TIGER

Journal Articles: 116 results
Orbital Exponent Optimization in Elementary VB Calculations of the Chemical Bond in the Ground State of Simple Molecular Systems  Valerio Magnasco
Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H2+, H2, He2+, and He2 gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region.
Magnasco, Valerio. J. Chem. Educ. 2008, 85, 1686.
Atomic Properties / Structure |
Computational Chemistry |
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Valence Bond Theory
Six Pillars of Organic Chemistry  Joseph J. Mullins
This article focuses on a core set of conceptselectronegativity, polar covalent bonding, inductive and steric effects, resonance, and aromaticitythe proper application of which can explain and predict a wide variety of chemical, physical, and biological properties of molecules and conceptually unite important features of general, organic, and biochemistry.
Mullins, Joseph J. J. Chem. Educ. 2008, 85, 83.
Bioorganic Chemistry |
Covalent Bonding |
Hydrogen Bonding |
Mechanisms of Reactions |
Periodicity / Periodic Table |
Reactive Intermediates |
Resonance Theory
The Mechanism of Covalent Bonding: Analysis within the Hückel Model of Electronic Structure  Sture Nordholm, Andreas Bäck, and George B. Bacskay
Hckel molecular orbital theory is shown to be uniquely useful in understanding and interpreting the mechanism of covalent bonding. Using the Hckel model it can be demonstrated that the dynamical character of the molecular orbitals is related simultaneously to the covalent bonding mechanism and to the degree of delocalization of the electron dynamics.
Nordholm, Sture; Bäck, Andreas; Bacskay, George B. J. Chem. Educ. 2007, 84, 1201.
Covalent Bonding |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Predicting the Stability of Hypervalent Molecules  Tracy A. Mitchell, Debbie Finocchio, and Jeremy Kua
In this exercise, students use concepts in thermochemistry such as bond energy, ionization potentials, and electron affinities to predict the relative stability of two hypervalent molecules (PF5 and PH5) relative to their respective non-hypervalent counterparts.
Mitchell, Tracy A.; Finocchio, Debbie; Kua, Jeremy. J. Chem. Educ. 2007, 84, 629.
Computational Chemistry |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Molecular Modeling |
Calorimetry / Thermochemistry |
Molecular Properties / Structure
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts  Gerard Parkin
The purpose of this article is to clarify the terms valence, oxidation number, coordination number, formal charge, and number of bonds and illustrate how the valence of an atom in a molecule provides a much more meaningful criterion for establishing the chemical reasonableness of a molecule than does the oxidation number.
Parkin, Gerard. J. Chem. Educ. 2006, 83, 791.
Coordination Compounds |
Covalent Bonding |
Lewis Structures |
Oxidation State |
Nomenclature / Units / Symbols
Electronegativity and the Bond Triangle  Terry L. Meek and Leah D. Garner
The dependence of bond type on two parameters, electronegativity difference (??) and average electronegativity (?av), is examined. It is demonstrated that ionic character is governed by the partial charges of the bonded atoms, and metallic character by the HOMOLUMO band gap.
Meek, Terry L.; Garner, Leah D. J. Chem. Educ. 2005, 82, 325.
Atomic Properties / Structure |
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Main-Group Elements
Effects of Exchange Energy and Spin-Orbit Coupling on Bond Energies  Derek W. Smith
It is shown that the ground states of atoms having pn configurations are stabilized by exchange energy (n = 2, 3, or 4) and/or spinorbit coupling (n = 1, 2, 4, or 5).
Smith, Derek W. J. Chem. Educ. 2004, 81, 886.
Atomic Properties / Structure |
Main-Group Elements |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Descriptive Chemistry |
Ionic Bonding |
Covalent Bonding |
Metallic Bonding
Exothermic Bond Breaking: A Persistent Misconception  William C. Galley
Surveys taken the past several years at the onset of an introductory physical chemistry course reveal that the vast majority of students believe that bond breaking is exothermic.
Galley, William C. J. Chem. Educ. 2004, 81, 523.
Covalent Bonding |
Calorimetry / Thermochemistry
The Noble Gas Configuration—Not the Driving Force but the Rule of the Game in Chemistry  Roland Schmid
Explains the covalent and ionic bonding behavior of main-group elements in terms of electromagnetic forces rather than the supposed "stability" of noble-gas configurations.
Schmid, Roland. J. Chem. Educ. 2003, 80, 931.
Molecular Modeling |
Periodicity / Periodic Table |
Main-Group Elements |
Atomic Properties / Structure |
Reactions |
Covalent Bonding |
Ionic Bonding
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
How We Teach Molecular Structure to Freshmen  Michael O. Hurst
Examination of how textbooks discuss various aspects of molecular structure; conclusion that much of general chemistry is taught the way it is for historical and not pedagogical reasons.
