation Science
Visualization of molecular orbitals. Formaldehyde  Olcott, Richard J.
Using a computer to generate three dimensional charge density distributions of the formaldehyde molecule.
Olcott, Richard J. J. Chem. Educ. 1972, 49, 614.
Aldehydes / Ketones |
Molecular Modeling |
Molecular Properties / Structure
Why is the oxygen in water negative?  Liebman, Joel F.
Oxygen in water is negative because a negative charge, unlike a positive, can be stabilized using ground state ionic resonance structures.
Liebman, Joel F. J. Chem. Educ. 1972, 49, 415.
Water / Water Chemistry |
Molecular Properties / Structure |
Oxidation State
Spectral exercises in structural determination of organic compounds (Shapiro, Robert H.)  Rienheimer, J. D.

Rienheimer, J. D. J. Chem. Educ. 1970, 47, A598.
Molecular Properties / Structure |
Spectroscopy
Is ammonia like water?  Gill, J. B.
This article sets out to compare some of the properties of the two most widely studied solvents, water and liquid ammonia, and in particular illustrate some comparative aspects that are not normally considered.
Gill, J. B. J. Chem. Educ. 1970, 47, 619.
Water / Water Chemistry |
Molecular Properties / Structure |
Aqueous Solution Chemistry
Models for tertiary structures: Myoglobin and lysozyme  Smith, Ivor; Smith, Margaret J.; Roberts, Lynne
Presents the design details for constructing three dimensional models of proteins, including myoglobin and lysozyme.
Smith, Ivor; Smith, Margaret J.; Roberts, Lynne J. Chem. Educ. 1970, 47, 302.
Molecular Properties / Structure |
Molecular Modeling |
Proteins / Peptides |
Hydrogen Bonding |
Noncovalent Interactions
The electron-pair repulsion model for molecular geometry  Gmespie, R. J.
Reviews the electron-pair repulsion model for molecular geometry and examines three-centered bonds, cluster compounds, bonding among the transition elements, and exceptions to VSEPR rules.
Gmespie, R. J. J. Chem. Educ. 1970, 47, 18.
Molecular Properties / Structure |
Covalent Bonding |
MO Theory |
VSEPR Theory |
Transition Elements
Wooden models of asymmetric structures  Nye, Martin J.
Wooden blocks are cut to represent molecules of a pair of enantiomers, and are constructed so that they may be readily stacked together to show crystal structure.
Nye, Martin J. J. Chem. Educ. 1969, 46, 175.
Molecular Modeling |
Molecular Properties / Structure |
Enantiomers |
Crystals / Crystallography
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
Structural chemistry in the nuclear age  Hamilton, Walter C.
Considers methods of neutron diffraction and scattering to examine light and heavy atoms and the structure of biological compounds and liquids.
Hamilton, Walter C. J. Chem. Educ. 1968, 45, 296.
Nuclear / Radiochemistry |
Liquids |
Molecular Properties / Structure
A flow-chart approach to point group classification  Carter, Robert L.
Presents a flow chart for classifying molecular symmetry into point groups.
Carter, Robert L. J. Chem. Educ. 1968, 45, 44.
Group Theory / Symmetry |
Molecular Properties / Structure
Interactions of enzymes and inhibitors  Baker, B. R.
Examines the kinetics and interactions of enzymes and inhibitors and considers specifically lactic dehydrogenase, dihydrofolic reductase, thymidine phosphorylate, guanase, and xanthine oxidase.
Baker, B. R. J. Chem. Educ. 1967, 44, 610.
Enzymes |
Catalysis |
Noncovalent Interactions |
Molecular Properties / Structure |
Molecular Recognition |
Hydrogen Bonding
A unified theory of bonding for cyclopropanes  Bernett, William A.
Examines various models for bonding in cyclopropanes.
Bernett, William A. J. Chem. Educ. 1967, 44, 17.
Covalent Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
MO Theory |
Molecular Modeling
NMR spectra: Appearance of patterns from small spin systems  Becker, Edwin D.
This article seeks to clarify some confusing points in the interpretation of NMR spectra.
Becker, Edwin D. J. Chem. Educ. 1965, 42, 591.
Spectroscopy |
NMR Spectroscopy |
Molecular Properties / Structure
Extensions in the use of plastic tetrahedral models  Fieser, Louis F.
Describes the modification of existing models to provide for the construction of specialized organic and inorganic structures and their use in teaching.
Fieser, Louis F. J. Chem. Educ. 1965, 42, 408.
