TIGER

Journal Articles: 36 results
Netorials  Rebecca Ottosen, John Todd, Rachel Bain, Mike Miller, Liana Lamont, Mithra Biekmohamadi, and David B. Shaw
Netorials is a collection of about 30 online tutorials on general chemistry topics designed as a supplement for high school or college introductory courses. Each Netorial contains several pages of interactive instruction that includes animated mouse-overs, questions for students to answer, and manipulable molecular structures.
Ottosen, Rebecca; Todd, John; Bain, Rachel; Miller, Mike; Lamont. Liana; Biekmohamadi, Mithra; Shaw, David B. J. Chem. Educ. 2008, 85, 463.
Acids / Bases |
Electrochemistry |
Reactions |
VSEPR Theory |
Stoichiometry
The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class  Jeffrey J. Keaffaber, Ramiro Palma, and Kathryn R. Williams
Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. This article uses a hypothetical tank to house ocean sunfish as a model to show students the calculations and other considerations that are needed when designing a marine aquarium.
Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R. J. Chem. Educ. 2008, 85, 225.
Acids / Bases |
Aqueous Solution Chemistry |
Consumer Chemistry |
Oxidation / Reduction |
Stoichiometry |
Water / Water Chemistry
Concerning Lewis Acid–Base Theory for Proton Transfer  Lawrence J. Sacks
Counterpoint commentary in response to a suggestion that the Lewis acidbase approach be applied to reactions such as ammoniawater and HClwater.
Sacks, Lawrence J. J. Chem. Educ. 2007, 84, 1415.
Acids / Bases |
Lewis Acids / Bases |
Theoretical Chemistry |
Brønsted-Lowry Acids / Bases
Titration of a Solid Acid Monitored By X-Ray Diffraction  Keenan E. Dungey and Paul Epstein
Presents a solid-state laboratory in which students react fixed amounts of zirconium phosphate with increasing equivalents of NaOH(aq). From X-ray diffraction patterns, students calculate the interplanar spacings before and after the reaction. The spacings increase until the molar equivalence point is reached, indicating incorporation of the sodium ion into the crystal.
Dungey, Keenan E.; Epstein, Paul. J. Chem. Educ. 2007, 84, 122.
Acids / Bases |
Crystals / Crystallography |
Materials Science |
Solid State Chemistry |
X-ray Crystallography |
Titration / Volumetric Analysis
Let Us Give Lewis Acid–Base Theory the Priority It Deserves  Alan A. Shaffer
The Lewis concept is simple yet powerful in its scope, and can be used to help beginning students understand reaction mechanisms more fully. However, traditional approaches to acid-base reactions at the introductory level ignores Lewis acid-base theory completely, focusing instead on proton transfer described by the Br?nsted-Lowry concept.
Shaffer, Alan A. J. Chem. Educ. 2006, 83, 1746.
Acids / Bases |
Lewis Acids / Bases |
Lewis Structures |
Mechanisms of Reactions |
Molecular Properties / Structure |
VSEPR Theory |
Covalent Bonding |
Brønsted-Lowry Acids / Bases
Predicting Inorganic Reaction Products: A Critical Thinking Exercise in General Chemistry  David G. DeWit
Describes a course module designed to afford practice in applying the principles encountered throughout the general chemistry sequence to understanding and predicting chemical reactivity and the products of simple inorganic reactions.
DeWit, David G. J. Chem. Educ. 2006, 83, 1625.
Acids / Bases |
Descriptive Chemistry |
Learning Theories |
Metals |
Nonmetals |
Oxidation / Reduction |
Periodicity / Periodic Table |
Reactions
Astrochemistry Examples in the Classroom  Reggie L. Hudson
In this article some recent developments in astrochemistry are suggested as examples for the teaching of acid-base chemistry, molecular structure, and chemical reactivity. Suggestions for additional reading are provided, with an emphasis on readily-accessible materials.
Hudson, Reggie L. J. Chem. Educ. 2006, 83, 1611.
Acids / Bases |
Astrochemistry |
IR Spectroscopy |
Molecular Properties / Structure |
Brønsted-Lowry Acids / Bases
Equilibrium Constants and Water Activity Revisited  E. J. Behrman
In teaching the effects of structure on acid strength, it is useful to compare, inter alia, water with primary alcohols.