Hurst, Michael O. J. Chem. Educ. 2002, 79, 763.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure |
Lewis Structures |
VSEPR Theory |
Valence Bond Theory |
MO Theory
Electron Densities, Atomic Charges, and Ionic, Covalent and Polar Bonds  Ronald J. Gillespie
The terms ionic and covalent character are vague, qualitative, and ill-defined. In contrast, the analysis of the electron density by the AIM theory leads to clearly defined quantitative properties such as the charges on the atoms and the electron density at the bond critical point that provide a sound basis for discussing bonding and geometry.
Gillespie, Ronald J. J. Chem. Educ. 2001, 78, 1688.
Computational Chemistry |
Molecular Properties / Structure |
Theoretical Chemistry |
Ionic Bonding |
Covalent Bonding
Structure and Bonding (by Jack Barrett)  Michael Laing
Tutorial chemistry text.
Laing, Michael. J. Chem. Educ. 2001, 78, 1600.
Molecular Properties / Structure |
MO Theory |
Atomic Properties / Structure |
Group Theory / Symmetry |
Covalent Bonding |
VSEPR Theory
The Role of Lewis Structures in Teaching Covalent Bonding  S. R. Logan
Difficulties with the Lewis theory of covalent bonding and upgrading it to the Molecular Orbital theory.
Logan, S. R. J. Chem. Educ. 2001, 78, 1457.
Covalent Bonding |
MO Theory |
Nonmajor Courses |
Learning Theories |
Lewis Structures |
Molecular Properties / Structure
Orbitals in Chemistry: A Modern Guide for Students
by Victor M. Gil
  David Hanson
Analysis of atomic and molecular orbitals.
Hanson, David. J. Chem. Educ. 2001, 78, 1184.
MO Theory |
Molecular Properties / Structure |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding
An Investigation of the Value of Using Concept Maps in General Chemistry  Gayle Nicoll, Joseph S. Francisco, and Mary B. Nakhleh
Study of the degree to which students in introductory chemistry classes linked related concepts; comparisons of a class in which concept mapping was used and another in which it was not.
Nicoll, Gayle; Francisco, Joseph S.; Nakhleh, Mary B. J. Chem. Educ. 2001, 78, 1111.
Covalent Bonding |
Learning Theories
Lewis Structures in General Chemistry: Agreement between Electron Density Calculations and Lewis Structures  Gordon H. Purser
The internuclear electron densities of a series of X-O bonds (where X = P, S, or Cl) are calculated using quantum mechanics and compared to Lewis structures for which the formal charges have been minimized; a direct relationship is found between the internuclear electron density and the bond order predicted from Lewis structures in which formal charges are minimized.
Purser, Gordon H. J. Chem. Educ. 2001, 78, 981.
Covalent Bonding |
Computational Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Quantum Chemistry
An Idea Whose Time Has Come?
(re
J. Chem. Educ. 1999, 76, 1718-1722)  David E. Lewis
Unoccupied orbitals as the major arbiters of reactivity have been long ignored in teaching introductory organic chemistry courses.
Lewis, David E. J. Chem. Educ. 2001, 78, 727.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
An Idea Whose Time Has Come?
(re
J. Chem. Educ. 1999, 76, 1718-1722)  William B. Jensen
Past classifications related to the nine-category classification of organic electrophilic-nucleophilic reactions based on the bonding and symmetry characteristics of the reactants' frontier orbitals of the author.
Jensen, William B. J. Chem. Educ. 2001, 78, 727.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
An Idea Whose Time Has Come?
(re
J. Chem. Educ. 1999, 76, 1718-1722)  William B. Jensen
Past classifications related to the nine-category classification of organic electrophilic-nucleophilic reactions based on the bonding and symmetry characteristics of the reactants' frontier orbitals of the author.
Jensen, William B. J. Chem. Educ. 2001, 78, 727.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
Fast Ionic Migration of Copper Chromate  Adolf Cortel
Among the many demonstrations of ionic migration in an electric field, the ones showing the migration of colored Cu+2 and CrO4-2 ions are popular. The demonstration described here introduces some modifications to allow a fast displacement of these ions.
Cortel, Adolf. J. Chem. Educ. 2001, 78, 207.
Covalent Bonding |
Electrophoresis |
Separation Science
Learning about Atoms, Molecules, and Chemical Bonds: A Case Study of Multiple-Model Use  William R. Robinson
A report from the journal Science Education focusing on the Harrison and Treagust article Learning about Atoms, Molecules, and Chemical Bonds: A Case Study.
Robinson, William R. J. Chem. Educ. 2000, 77, 1110.
Learning Theories |
Kinetic-Molecular Theory |
Molecular Modeling |
Covalent Bonding
Should Gaseous BF3 and SiF4 Be Described as Ionic Compounds?  Arne Haaland, Trygve Helgaker, Kenneth Ruud, and D. J. Shorokhov
Analysis suggesting that representing BF3 and SiF3 as ionic compounds may be misleading.
Haaland, Arne; Helgaker, Trygve; Ruud, Kenneth; Shorokhov, D. J. J. Chem. Educ. 2000, 77, 1076.
