Journal Articles: 8 results
Nature's Way To Make the Lantibiotics  Heather A. Relyea and Wilfred A. van der Donk
This article focuses on one class of antimicrobial compounds, the lantibiotics, and discusses their biosynthetic pathways as well as their molecular mode of action. In the course of the review, the meaning of the terms regio-, chemo-, and stereoselectivity are discussed.
Relyea, Heather A.; van der Donk, Wilfred A. J. Chem. Educ. 2006, 83, 1769.
Applications of Chemistry |
Bioorganic Chemistry |
Biotechnology |
Biosynthesis |
Catalysis |
Drugs / Pharmaceuticals |
Proteins / Peptides
Glycosyltransferases A and B: Four Critical Amino Acids Determine Blood Type  Natisha L. Rose, Monica M. Palcic, and Stephen V. Evans
Human A, B, and O blood type is determined by the presence or absence of distinct carbohydrate structures on red blood cells. In this review the chemistry of the blood group ABO system and the role of glycosyltransferase A, glycosyltransferase B, and the four amino acids critical to determining blood group status are discussed.
Rose, Natisha L.; Palcic, Monica M.; Evans, Stephen V. J. Chem. Educ. 2005, 82, 1846.
Carbohydrates |
Enzymes |
Kinetics |
Bioorganic Chemistry |
Crystals / Crystallography |
Molecular Biology |
X-ray Crystallography |
Amino Acids
The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids  Addison Ault
Examples of the industrial synthesis of pure amino acids are presented. The emphasis is on the synthesis of (S)-glutamic acid and, to a lesser extent, (S)-lysine and (R,S)-methionine. These amino acids account for about 90% of the total world production of amino acids.
Ault, Addison. J. Chem. Educ. 2004, 81, 347.
Amino Acids |
Biotechnology |
Chirality / Optical Activity |
Consumer Chemistry |
Enzymes |
Natural Products |
Stereochemistry |
Synthesis |
Food Science
Protein Design Using Unnatural Amino Acids  Basar Bilgiçer and Krishna Kumar
Using examples from the literature, this article describes the available methods for unnatural amino acid incorporation and highlights some recent applications including the design of hyperstable protein folds.
Bilgiçer, Basar; Kumar, Krishna. J. Chem. Educ. 2003, 80, 1275.
Amino Acids |
Bioorganic Chemistry |
Biotechnology |
Proteins / Peptides |
Synthesis |
Molecular Properties / Structure
On the Formation of Peptide Bonds  Stojanoski, Kiro; Zdravkovski, Zoran
In an attempt to simplify the concept of peptide bond formation, many textbooks misrepresent the energy requirement that is necessary for peptide bonds to form.
Stojanoski, Kiro; Zdravkovski, Zoran J. Chem. Educ. 1993, 70, 134.
Amino Acids |
Biosynthesis |
Equilibrium |
Ethylene-An unusual plant hormone  Ainscough, Eric W.; Brodie, Andrew M.; Wallace, Anna L.
This article discusses some of the early historical observations about this ethylene, the production and concentration of ethylene in plants, the ethylene biosynthesis pathway, and the possible site of ethylene action.
Ainscough, Eric W.; Brodie, Andrew M.; Wallace, Anna L. J. Chem. Educ. 1992, 69, 315.
Alkenes |
Plant Chemistry |
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Structural variety of natural products  Roderick, William R.
Classes of natural products examined includes alkynes; quinones; benzpyrones; small and large rings; sulfur, nitrogen, and halogen-containing compounds; and new amino acids.
Roderick, William R. J. Chem. Educ. 1962, 39, 2.
Natural Products |
Amino Acids |
Alkynes |
Aromatic Compounds