TIGER

Journal Articles: 40 results
Six Pillars of Organic Chemistry  Joseph J. Mullins
This article focuses on a core set of conceptselectronegativity, polar covalent bonding, inductive and steric effects, resonance, and aromaticitythe proper application of which can explain and predict a wide variety of chemical, physical, and biological properties of molecules and conceptually unite important features of general, organic, and biochemistry.
Mullins, Joseph J. J. Chem. Educ. 2008, 85, 83.
Bioorganic Chemistry |
Covalent Bonding |
Hydrogen Bonding |
Mechanisms of Reactions |
Periodicity / Periodic Table |
Reactive Intermediates |
Resonance Theory
Relativistic Effects and the Chemistry of the Heaviest Main-Group Elements  John S. Thayer
The heaviest main-group elements often show markedly different chemical properties than their lighter counterparts. Most of these differences arise from changes in the relative energies of the outer-shell atomic orbitals that can be explained by application of Einstein's theory of special relativity to electrons in atoms.
Thayer, John S. J. Chem. Educ. 2005, 82, 1721.
Main-Group Elements |
Atomic Properties / Structure |
Metals |
Organometallics |
Periodicity / Periodic Table
Boiling Point versus Mass  Michael Laing
I am very pleased that Ronald Rich has written making these comments, because he is pre-eminent in this field, beginning with his early book, Periodic Correlations.
Laing, Michael. J. Chem. Educ. 2004, 81, 642.
Atomic Properties / Structure |
Molecular Properties / Structure |
Noncovalent Interactions |
Liquids |
Phases / Phase Transitions / Diagrams
Boiling Point versus Mass   Ronald L. Rich
Laing gave a useful examination of the boiling points of small molecules versus molecular mass. However, a molecule escaping from a liquid is not closely analogous to a satellite breaking free from the earths gravitational field with the requirement of a minimum escape velocity, such that the required kinetic energy is proportional to the mass of the satellite at that escape velocity.
Rich, Ronald L. J. Chem. Educ. 2004, 81, 642.
Molecular Properties / Structure |
Atomic Properties / Structure |
Liquids |
Noncovalent Interactions |
Phases / Phase Transitions / Diagrams
The Noble Gas Configuration—Not the Driving Force but the Rule of the Game in Chemistry  Roland Schmid
Explains the covalent and ionic bonding behavior of main-group elements in terms of electromagnetic forces rather than the supposed "stability" of noble-gas configurations.
Schmid, Roland. J. Chem. Educ. 2003, 80, 931.
Molecular Modeling |
Periodicity / Periodic Table |
Main-Group Elements |
Atomic Properties / Structure |
Reactions |
Covalent Bonding |
Ionic Bonding
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
An Evergreen: The Tetrahedral Bond Angle  Marten J. ten Hoor
Summary and analysis of derivations of the tetrahedral bond angle.
ten Hoor, Marten J. J. Chem. Educ. 2002, 79, 956.
Molecular Properties / Structure |
Covalent Bonding
Tetrahedral Geometry and the Dipole Moment of Molecules  Sara N. Mendiara and L. J. Perissinotti
Determination of bond angles and moments of tetrahedral molecules.
Mendiara, Sara N.; Perissinotti, L. J. J. Chem. Educ. 2002, 79, 64.
Molecular Properties / Structure |
Chemometrics |
Covalent Bonding
Electron Densities, Atomic Charges, and Ionic, Covalent and Polar Bonds  Ronald J. Gillespie
The terms ionic and covalent character are vague, qualitative, and ill-defined. In contrast, the analysis of the electron density by the AIM theory leads to clearly defined quantitative properties such as the charges on the atoms and the electron density at the bond critical point that provide a sound basis for discussing bonding and geometry.
Gillespie, Ronald J. J. Chem. Educ. 2001, 78, 1688.