Molecular Properties / Structure |
Covalent Bonding |
Ionic Bonding
Organizing Organic Reactions: The Importance of Antibonding Orbitals  David E. Lewis
It is proposed that unoccupied molecular orbitals arbitrate much organic reactivity, and that they provide the basis for a reactivity-based system for organizing organic reactions. Such a system is proposed for organizing organic reactions according to principles of reactivity, and the system is discussed with examples of the frontier orbitals involved.
Lewis, David E. J. Chem. Educ. 1999, 76, 1718.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
The Use of Molecular Modeling and VSEPR Theory in the Undergraduate Curriculum to Predict the Three-Dimensional Structure of Molecules  Brian W. Pfennig and Richard L. Frock
Despite the simplicity and elegance of the VSEPR model, however, students often have difficulty visualizing the three-dimensional shapes of molecules and learning the more subtle features of the model, such as the bond length and bond angle deviations from ideal geometry that accompany the presence of lone pair or multiple bond domains or that result from differences in the electronegativity of the bonded atoms, partial charges and molecular dipole moments, and site preferences in the trigonal bipyramidal electron geometry.
Pfennig, Brian W.; Frock, Richard L. J. Chem. Educ. 1999, 76, 1018.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
Hydrogen Bonds Involving Transition Metal Centers Acting As Proton Acceptors  Antonio Martín
A short review of the most remarkable results which have recently reported M----H-X hydrogen bonds, along with a systematization of their structural and spectroscopic properties, is provided in this paper. These M----H interactions are substantially different from the "agostic" M----H ones, and their differences are commented on, setting up criteria that permit their clear differentiation in order to avoid some of the misidentifications that occurred in the past.
Tello, Antonio Martín. J. Chem. Educ. 1999, 76, 578.
Coordination Compounds |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions |
Metals |
Organometallics |
Hydrogen Bonding
A Way To Predict the Relative Stabilities of Structural Isomers  John M. Lyon
This paper discusses a method to evaluate the relative stabilities of structural isomers of inorganic and organic compounds. The method uses a simple set of rules that can be applied with only a knowledge of the electron configuration of the atoms and the periodic trends in atomic size.
Lyon, John M. J. Chem. Educ. 1999, 76, 364.
Covalent Bonding |
Diastereomers |
Molecular Properties / Structure
Covalent and Ionic Molecules: Why Are BeF2 and AlF3 High Melting Point Solids whereas BF3 and SiF4 Are Gases?  Ronald J. Gillespie
Calculated ionic charges show that BF3 and SiF4 are predominately ionic molecules yet in contrast to BeF2 and AlF3 they exist as gases at room temperature and form molecular solids rather than infinite three-dimensional "ionic" solids at low temperature. Whether or not ionic molecules form a three-dimensional infinite ionic lattice or a molecular solid depends more on relative atomic (ionic) sizes than on the nature of the bonding in the isolated molecule.
Gillespie, Ronald J. J. Chem. Educ. 1998, 75, 923.
Covalent Bonding |
Molecular Properties / Structure |
Solids |
Gases |
Ionic Bonding
A Simple Qualitative Molecular-Orbital/Valence-Bond Description of the Bonding in Main Group "Hypervalent" Molecules  Owen J. Curnow
A multicenter valence-bond/molecular-orbital bonding scheme for main group "hypervalent" molecules is proposed which extends the 3-center-4-electron (3c-4e) bonding model of Rundle and Pimentel to include 4c-6e, 5c-8e, and 6c-10e bonds. This model allows the determination of bond orders and a rationalisation of bond distances.
Curnow, Owen J. J. Chem. Educ. 1998, 75, 910.
Covalent Bonding |
MO Theory |
Theoretical Chemistry |
Main-Group Elements |
Molecular Properties / Structure
Demonstrations on Paramagnetism with an Electronic Balance  Adolf Cortel
The demonstration shows the paramagnetism of common inorganic compounds by measuring the force with which they are attracted by a magnet over the plate of an electronic balance.
Cortel, Adolf. J. Chem. Educ. 1998, 75, 61.
Magnetic Properties |
Atomic Properties / Structure |
Covalent Bonding
The Basics of Covalent Bonding  Jeffrey R. Reimers, George B. Bacskay, and Sture Nordholm
Through a study of the hydrogen atom, hydrogen molecule ion, and hydrogen molecule, The Basics of Covalent Bonding explores the basic principles of atomic structure and covalent chemical bonding. The range and diversity of the problems addressed and the extensive set of help-pages make the program a suitable pedagogical aid at both introductory and advanced levels of undergraduate study.
Reimers, Jeffrey R.; Bacskay, George G.; Nordholm, Sture. J. Chem. Educ. 1997, 74, 1503.
Covalent Bonding
The Mechanism of Covalent Bonding  George B. Bacskay, Jeffrey R. Reimers, and Sture Nordholm
In this paper we reexamine the mechanism of covalent bonding, specifically with a view to its teaching, that starts with quantum theory and the interpretation of its predictions, such as electronic delocalization and the concomitant lowering of the electronic energy as bonding occurs. Indeed, delocalization is shown to be the central mechanism of covalent bond formation. These ideas are discussed in detail in the context of the simplest molecules: H2+ and H2.