Behrman, E. J. J. Chem. Educ. 2006, 83, 1290.
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium |
Water / Water Chemistry |
Alcohols
Two "Gas-in-a-Bag" Reactions To Show the Predictive Power of the Relative AcidBase Strength Chart  Brett Criswell
Describes a demonstration in which two different pairs of solid chemicals mixed in two different Ziploc bags in the presence of a small quantities of water react to produce gases. Students are informed that the reactions are BrnstedLowry acidbase type reactions and must determine which member in each pair will act as the acid and which as the base.
Criswell, Brett. J. Chem. Educ. 2006, 83, 1167.
Acids / Bases |
Aqueous Solution Chemistry |
Descriptive Chemistry |
Gases |
Reactions |
Brønsted-Lowry Acids / Bases
Intermolecular and Intramolecular Forces: A General Chemistry Laboratory Comparison of Hydrogen Bonding in Maleic and Fumaric Acids  Frazier W. Nyasulu and John Macklin
This article presents a simple laboratory experiment that is designed to enhance students' understanding of inter- and intramolecular hydrogen bonding by demonstrating the comparative effect of these phenomena on some chemical and physical properties.
Nyasulu, Frazier W.; Macklin, John. J. Chem. Educ. 2006, 83, 770.
Acids / Bases |
Hydrogen Bonding |
Noncovalent Interactions |
Thermodynamics |
Titration / Volumetric Analysis
pH Paradoxes: Demonstrating That It Is Not True That pH ≡ -log[H+]  Christopher G. McCarty and Ed Vitz
Six demonstrations highlighting paradoxes that arise if pH is incorrectly defined as -log[H+] are presented as justification for the recommendation that pH should be correctly defined as pH = -log aH+ in textbooks.
McCarty, Christopher G.; Vitz, Ed. J. Chem. Educ. 2006, 83, 752.
Acids / Bases |
Aqueous Solution Chemistry |
Ion Selective Electrodes |
pH |
Quantitative Analysis
Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment  Gerald R. Van Hecke, Kerry K. Karukstis, Hanhan Li, Hansford C. Hendargo, Andrew J. Cosand, and Marja M. Fox
This experiment features an investigative approach designed for the introductory science or engineering major and integrates concepts in the fields of chemistry, biology, and physics. Derived from faculty research interests, this novel experiment gives students the opportunity to draw conclusions from tests performed to illustrate the connection between molecular structure and macroscopic properties. The chemical synthesis of the compounds studied further enhances the connection between molecular structure and macroscopic physical properties. The results of two separate physical measurements, refractometry and absorption spectroscopy, are combined to calculate a microscopic, but very practical, property of chiral nematic liquidsthe pitch of the helix formed in the liquid crystalline phase.
Van Hecke, Gerald R.; Karukstis, Kerry K.; Li, Hanhan; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M. J. Chem. Educ. 2005, 82, 1349.
Chirality / Optical Activity |
Crystals / Crystallography |
Molecular Properties / Structure |
UV-Vis Spectroscopy |
Acids / Bases |
Esters |
Physical Properties |
Physical Properties
Reaction to "Chemistry Is Not a Laboratory Science"  Lawrence J. Sacks
Stephen Hawkes has stirred us to reconsider whether, in fact, chemistry is a laboratory science by positing that lab work does not enhance students understanding of chemistrys centrality, but makes chemistry an irrelevance. This sweeping generalization of what some (maybe even most) labs do is further confounded by a fallacious premise; hence, the major thrust of the proposition likely will beand well should beviewed with utmost skepticism.
Sacks, Lawrence J. J. Chem. Educ. 2005, 82, 997.
Laboratory Computing / Interfacing |
Learning Theories |
Lewis Acids / Bases |
Nonmajor Courses |
Theoretical Chemistry |
Student-Centered Learning
Reaction to "Chemistry Is Not a Laboratory Science"  Lawrence J. Sacks
In response to Stephen Hawkes Commentary, I think the crucial point is whether the students learn to appreciate the intellectual beauty of science and understand the relatively small number of simple yet profound scientific principles which govern so much of our everyday experiences. Many non-science majors are obviously disinterested in the laboratory work in introductory courses.
Sacks, Lawrence J. J. Chem. Educ. 2005, 82, 997.