Computational Chemistry |
Molecular Properties / Structure |
Theoretical Chemistry |
Ionic Bonding |
Covalent Bonding
Boiling Points of the Family of Small Molecules CHwFxClyBrz: How Are They Related to Molecular Mass?  Michael Laing
Investigating the role of molecular mass in determining boiling points of small molecules.
Laing, Michael. J. Chem. Educ. 2001, 78, 1544.
Atomic Properties / Structure |
Noncovalent Interactions |
Liquids |
Molecular Properties / Structure |
Physical Properties
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
Should Gaseous BF3 and SiF4 Be Described as Ionic Compounds?  Arne Haaland, Trygve Helgaker, Kenneth Ruud, and D. J. Shorokhov
Analysis suggesting that representing BF3 and SiF3 as ionic compounds may be misleading.
Haaland, Arne; Helgaker, Trygve; Ruud, Kenneth; Shorokhov, D. J. J. Chem. Educ. 2000, 77, 1076.
Molecular Properties / Structure |
Covalent Bonding |
Ionic Bonding
The Use of Molecular Modeling and VSEPR Theory in the Undergraduate Curriculum to Predict the Three-Dimensional Structure of Molecules  Brian W. Pfennig and Richard L. Frock
Despite the simplicity and elegance of the VSEPR model, however, students often have difficulty visualizing the three-dimensional shapes of molecules and learning the more subtle features of the model, such as the bond length and bond angle deviations from ideal geometry that accompany the presence of lone pair or multiple bond domains or that result from differences in the electronegativity of the bonded atoms, partial charges and molecular dipole moments, and site preferences in the trigonal bipyramidal electron geometry.
Pfennig, Brian W.; Frock, Richard L. J. Chem. Educ. 1999, 76, 1018.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
The Role of Electrostatic Effects in Organic Chemistry  Kenneth B. Wiberg
Electrostatic effects on the properties of organic compounds are reviewed to demonstrate the importance of electronegativity differences between the atoms forming a bond. Bond dissociation energies are generally found to increase as the electronegativity difference increases, and the bonds have increased ionic character.
Wiberg, Kenneth B. J. Chem. Educ. 1996, 73, 1089.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding
Lewis Structures of Boron Compounds Involving Multiple Bonding  Straub, Darel K.
Considers evidence for multiple bonding in boron compounds and supposed exceptions to the octet rule.
Straub, Darel K. J. Chem. Educ. 1995, 72, 494.
Lewis Structures |
Covalent Bonding
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
The significance of the bond angle in sulfur dioxide  Purser, Gordon H.
Discussion of the bonding in and structure of SO2.
Purser, Gordon H. J. Chem. Educ. 1989, 66, 710.
Molecular Properties / Structure |
Covalent Bonding
Coulombic models in chemical bonding. II. Dipole moments of binary hydrides  Sacks, Lawrence J.
A discussion of Coulumbic models and their aid in understanding chemical bonding.
Sacks, Lawrence J. J. Chem. Educ. 1986, 63, 373.
Electrochemistry |
Molecular Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
Structural parameters of methyl iodide by infrared spectroscopy  McNaught, Ian J.
A study of the rotation-vibration spectrum of methyl chloride permits calculation of band origins of the fundamentals, Coriolis coupling constants of the degenerate modes, rotation constants, and bond lengths and force constants.
McNaught, Ian J. J. Chem. Educ. 1982, 59, 879.
IR Spectroscopy |
Spectroscopy |
Molecular Properties / Structure |
Covalent Bonding
The negatively-charged nitrogen in ammonium ion and derived concepts of acidity, basicity, proton affinity, and ion energetics  Greenberg, Arthur; Winkler, Robert; Smith, Barbara L.; Liebman, Joel F.
The concept of atomic charges is intimately related to those of acidity, basicity, proton affinity, and ion energetics; among the plethora of numbers derived by calculation and experiment lie simple and useful rules for the understanding and prediction of chemical behavior.