Bacskay, George G.; Reimers, Jeffrey R.; Nordholm, Sture. J. Chem. Educ. 1997, 74, 1494.
Theoretical Chemistry |
Covalent Bonding
Pi-Electron Delocatlization in Organic Molecules with C-N Bonds  Vernon G. S. Box and Hing Wan Yu
Molecular modeling can provide great stimulation to the pedagogical process if students and teachers use this tool to examine the structural aspects of organic molecules whose structures have been determined by X-ray crystallography. An example of this is provided by one of our undergraduate research projects that examined delocalization in p-systems.
Box, Vernon G. S.; Yu, Hing Wan. J. Chem. Educ. 1997, 74, 1293.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
X-ray Crystallography
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
The Role of Electrostatic Effects in Organic Chemistry  Kenneth B. Wiberg
Electrostatic effects on the properties of organic compounds are reviewed to demonstrate the importance of electronegativity differences between the atoms forming a bond. Bond dissociation energies are generally found to increase as the electronegativity difference increases, and the bonds have increased ionic character.
Wiberg, Kenneth B. J. Chem. Educ. 1996, 73, 1089.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding
Chemical Topology: The Ins and Outs of Molecular Structure  Dennis K. Mitchell and Jean-Claude Chambron
Using models of macromolecules to develop and broaden an understanding of bonding and structure; includes many examples of molecules of topological interest.
Mitchell, Dennis K.; Chambron, Jean-Claude. J. Chem. Educ. 1995, 72, 1059.
Molecular Properties / Structure |
Molecular Modeling |
Stereochemistry |
Molecular Mechanics / Dynamics |
Covalent Bonding
Lewis Structures of Oxygen Compounds of 3p-5p Nonmetals  Darel K. Straub
Procedure for writing Lewis structures of oxygen compounds of 3p-5p nonmetals.
Straub, Darel K. J. Chem. Educ. 1995, 72, 889.
Lewis Structures |
Molecular Properties / Structure |
Covalent Bonding |
Main-Group Elements
Lewis Structures of Boron Compounds Involving Multiple Bonding  Straub, Darel K.
Considers evidence for multiple bonding in boron compounds and supposed exceptions to the octet rule.
Straub, Darel K. J. Chem. Educ. 1995, 72, 494.
Lewis Structures |
Covalent Bonding
A Quantitative van Arkel Diagram  Jensen, William B.
Using van Arkel diagrams to schematically represent relationships between ionic, covalent, and metallic bonds.
Jensen, William B. J. Chem. Educ. 1995, 72, 395.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
The Lewis Structure: An Expanded Perspective  Reed, James L.
A simple bridge between the molecular orbital and valence bond models.
Reed, James L. J. Chem. Educ. 1994, 71, 98.
Lewis Structures |
Covalent Bonding |
MO Theory |
Molecular Properties / Structure
Classifying Substances by Electrical Character: An Alternative to Classifying by Bond Type  Nelson, P. G.
An alternative classification of substances based on their electrical properties.
Nelson, P. G. J. Chem. Educ. 1994, 71, 24.
Conductivity |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Semiconductors
Using Infrared Spectroscopy Measurements To Study Intermolecular Hydrogen Bonding: Calculating the Degree of Association, Equilibrium Constant, and Bond Energy for Hydrogen Bonding in Benzyl Alcohol and Phenol  Frohlich, H.
This paper presents simple IR spectroscopy experiments that the author has used for two years in a third-year course, which covers spectroscopy and binding.
Frohlich, H. J. Chem. Educ. 1993, 70, A3.
Hydrogen Bonding |
IR Spectroscopy |
Aromatic Compounds |
Equilibrium |
Covalent Bonding
Why Low Melting Does Not Indicate Covalency in MX4 Compounds: Examining the Importance of Crystal Structure in the Behavior of Solids  Lingafelter, Edward C.
A summary of the importance of relative ionic sizes and coordination numbers in determining the behavior of solids from prior papers by Pauling and Kossel.
Lingafelter, Edward C. J. Chem. Educ. 1993, 70, 98.
Solids |
Ionic Bonding |
Covalent Bonding |
Kinetic-Molecular Theory |
Enrichment / Review Materials
The significance of the bond angle in sulfur dioxide  Purser, Gordon H.
Discussion of the bonding in and structure of SO2.
Purser, Gordon H. J. Chem. Educ. 1989, 66, 710.
Molecular Properties / Structure |
Covalent Bonding
Stereoelectronic effects, tau bonds, and Cram's rule  Wintner, Claude E.
Review of stereoelectronic effects and outline of the suggestion that the "bent bond" (tau bond) be used as a model for the double bond.
Wintner, Claude E. J. Chem. Educ. 1987, 64, 587.
Molecular Properties / Structure |
Covalent Bonding
The arsenic-arsenic double bond revisited  Levinson, Alfred S.
Arsenic-arsenic double bonds are stabilized by bulky substituents.
Levinson, Alfred S. J. Chem. Educ. 1987, 64, 407.