Molecular Modeling |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Hybridization in the description of homonuclear diatomic molecules  George, John W.
Presents energy levels for B2 and C2 molecules using hybrid atomic orbitals.
George, John W. J. Chem. Educ. 1965, 42, 152.
Molecular Properties / Structure |
MO Theory
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Atomic structure and chemical bonding (Seel, F.; Greenwood, N. N.; Stadler, H. P.)  Murmann, R. Kent

Murmann, R. Kent J. Chem. Educ. 1964, 41, 518.
Atomic Properties / Structure |
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Noncovalent Interactions
A sophomore-level course in valence and molecular structure  Colter, Allan K.
Describes a course entitled "Valency and Structure" at the Carnegie Institute of Technology.
Colter, Allan K. J. Chem. Educ. 1964, 41, 127.
Molecular Properties / Structure
Teaching organic stereochemistry  Eliel, Ernest L.
Focusses on suggestions for the teaching of stereochemistry in general chemistry.
Eliel, Ernest L. J. Chem. Educ. 1964, 41, 73.
Molecular Properties / Structure |
Stereochemistry
Structures and reactions of organic compounds: An introduction (Grundon, M. F.; Henbest, H. B.)  James, Floyd L.

James, Floyd L. J. Chem. Educ. 1963, 40, 670.
Molecular Properties / Structure |
Reactions
Tangent-sphere models of molecules. II. Uses in Teaching  Bent, Henry A.
Tangent-sphere models can be used to represent highly strained bonds and multicentered bonds, atoms with expanded and contracted octets, inter- and intramolecular interactions, and the effects of electronegative groups, lone pairs, and multiple bonds on molecular geometry, bond properties, and chemical reactivity.
Bent, Henry A. J. Chem. Educ. 1963, 40, 523.
Molecular Properties / Structure |
Covalent Bonding
Cyclobutane chemistry. 1. Structure and strain energy  Wilson, Armin; Goldhamer, David
Examines the various conformations that have been proposed for particular four-membered rings.
Wilson, Armin; Goldhamer, David J. Chem. Educ. 1963, 40, 504.
Alkanes / Cycloalkanes |
Molecular Properties / Structure
Contour surfaces for atomic and molecular orbitals  Ogryzlo, E. A.; Porter, Gerald B.
Describes the determination of and illustrates contour surfaces for atomic and molecular orbitals.
Ogryzlo, E. A.; Porter, Gerald B. J. Chem. Educ. 1963, 40, 256.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling
Stereoisomerism of carbon compounds  Noyce, William K.
The purpose of this article is to suggest a different setting for the classification of the various types of stereoisomerism commonly encountered in organic chemistry, with the view to providing a better correlation with contemporary concepts of atomic and molecular structure.
Noyce, William K. J. Chem. Educ. 1961, 38, 23.
Stereochemistry |
Molecular Properties / Structure
Distribution of atomic s character in molecules and its chemical implications  Bent, Henry A.
Explains the shape of simple molecules using the distribution of atomic s character.
Bent, Henry A. J. Chem. Educ. 1960, 37, 616.
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding
Some recent developments in the theory of bonding in complex compounds of the transition metals  Sutton, Leslie E.
Examines the ligand field and the molecular orbital theories of complexes, particularly involving transition metals.
Sutton, Leslie E. J. Chem. Educ. 1960, 37, 498.
Noncovalent Interactions |
Transition Elements |
Metals |
Crystal Field / Ligand Field Theory |
Coordination Compounds |
MO Theory |
Covalent Bonding
Recent advances in stereochemistry: A survey  Cram, Donald J.
The purpose of this article is to provide illustrations of eight advances in stereochemistry, including absolute configuration, correlations between configuration and rotation, and conformational analysis.
Cram, Donald J. J. Chem. Educ. 1960, 37, 317.
Conformational Analysis |
Molecular Properties / Structure
Conformational analysis in mobile systems  Eliel, Ernest L.
A review of conformational analysis and its application to mobile systems.
Eliel, Ernest L. J. Chem. Educ. 1960, 37, 126.
Conformational Analysis |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
The unraveling of geometric isomerism and tautomerism  Ihde, Aaron J.
Examines the work of Van't Hoff in unraveling isomerism due to carbon-carbon double bonds using fumaric and maleic acids as exemplars.
Ihde, Aaron J. J. Chem. Educ. 1959, 36, 330.
Molecular Properties / Structure |
Stereochemistry |
Diastereomers
The geometry of giant molecules  Price, Charles C.