Laboratory Computing / Interfacing |
Student-Centered Learning |
Learning Theories |
Lewis Acids / Bases |
Nonmajor Courses |
Theoretical Chemistry
Acids and Bases in Layers: The Stratal Structure of an Ancient Topic  Wobbe de Vos and Albert Pilot
This article identifies and discusses six successive "layers" that can be recognized in chapters on acids and bases in general chemistry textbooks, each the result of what once was a modernization; the cumulative result of these layers has become problematic, and some learning problems that students have when studying acids and bases become comprehensible when viewed from this perspective.
de Vos, Wobbe; Pilot , Albert. J. Chem. Educ. 2001, 78, 494.
Acids / Bases |
Learning Theories |
Lewis Acids / Bases |
Brønsted-Lowry Acids / Bases
Gas Me Up, or, A Baking Powder Diver  Henry R. Derr, Tricia Lewis, and Bretton J. Derr
In this procedure, a pipet that repeatedly submerges and rises to the surface in a tub of water is produced from a beral pipet and baking powder. The procedure works well in outreach activities with children aged 4 to 40 and beyond.
Derr, Henry R.; Lewis, Tricia; Derr, Bretton J. J. Chem. Educ. 2000, 77, 171.
Acids / Bases |
Gases
The Softening of Hard Water and Complexometric Titrations: An Undergraduate Experiment  Helena Ceretti, Enrique A. Hughes, and Anita Zalts
An experiment in which (i) water hardness is explained and demonstrated; (ii) ion-exchange resin properties are visually demonstrated and then used for softening water; (iii) complexometric titrations are used for evaluating water hardness before and after softening; and (iv) acid-base titration can be used to show that the Ca/Mg ions removed by the ion exchanger are replaced by H ions.
Ceretti, Helena; Hughes, Enrique A.; Zalts, Anita. J. Chem. Educ. 1999, 76, 1420.
Ion Exchange |
Quantitative Analysis |
Titration / Volumetric Analysis |
Water / Water Chemistry |
Acids / Bases
Using Bad Science To Teach Good Chemistry  Michael S. Epstein
This paper presents examples of bad science ranging from "unintentional mistakes" to "fraud" that can be used as part of traditional courses in general and analytical chemistry to encourage scientific reasoning and ethical behavior, and to provide a classroom atmosphere that encourages students to think and learn.
Epstein, Michael S. J. Chem. Educ. 1998, 75, 1399.
Acids / Bases
Teaching the Truth about pH  Hawkes, Stephen J.
-log[H+] is only an approximation to pH; how to teach pH to avoid misleading students.
Hawkes, Stephen J. J. Chem. Educ. 1994, 71, 747.
pH |
Acids / Bases |
Aqueous Solution Chemistry |
Equilibrium
Pictorial Analogies XI: Concentrations and Acidity of Solutions  Fortman, John J.
Visual analogies of the concentration of a solution, strength of a solution, super saturated solution, conjugate acid-base pairs, and inverse relationship between pH and [H+] and pOH and [OH-].
Fortman, John J. J. Chem. Educ. 1994, 71, 430.
Solutions / Solvents |
Aqueous Solution Chemistry |
Acids / Bases |
pH
The chemical logic of life and the earth's biosphere: A simple, one-diagram outline  Ochiai, Ei-Ichiro
This diagram is intended to give a compact overall picture of the chemical logic of life and of the earth's biosphere.
Ochiai, Ei-Ichiro J. Chem. Educ. 1992, 69, 356.
Acids / Bases |
Oxidation / Reduction
Analogical demonstrations   Fortman, John J.
By illustrating an analogy with a visual demonstration, a student is aided in both understanding and remembering a lesson.
Fortman, John J. J. Chem. Educ. 1992, 69, 323.
Physical Properties |
Atomic Properties / Structure |
Amino Acids |
Proteins / Peptides |
Acids / Bases
Standard states for water equilibrium.  Baldwin, W. George; Burchill, C. Eugene.
The authors consider that Ka and Kb values for Bronsted acids and bases in aqueous solution represent one data set describing the properties of solutes in dilute aqueous solution.
Baldwin, W. George; Burchill, C. Eugene. J. Chem. Educ. 1992, 69, 255.
Water / Water Chemistry |
Equilibrium |
Brønsted-Lowry Acids / Bases
A procedure for determining formulas for the simple p-block oxoacids  Kildahl, Nicholas K.