Covalent Bonding
No rabbit ears on water. The structure of the water molecule: What should we tell the students?  Laing, Michael
Analysis of the bonding found in water and how it results in the observed geometry of the water molecule.
Laing, Michael J. Chem. Educ. 1987, 64, 124.
Molecular Properties / Structure |
MO Theory |
Covalent Bonding
Coulombic models in chemical bonding. II. Dipole moments of binary hydrides  Sacks, Lawrence J.
A discussion of Coulumbic models and their aid in understanding chemical bonding.
Sacks, Lawrence J. J. Chem. Educ. 1986, 63, 373.
Electrochemistry |
Molecular Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
The Pauling 3-electron bond: A recommendation for the use of the Linnett structure  Harcourt, Richard D.
Recommends the Linnett structure IV for future use when a valence-bond structure for a Pauling 3-electron bond is required.
Harcourt, Richard D. J. Chem. Educ. 1985, 62, 99.
Covalent Bonding
Models to depict hybridization of atomic orbitals  Stubblefield, C. T.
Six models of hybridization: linear, trigonal, tetrahedral, planar, trigonal bipyrimidal, and octahedral.
Stubblefield, C. T. J. Chem. Educ. 1984, 61, 158.
Atomic Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Coordination Compounds
The bonds of conformity: W. A. Noyes and the initial failure of the Lewis theory in America  Saltzman, Martin D.
Though their theoretical framework proved to be faulty, W. A. Noyes and several of his American contemporaries were among the first chemists to utilize the electron to explain organic structure and reactions.
Saltzman, Martin D. J. Chem. Educ. 1984, 61, 119.
Molecular Properties / Structure |
Covalent Bonding
A needed replacement for the customary description of chemical bonding  Sanderson, R. T.
Description of and encouragement to use an alternative to the covalent / ionic model for chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1982, 59, 376.
Covalent Bonding |
Ionic Bonding
One-dimensional K2Pt(CN)4BrO 3H20. A structure containing five different types of bonding  Masuo, Steven T.; Miller, Joel S.; Gebert, Elizabeth; Reis, Arthur H., Jr.
Examples of the five types of bonding found in matter and there manifestations in the title compound.
Masuo, Steven T.; Miller, Joel S.; Gebert, Elizabeth; Reis, Arthur H., Jr. J. Chem. Educ. 1982, 59, 361.
Coordination Compounds |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Hydrogen Bonding
The Nature of the Chemical Bond, Review 2 (Pauling, Linus)  Morlan, Gordon E.
Classic book on the valence-bond theory of chemical bonding.
Morlan, Gordon E. J. Chem. Educ. 1982, 59, 261.
Covalent Bonding
The Nature of the Chemical Bond, Review 1 (Pauling, Linus)  Roe, Robert, Jr.
Classic book on the valence-bond theory of chemical bonding.
Roe, Robert, Jr. J. Chem. Educ. 1982, 59, 260.
Covalent Bonding
Bent bonds and multiple bonds  Robinson, Edward A.; Gillespie, Ronald J.
Considers carbon-carbon multiple bonds in terms of the bent bond model first proposed by Pauling in 1931.
Robinson, Edward A.; Gillespie, Ronald J. J. Chem. Educ. 1980, 57, 329.
Covalent Bonding |
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Alkynes
The valence bond interpretation of molecular geometry  Smith, Derek W.
Shows that the valence bond theory not only provides an attractive means of describing the bonding in a molecule but can also explain its geometry.
Smith, Derek W. J. Chem. Educ. 1980, 57, 106.
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
Loosely-bound diatomic molecules  Balfour, W. J.
Over the past decade, careful spectroscopic studies have established the existence of bound rare gas and alkaline earth diatomic molecules.
Balfour, W. J. J. Chem. Educ. 1979, 56, 452.
Covalent Bonding |
Molecular Properties / Structure
Electrons, bonding, orbitals, and light: A unified approach to the teaching of structure and bonding in organic chemistry courses  Lenox, Ronald S.
A suggested list of topics and methods for teaching introductory organic students bonding concepts.
Lenox, Ronald S. J. Chem. Educ. 1979, 56, 298.
Atomic Properties / Structure |
Lewis Structures |
Spectroscopy |
Covalent Bonding
Assigning oxidation states to some metal dioxygen complexes of biological interest  Summerville, David A.; Jones, Robert D.; Hoffman, Brian M.; Basolo, Fred
Considers the bonding of dioxygen in metal-dioxygen complexes, paying particular attention to the problems encountered in assigning conventional oxidation numbers to both the metal center and coordinated dioxygen.
Summerville, David A.; Jones, Robert D.; Hoffman, Brian M.; Basolo, Fred J. Chem. Educ. 1979, 56, 157.
Oxidation State |
Metals |
Covalent Bonding |
MO Theory
The LMO description of multiple bonding and multiple lone pairs  England, Walter
Examines localized molecular orbitals and the description of multiple bonds and lone pairs.
England, Walter J. Chem. Educ. 1975, 52, 427.