The author examines a variety of specific examples of natural and synthetic polymer molecules and describes how their geometric molecular arrangements influence their properties.
Price, Charles C. J. Chem. Educ. 1959, 36, 160.
Molecular Properties / Structure |
Proteins / Peptides |
Carbohydrates
On the origin of characteristic group frequencies in infrared spectra  Dows, David A.
Examines the mechanics and energetics of vibrations in small and large molecules.
Dows, David A. J. Chem. Educ. 1958, 35, 629.
IR Spectroscopy |
Molecular Properties / Structure |
Covalent Bonding
The principle of minimum bending of orbitals  Stewart, George H.; Eyring, Henry
The authors present a theory of valency that accounts for a variety of organic and inorganic structures in a clear and easily understood manner.
Stewart, George H.; Eyring, Henry J. Chem. Educ. 1958, 35, 550.
Atomic Properties / Structure |
Molecular Properties / Structure |
Elimination Reactions
Isoelectronic molecules: The effect of number of outer-shell electrons on structure  Gillis, Richard G.
The purpose of this discussion is to demonstrate that the concept isoelectric molecules can be of considerable value to the instructor in developing the principles of structural chemistry, to the student in bridging the apparent gap between inorganic and organic chemistry, and the researcher in suggesting analogies that may yield interesting fields for investigation.
Gillis, Richard G. J. Chem. Educ. 1958, 35, 66.
Molecular Properties / Structure
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
Hydrogen bonding and physical properties of substances  Ferguson, Lloyd N.
Physical properties influenced by hydrogen bonding considered in this paper include transition temperatures, vapor pressure, water solubility, the ionization of carboxylic acids, stereoisomerism, adsorption, and infrared spectra.
Ferguson, Lloyd N. J. Chem. Educ. 1956, 33, 267.
Hydrogen Bonding |
Noncovalent Interactions |
Physical Properties |
Aqueous Solution Chemistry |
Carboxylic Acids |
Stereochemistry |
IR Spectroscopy
Nature of adhesion  Reinhart, Frank W.
Examines the theory of adhesion and the variety of attractive forces involved.
Reinhart, Frank W. J. Chem. Educ. 1954, 31, 128.
Surface Science |
Covalent Bonding |
Metallic Bonding |
Noncovalent Interactions
Aspects of isomerism and mesomerism. II. Structural isomerism  Bent, Richard L.
Examines the relationship between structural, optical, and geometric isomerism.
Bent, Richard L. J. Chem. Educ. 1953, 30, 284.
Molecular Properties / Structure |
Constitutional Isomers |
Enantiomers |
Diastereomers
The chemical properties of the methyl group  Bartlett, Paul D.
Summarizes the work that has gone into characterizing the properties and chemical behavior of the simple and ubiquitous methyl group.
Bartlett, Paul D. J. Chem. Educ. 1953, 30, 22.
Molecular Properties / Structure
Letters  Brescia, Frank
The author calls for someone to invent another term for the word resonance as applied to the field of molecular structure.
Brescia, Frank J. Chem. Educ. 1952, 29, 261.
Resonance Theory |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
The cause of optical inactivity  Mowery, Dwight Fay, Jr.
The cause of optical inactivity is often portrayed erroneously in textbooks.
Mowery, Dwight Fay, Jr. J. Chem. Educ. 1952, 29, 138.
Chirality / Optical Activity |
Molecular Properties / Structure
Structural chemistry of the interhalogen compounds  Fessenden, Elizabeth
Examines trends in the properties of the interhalogen compounds.
Fessenden, Elizabeth J. Chem. Educ. 1951, 28, 619.
Molecular Properties / Structure
Valence and formulas taught with playing cards  Lionetti, Fabian
Describes the use of playing cards and a game called "Valence" to help students in organic chemistry understand valence, bonding, and molecular structure.
Lionetti, Fabian J. Chem. Educ. 1951, 28, 599.
Covalent Bonding |
Molecular Properties / Structure
A method of estimating the boiling points of organic liquids  Pearson, D. E.
Discusses the relationship between the molecular structure of organic liquids and their boiling point.
Pearson, D. E. J. Chem. Educ. 1951, 28, 60.
Liquids |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Molecular Properties / Structure
Molecular models of silicates for lecture demonstrations  Noyce, William K.
Describes the construction and use of molecular models of silicates for lecture demonstrations.
Noyce, William K. J. Chem. Educ. 1951, 28, 29.
Molecular Properties / Structure |
Molecular Modeling