TIGER

Journal Articles: 43 results
Frank Westheimer's Early Demonstration of Enzymatic Specificity  Addison Ault
Reviews one of the most significant accomplishments of one of the most respected chemists of the 20th century┬Ła series of stereospecific enzymatic oxidation and reduction experiments that led chemists to recognize enantiotopic and diastereotopic relationships of atoms, or groups of atoms, within molecules.
Ault, Addison. J. Chem. Educ. 2008, 85, 1246.
Asymmetric Synthesis |
Bioorganic Chemistry |
Catalysis |
Chirality / Optical Activity |
Enantiomers |
Enzymes |
Isotopes |
Nucleophilic Substitution |
Oxidation / Reduction |
Stereochemistry
OMLeT—An Alternative Approach to Learning Metabolism: Glycolysis and the TCA Cycle as an Example  Charles M. Stevens, Dylan M. Silver, Brad Behm, Raymond J. Turner, and Michael G. Surette
Using PHP Hypertext Preprocessor scripting, the dynamic OMLeT (Online Metabolism Learning Tool) Web site is geared towards different learning styles and allows the student to process metabolic pathways (glycolysis and TCA cycle) via a user-defined approach.
Stevens, Charles M.; Silver, Dylan M.; Behm, Brad; Turner, Raymond J.; Surette, Michael G. J. Chem. Educ. 2007, 84, 2024.
Bioenergetics |
Enzymes |
Learning Theories |
Metabolism |
Proteins / Peptides
Biochemical View: A Web Site Providing Material for Teaching Biochemistry Using Multiple Approaches  Fernanda C. Dórea, Higor S. Rodrigues, Oscar M. M. Lapouble, Márcio R. Pereira, Mariana S. Castro, and Wagner Fontes
Biochemical View is a free, full access Web site whose main goals are to complement existing biochemistry instruction and materials, provide material to teachers preparing conventional and online courses, and popularize the use of these resources in undergraduate courses.
Dórea, Fernanda C.; Rodrigues, Higor S.; Lapouble, Oscar M. M.; Pereira, Márcio R.; Castro, Mariana S.; Fontes, Wagner. J. Chem. Educ. 2007, 84, 1866.
Amino Acids |
Bioenergetics |
Carbohydrates |
Enzymes |
Glycolysis |
Lipids |
Metabolism |
Fatty Acids
Receptor Surface Models in the Classroom: Introducing Molecular Modeling to Students in a 3-D World  Werner J. Geldenhuys, Michael Hayes, Cornelis J. Van der Schyf, David D. Allen, and Sarel F. Malan
Proposes a novel method for teaching drug interactions with a receptor, enzyme, or any other macromolecule or protein using plastic molecular models and aluminum foil.
Geldenhuys, Werner J.; Hayes, Michael; Van der Schyf, Cornelis J.; Allen, David D.; Malan, Sarel F. J. Chem. Educ. 2007, 84, 979.
Bioorganic Chemistry |
Drugs / Pharmaceuticals |
Laboratory Computing / Interfacing |
Medicinal Chemistry |
Molecular Modeling |
Enzymes
Glycosyltransferases A and B: Four Critical Amino Acids Determine Blood Type  Natisha L. Rose, Monica M. Palcic, and Stephen V. Evans
Human A, B, and O blood type is determined by the presence or absence of distinct carbohydrate structures on red blood cells. In this review the chemistry of the blood group ABO system and the role of glycosyltransferase A, glycosyltransferase B, and the four amino acids critical to determining blood group status are discussed.
Rose, Natisha L.; Palcic, Monica M.; Evans, Stephen V. J. Chem. Educ. 2005, 82, 1846.
Carbohydrates |
Enzymes |
Kinetics |
Bioorganic Chemistry |
Crystals / Crystallography |
Molecular Biology |
X-ray Crystallography |
Amino Acids
Organic Chemistry of the Cell: An Interdisciplinary Approach To Learning with a Focus on Reading, Analyzing, and Critiquing Primary Literature  Craig A. Almeida and Louis J. Liotta
Describes a sophomore-level learning community entitled Organic Chemistry of the Cell comprised of two linked courses, Organic Chemistry I and Cell Biology, and an Integrative Seminar. The Integrative Seminar is grounded in the reading, critical analysis, and discussion of primary literature that ties together organic chemistry and cell biology.
Almeida, Craig A.; Liotta, Louis J. J. Chem. Educ. 2005, 82, 1794.
Biological Cells |
Bioorganic Chemistry |
Drugs / Pharmaceuticals |
Enzymes |
Molecular Biology |
Student-Centered Learning
Chemical Modification of Papain and Subtilisin: An Active Site Comparison. An Undergraduate Biochemistry Experiment   Mireille St-Vincent and Michael Dickman
This experiment demonstrates the specific chemistry of cysteine and serine residues in the active sites of papain and subtilisin.