Covalent Bonding |
MO Theory
The Cooper structure - A simple model to illustrate the tetrahedral geometry of sp3 bonding  Walker, Ruth A.
A cut out model illustrating the tetrahedral geometry of sp3 bonding.
Walker, Ruth A. J. Chem. Educ. 1973, 50, 703.
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding
A simple demonstration of O2 paramagnetism. A macroscopically observable difference between VB and MO approaches to bonding theory  Saban, G. H.; Moran, T. F.
A simple apparatus to demonstrate the paramagnetic behavior of oxygen.
Saban, G. H.; Moran, T. F. J. Chem. Educ. 1973, 50, 217.
Molecular Properties / Structure |
Magnetic Properties |
MO Theory |
Covalent Bonding
The electron-pair repulsion model for molecular geometry  Gmespie, R. J.
Reviews the electron-pair repulsion model for molecular geometry and examines three-centered bonds, cluster compounds, bonding among the transition elements, and exceptions to VSEPR rules.
Gmespie, R. J. J. Chem. Educ. 1970, 47, 18.
Molecular Properties / Structure |
Covalent Bonding |
MO Theory |
VSEPR Theory |
Transition Elements
Organometallic Compounds of the Group IV Elements. Volume 1, The Bond to Carbon (MacDiarmid, Alan G.)  O'Brien, Daniel H.

O'Brien, Daniel H. J. Chem. Educ. 1969, 46, 704.
Organometallics |
Covalent Bonding
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
Hard and soft acids and bases, HSAB, part II: Underlying theories  Pearson, Ralph G.
Explores possible explanations for and presents applications of the principles of hard and soft acids and bases.
Pearson, Ralph G. J. Chem. Educ. 1968, 45, 643.
Acids / Bases |
Lewis Acids / Bases |
Aqueous Solution Chemistry |
Solutions / Solvents |
Ionic Bonding |
Covalent Bonding
A bonding parameter and its application to chemistry  Elson, Jesse
In this study, single bond dissociation energies are combined with the associated bond distances to yield additional information about chemical bonding.
Elson, Jesse J. Chem. Educ. 1968, 45, 564.
Covalent Bonding |
Physical Properties
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
Letter to the editor (the author replies)  Luder, W. F.
Replies to the concerns raised by the cited letter.
Luder, W. F. J. Chem. Educ. 1967, 44, 621.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure
Letter to the editor  Sementsov, A.
Questions the configuration of benzene supported by the theory discussed in the cited paper.
Sementsov, A. J. Chem. Educ. 1967, 44, 621.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure
Some simple models for the double quartet approach  Zipp, Arden P.
Pipe cleaners are used to construct simple models for the double quartet or electronic repulsion theory.
Zipp, Arden P. J. Chem. Educ. 1967, 44, 494.
Molecular Modeling |
Covalent Bonding
The electron repulsion theory of the chemical bond. II. An alternative to resonance hybrids  Luder, W. F.
The author proposes the electron repulsion theory of the chemical bond as an alternative to resonance hybrids.
Luder, W. F. J. Chem. Educ. 1967, 44, 269.
Covalent Bonding |
Resonance Theory
Teaching aromatic substitution: A molecular orbital approach  Meislich, Herbert
This paper presents a way of teaching aromatic substitution using the concepts of alternate polarity and electron delocalization through extended pi-bonding.
Meislich, Herbert J. Chem. Educ. 1967, 44, 153.
Aromatic Compounds |
MO Theory |
Nucleophilic Substitution |
Covalent Bonding |
Molecular Properties / Structure
Models illustrating d orbitals involved in multiple bonding  Barrett, Edward J.
Describes the use of Framework Molecular Orbital Models to illustrate the d orbitals involved in multiple bonding
Barrett, Edward J. J. Chem. Educ. 1967, 44, 146.
Atomic Properties / Structure |
Molecular Modeling |
Covalent Bonding
The chemistry of tetrasulfur tetranitride  Allen, Christopher W.
The chemistry of sulfur-nitrogen compounds has several features of interest and importance: stability of the sulfur-nitrogen bond, tendency to form six- and eight-membered rings, ring contraction, polymerization, and negative ion formation.
Allen, Christopher W. J. Chem. Educ. 1967, 44, 38.
Covalent Bonding |
Polymerization
A unified theory of bonding for cyclopropanes  Bernett, William A.
Examines various models for bonding in cyclopropanes.
Bernett, William A. J. Chem. Educ. 1967, 44, 17.
Covalent Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
MO Theory |
Molecular Modeling
IV - Isoelectronic systems  Bent, Henry A.
A detailed consideration of the principles of isoelectric systems.
Bent, Henry A. J. Chem. Educ. 1966, 43, 170.
Gases |
Nonmetals |
Covalent Bonding
Models for the double bond  Walters, Edward A.
Examines several models for the double bond, including the Baeyer model and bent-bond method.
Walters, Edward A. J. Chem. Educ. 1966, 43, 134.
Covalent Bonding
III - Bond energies  Benson, Sidney W.