Greenberg, Arthur; Winkler, Robert; Smith, Barbara L.; Liebman, Joel F. J. Chem. Educ. 1982, 59, 367.
Acids / Bases |
Atomic Properties / Structure
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
Some aspects of d-orbital participation in phosphorus and silicon chemistry  Bissey, Jack Edwin
Investigates several aspects of d-orbital participation in phosphorus and silicon chemistry.
Bissey, Jack Edwin J. Chem. Educ. 1967, 44, 95.
Atomic Properties / Structure
The chemistry of tetrasulfur tetranitride  Allen, Christopher W.
The chemistry of sulfur-nitrogen compounds has several features of interest and importance: stability of the sulfur-nitrogen bond, tendency to form six- and eight-membered rings, ring contraction, polymerization, and negative ion formation.
Allen, Christopher W. J. Chem. Educ. 1967, 44, 38.
Covalent Bonding |
Polymerization
A unified theory of bonding for cyclopropanes  Bernett, William A.
Examines various models for bonding in cyclopropanes.
Bernett, William A. J. Chem. Educ. 1967, 44, 17.
Covalent Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
MO Theory |
Molecular Modeling
Electronegativities and group IVA chemistry  Payne, Dwight A., Jr.; Fink, Frank Hall
The teacher of inorganic chemistry should present the representative elements of group IVA and their properties as an intellectual and empirical form of investigation rather than as a mere collection of information.
Payne, Dwight A., Jr.; Fink, Frank Hall J. Chem. Educ. 1966, 43, 654.
Atomic Properties / Structure |
Periodicity / Periodic Table
IV - Isoelectronic systems  Bent, Henry A.
A detailed consideration of the principles of isoelectric systems.
Bent, Henry A. J. Chem. Educ. 1966, 43, 170.
Gases |
Nonmetals |
Covalent Bonding
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
A classical electrostatic view of chemical forces  Jaffe, H. H.
This paper reviews the different types of forces involved in the formation of chemical compounds, solids and liquids.
Jaffe, H. H. J. Chem. Educ. 1963, 40, 649.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Noncovalent Interactions
Letters to the editor  Cockburn, B. L.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Cockburn, B. L. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Letters to the editor  Snatzke, G.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Snatzke, G. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Ionic character, polarity, and electronegativity  Wilmshurst, J. K.
This article attempts to clearly define ionic character and polarity in both the valence bond and molecular orbital approximations; the electronegativity concept is also discussed.
Wilmshurst, J. K. J. Chem. Educ. 1962, 39, 132.
Covalent Bonding |
MO Theory
Electronic configuration of metal oxides  O'Reilly, D. E.
Examines the properties of metal oxides in light of crystal field theory, covalency, catalysis, and energy bands.
O'Reilly, D. E. J. Chem. Educ. 1961, 38, 312.
Atomic Properties / Structure |
Metals |
Transition Elements |
Crystal Field / Ligand Field Theory |
Catalysis
Distribution of atomic s character in molecules and its chemical implications  Bent, Henry A.
Explains the shape of simple molecules using the distribution of atomic s character.
Bent, Henry A. J. Chem. Educ. 1960, 37, 616.
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding
An unconventional representation of multiple bonds  Gillis, Richard G.; Nelson, Peter F.
There are several advantages to differentiating between sigma and pi electrons in representing multiple bonds.
Gillis, Richard G.; Nelson, Peter F. J. Chem. Educ. 1954, 31, 546.
Covalent Bonding
Nature of adhesion  Reinhart, Frank W.
Examines the theory of adhesion and the variety of attractive forces involved.
Reinhart, Frank W. J. Chem. Educ. 1954, 31, 128.
Surface Science |
Covalent Bonding |
Metallic Bonding |
Noncovalent Interactions
Electronegativities in inorganic chemistry: (II)  Sanderson, R. T.
The purpose of this paper is to demonstrate the application of electronegativity to ions and the estimation of the partial charge on combined atoms.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 2.
Atomic Properties / Structure