Formulae for p-block oxoacids baffle high school and undergraduate students. This paper presents a procedure for developing these formulas based on the concept of total coordination number of the central atom in the molecule or ion.
Kildahl, Nicholas K. J. Chem. Educ. 1991, 68, 1001.
Acids / Bases |
Periodicity / Periodic Table
Lewis diagrams (Pavia, Donald L.)  Jensen, William P.; Tarr, Donald A.
Two reviews for the titled software designed to help students determine Lewis structures of molecules and ions.
Jensen, William P.; Tarr, Donald A. J. Chem. Educ. 1988, 65, A271.
Lewis Acids / Bases
Strong and weak acids and bases  Deck, Joseph C.
The designations "strong" and "weak" are used in various ways, and often with respect to the same compound in different situations.
Deck, Joseph C. J. Chem. Educ. 1979, 56, 814.
Acids / Bases |
Equilibrium |
Aqueous Solution Chemistry
Demonstrations for high school chemistry  Castka, Joseph F.
A sequence of demonstrations that may serve to initiate and maintain student interest in the development of acid-base theories and bond strength.
Castka, Joseph F. J. Chem. Educ. 1975, 52, 394.
Acids / Bases |
Covalent Bonding |
Lewis Acids / Bases |
Brønsted-Lowry Acids / Bases
Understanding a culprit before eliminating it. An application of Lewis acid-base principles to atmospheric SO2 as a pollutant  Brasted, Robert C.
The SO2 molecule offers ample opportunities for teaching practical chemistry. [Debut of first run. This feature reappeared in 1986.]
Brasted, Robert C. J. Chem. Educ. 1970, 47, 447.
Acids / Bases |
Lewis Acids / Bases |
Atmospheric Chemistry |
Mechanisms of Reactions |
Reactions |
Applications of Chemistry |
Lewis Structures |
Molecular Properties / Structure
Lewis acid-base titration in fused salts  Schlegel, James M.
Dichromate ion, a Lewis acid, is titrated with carbonate ion, a Lewis base, in a fused KNO3-NaNO3 solvent.
Schlegel, James M. J. Chem. Educ. 1966, 43, 362.
Lewis Acids / Bases |
Acids / Bases |
Titration / Volumetric Analysis |
Quantitative Analysis
Letter to the editor  Onwood, D. P.
Discusses variations in the usage of the terms "acid" and "base," including Lowry-Bronsted and Lewis systems.
Onwood, D. P. J. Chem. Educ. 1966, 43, 335.
Acids / Bases |
Lewis Acids / Bases |
Nomenclature / Units / Symbols
Homogeneous catalysis: A reexamination of definitions  Leisten, J. A.
Considers common questions regarding the action of catalysts by examining various typical examples.
Leisten, J. A. J. Chem. Educ. 1964, 41, 23.
Catalysis |
Reactions |
Acids / Bases
The hydrated hydronium ion  Clever, H. Lawrence
It is the purpose of this brief review to cite and discuss some of the evidence for the existence of the trihydrated hydronium ion.
Clever, H. Lawrence J. Chem. Educ. 1963, 40, 637.
Water / Water Chemistry |
Aqueous Solution Chemistry |
Acids / Bases |
Brønsted-Lowry Acids / Bases
What is humic acid?  Steelink, Cornelius
Presents the origin, definition, properties, and chemical studies of humic acid.
Steelink, Cornelius J. Chem. Educ. 1963, 40, 379.
Acids / Bases
Acids, Bases, and the Chemistry of the Covalent Bond (VanderWerf, Calvin A.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1962, 39, 273.
Acids / Bases |
Covalent Bonding
Electronegativities in inorganic chemistry. III  Sanderson, R. T.
The purpose of this paper is to illustrate some of the practical applications of electronegativities and charge distribution.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 238.
Atomic Properties / Structure |
Covalent Bonding |
Acids / Bases
Models illustrating the Lewis theory of acids and bases  Herron, Fred Y.
The purpose of this article is to describe a method of presenting the Lewis theory of acids and bases by means of cardboard models.
Herron, Fred Y. J. Chem. Educ. 1953, 30, 199.
Acids / Bases |
Lewis Acids / Bases |
Molecular Modeling