Examines bond dissociation energies , methods for measuring such energies, some representative values of such energies, structural aspects of bond dissociation energies, and bond energies in ionized species.
Benson, Sidney W. J. Chem. Educ. 1965, 42, 502.
Covalent Bonding
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Atomic structure and chemical bonding (Seel, F.; Greenwood, N. N.; Stadler, H. P.)  Murmann, R. Kent

Murmann, R. Kent J. Chem. Educ. 1964, 41, 518.
Atomic Properties / Structure |
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Noncovalent Interactions
Pi-bonding in tetrahedral molecules  Urch, D. S.
Examines the nature of bonding, especially pi-bonding, in groups exhibiting E, T2, and T1 symmetry.
Urch, D. S. J. Chem. Educ. 1964, 41, 502.
Group Theory / Symmetry |
Covalent Bonding
Rotational and pseudorotational barriers in simple molecules  Miller, Sidney I.
This papers outlines the scope and variety of rotational barriers found in simple molecules.
Miller, Sidney I. J. Chem. Educ. 1964, 41, 421.
Molecular Properties / Structure |
Covalent Bonding
An atomic and molecular orbital models kit  Stone, A. Harris; Siegelman, Irwin
The models presented here allows one to see the overlap that constitutes covalent bonds.
Stone, A. Harris; Siegelman, Irwin J. Chem. Educ. 1964, 41, 395.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Bonding in xenon hexafluoride  Kaufman, Joyce J.
Examines empirical evidence and hypotheses regarding the bonding of xenon hexafluoride.
Kaufman, Joyce J. J. Chem. Educ. 1964, 41, 183.
Nonmetals |
Covalent Bonding
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
A classical electrostatic view of chemical forces  Jaffe, H. H.
This paper reviews the different types of forces involved in the formation of chemical compounds, solids and liquids.
Jaffe, H. H. J. Chem. Educ. 1963, 40, 649.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Noncovalent Interactions
Tangent-sphere models of molecules. II. Uses in Teaching  Bent, Henry A.
Tangent-sphere models can be used to represent highly strained bonds and multicentered bonds, atoms with expanded and contracted octets, inter- and intramolecular interactions, and the effects of electronegative groups, lone pairs, and multiple bonds on molecular geometry, bond properties, and chemical reactivity.
Bent, Henry A. J. Chem. Educ. 1963, 40, 523.
Molecular Properties / Structure |
Covalent Bonding
Chemical bonding and the geometry of molecules (Ryschkewitsch, George E.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1963, 40, 441.
Molecular Properties / Structure |
Covalent Bonding
The use of n-center bonds  Carpenter, Gene B.
The quantum mechanical basis of the n-center bond is summarized, some of its qualitative features are deduced, and a variety of illustrative applications are presented.
Carpenter, Gene B. J. Chem. Educ. 1963, 40, 385.
Covalent Bonding |
Quantum Chemistry
Relationship of exothermicities of compounds to chemical bonding  Siegel, Bernard
The sign and magnitude of the standard heat of formation of a chemical compound is often used incorrectly to characterize its relative stability compared to other compounds.
Siegel, Bernard J. Chem. Educ. 1963, 40, 308.
Calorimetry / Thermochemistry |
Covalent Bonding
Stable gaseous species at high temperatures  Siegel, Bernard
Presents a systematic correlation of the bonding in the gaseous elements with the strengths of their respective bonds.
Siegel, Bernard J. Chem. Educ. 1963, 40, 304.
Gases |
Carbocations |
Covalent Bonding
Chemistry of diphosphorus compounds  Huheey, James E.
Examines diphosphorus chemistry, including tri- and tetra- covalent diphosphorus compounds; optical activity in diphosphines; unsaturated diphosphorus compounds, cyclic compounds, and higher phosphines; reactions producing and destroying P-P bonds; and diphosphorus compounds as ligands.
Huheey, James E. J. Chem. Educ. 1963, 40, 153.
Molecular Properties / Structure |
Reactions |
Covalent Bonding |
Coordination Compounds
Intrinsic bond energies  Siegel, S.; Siegel, B.
Examines intrinsic bond energies drawn from spectroscopic data and focusses on beryllium hydride as an example.
Siegel, S.; Siegel, B. J. Chem. Educ. 1963, 40, 143.
Covalent Bonding |
Molecular Properties / Structure
A comparison of theories: Molecular orbital, valence bond, and ligand field  Liehr, Andrew D.
Compares the development, nature, and applications of the molecular orbital, valence bond, and ligand field theories.
Liehr, Andrew D. J. Chem. Educ. 1962, 39, 135.
MO Theory |
Covalent Bonding |
Crystal Field / Ligand Field Theory
Ionic character, polarity, and electronegativity  Wilmshurst, J. K.
This article attempts to clearly define ionic character and polarity in both the valence bond and molecular orbital approximations; the electronegativity concept is also discussed.
Wilmshurst, J. K. J. Chem. Educ. 1962, 39, 132.
Covalent Bonding |
MO Theory
The uses and abuses of bond energies  Knox, Bruce E.; Palmer, Howard B.
The author argues that the concepts of bond energy and bond-dissociation energy be presented to undergraduate physical and organic chemistry students in enough detail that some real understanding results.
Knox, Bruce E.; Palmer, Howard B. J. Chem. Educ. 1961, 38, 292.
Calorimetry / Thermochemistry |
Covalent Bonding
Inorganic infrared spectroscopy  Ferraro, John R.
Focuses on the use of infrared spectroscopy in solving various problems in inorganic chemistry.
Ferraro, John R. J. Chem. Educ. 1961, 38, 201.
Spectroscopy |
IR Spectroscopy |
Coordination Compounds |
Molecular Properties / Structure |
Organometallics |
Ionic Bonding |
Covalent Bonding
Pi and sigma bonding in organic compounds: An experiment with models  Hoffman, Katherine B.
This exercise is designed to portray the approximate shape of s, p, sp, sp2, and sp3 orbitals and to give a picture of their overlap in bond formation.
Hoffman, Katherine B. J. Chem. Educ. 1960, 37, 637.
Covalent Bonding |
Molecular Modeling |
Molecular Properties / Structure
Distribution of atomic s character in molecules and its chemical implications  Bent, Henry A.
Explains the shape of simple molecules using the distribution of atomic s character.
Bent, Henry A. J. Chem. Educ. 1960, 37, 616.
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding
Some recent developments in the theory of bonding in complex compounds of the transition metals  Sutton, Leslie E.
Examines the ligand field and the molecular orbital theories of complexes, particularly involving transition metals.
Sutton, Leslie E. J. Chem. Educ. 1960, 37, 498.
Noncovalent Interactions |
Transition Elements |
Metals |
Crystal Field / Ligand Field Theory |
Coordination Compounds |
MO Theory |
Covalent Bonding
Near infrared spectra: A neglected field of spectral study  Wheeler, Owen H.
Examines several issues related to infrared spectroscopy, including challenges in instrumentation, spectral interpretation, and analytical applications.
Wheeler, Owen H. J. Chem. Educ. 1960, 37, 234.
Spectroscopy |
IR Spectroscopy |
Covalent Bonding
Dynamic projector display for atomic orbitals and the covalent bond  Thompson, H. Bradford
An overhead projector is used to display the combination of simple atomic orbitals to form hybrid and molecular orbitals.
Thompson, H. Bradford J. Chem. Educ. 1960, 37, 118.
Atomic Properties / Structure |
Covalent Bonding
The contributions of Fritz Arndt to resonance theory  Campaigne, E.
Examines the contribution of Fritz Arndt to resonance theory and his work regarding the nature of bonds in pyrone ring systems.
Campaigne, E. J. Chem. Educ. 1959, 36, 336.
Resonance Theory |
Aromatic Compounds |
Covalent Bonding
Comparative organic chemistry: Carbon and silicon  Wilk, I. J.
Contrasts silicone chemistry with that of regular organic compounds.
Wilk, I. J. J. Chem. Educ. 1957, 34, 463.
Covalent Bonding |
Ionic Bonding |
Mechanisms of Reactions |
Stereochemistry
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
The coordinate bond and the nature of complex inorganic compounds. I. The formation of single covalent bonds  Busch, Daryle H.
The factors determining the stabilities of complex inorganic compounds are considered in terms of thermochemical cycle; it is pointed out that the stabilities of complexes increase as the percent covalent character in their bonds increases, and weak covalent bonds will occur in any given instance.
Busch, Daryle H. J. Chem. Educ. 1956, 33, 376.
Coordination Compounds |
Covalent Bonding |
Metals |
Atomic Properties / Structure
Note on the representation of the electronic structures of acetylene and benzene  Noller, Carl R.
The three dimensional nature of molecular orbitals in acetylene and benzene are illustrated.
Noller, Carl R. J. Chem. Educ. 1955, 32, 23.
Alkenes |
Alkynes |
Aromatic Compounds |
Molecular Properties / Structure |
Covalent Bonding |
MO Theory
The evolution of valence theory and bond symbolism  Mackle, Henry
Traces the historic evolution of valence theory and bond symbolism, including numerical aspects of chemical bonding, the mechanism of chemical bonding and its origins, chemical bonding in organic compounds, stereochemical aspects of chemical bonding, residual valence of unsaturated compounds, and electronic theories of valence.
Mackle, Henry J. Chem. Educ. 1954, 31, 618.
Covalent Bonding
Electronegativities in inorganic chemistry. III  Sanderson, R. T.
The purpose of this paper is to illustrate some of the practical applications of electronegativities and charge distribution.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 238.
Atomic Properties / Structure |
Covalent Bonding |
Acids / Bases
Nature of adhesion  Reinhart, Frank W.
Examines the theory of adhesion and the variety of attractive forces involved.
Reinhart, Frank W. J. Chem. Educ. 1954, 31, 128.
Surface Science |
Covalent Bonding |
Metallic Bonding |
Noncovalent Interactions