St-Vincent, Mireille; Dickman, Michael. J. Chem. Educ. 2004, 81, 1048.
Amino Acids |
Bioorganic Chemistry |
Enzymes
The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids  Addison Ault
Examples of the industrial synthesis of pure amino acids are presented. The emphasis is on the synthesis of (S)-glutamic acid and, to a lesser extent, (S)-lysine and (R,S)-methionine. These amino acids account for about 90% of the total world production of amino acids.
Ault, Addison. J. Chem. Educ. 2004, 81, 347.
Amino Acids |
Biotechnology |
Chirality / Optical Activity |
Consumer Chemistry |
Enzymes |
Natural Products |
Stereochemistry |
Synthesis |
Food Science
Some Like It Cold: A Computer-Based Laboratory Introduction to Sequence and Tertiary Structure Comparison of Cold-Adapted Lactate Dehydrogenases Using Bioinformatics Tools  M. Sue Lowery and Leigh A. Plesniak
Students download sequences and structures from appropriate databases, create sequence alignments, and carry out molecular modeling exercises, and then form hypotheses about the mechanism of biochemical adaptation for function and stability. This laboratory is appropriate for biochemistry and molecular biology laboratory courses, special topics, and advanced biochemistry lecture courses, and can be adapted for honors high school programs.
Lowery, M. Sue; Plesniak, Leigh A. J. Chem. Educ. 2003, 80, 1300.
Enzymes |
Molecular Modeling |
Proteins / Peptides |
Molecular Properties / Structure
Collaboration between Chemistry and Biology to Introduce Spectroscopy, Electrophoresis, and Molecular Biology as Tools for Biochemistry  Vicky L. H. Bevilacqua, Jennifer L. Powers, Connie Tran, Swapan S. Jain, Reem Chabayta, Dale L. Vogelien, Ralph J. Rascati, Michelle Hall, and Kathleen Diehl
Program that integrates a variety of instrumental techniques across the biological and chemistry curricula, including biochemistry, plant physiology, genetics, and forensics.
Bevilacqua, Vicky L. H.; Powers, Jennifer L.; Vogelien, Dale L.; Rascati, Ralph J.; Hall, Michelle; Diehl, Kathleen; Tran, Connie; Jain, Swapan S.; Chabayta, Reem . J. Chem. Educ. 2002, 79, 1311.
Biotechnology |
Enzymes |
Forensic Chemistry |
Hormones |
Instrumental Methods |
Kinetics |
Plant Chemistry |
Proteins / Peptides |
UV-Vis Spectroscopy
Factors Affecting Reaction Kinetics of Glucose Oxidase  Kristin A. Johnson
Demonstration based on a biochemical kinetics experiment in which the rate of reaction varies with the enzyme concentration, substrate concentration, substrate used in the reaction, and temperature.
Johnson, Kristin A. J. Chem. Educ. 2002, 79, 74.
Enzymes |
Kinetics |
Proteins / Peptides |
Carbohydrates |
Catalysis |
Rate Law
Correction to "Drug Metabolism: The Body's Defense against Chemical Attack" (J. Chem. Educ. 2000, 77, 349-353)  
Corrections to molecular structures.
J. Chem. Educ. 2001, 78, 312.
Carbohydrates |
Drugs / Pharmaceuticals |
Enzymes |
Medicinal Chemistry |
Metabolism |
Synthesis
Homogeneous Immunoassays: Historical Perspective and Future Promise  Edwin F. Ullman
The founding and growth of Syva Company is examined in the context of its leadership role in the development of homogeneous immunoassays. The simple mix and read protocols of these methods offer advantages in routine analytical and clinical applications.
Ullman, Edwin F. J. Chem. Educ. 1999, 76, 781.
Biotechnology |
Enzymes |
Atomic Properties / Structure |
Free Radicals |
Photochemistry |
Medicinal Chemistry |
Proteins / Peptides
Kinetics of Papain: An Introductory Biochemistry Laboratory Experiment  Kathleen Cornely, Eric Crespo, Michael Earley, Rachel Kloter, Aime Levesque, and Mary Pickering
In this experiment, we investigate the kinetics of the thiol protease papain. A specific substrate, Na-benzoyl-arginine-p-nitroanilide (BAPNA), is used, which takes advantage of the fact that papain interacts with a phenylalanine residue two amino acids away from the peptide bond cleaved. Upon hydrolysis by papain, a bright yellow product is released, p-nitroaniline. This allows the reaction to be monitored spectrophotometrically by measuring the rate of formation of the p-nitroaniline product as a function of the increase in absorbance of the solution at the lmax of p-nitroaniline (400 nm) over time at various substrate concentrations. These data are used to plot a Lineweaver-Burk plot from which the vmax and KM are obtained.
Cornely, Kathleen; Crespo, Eric; Earley, Michael; Kloter, Rachel; Levesque, Aime; Pickering, Mary. J. Chem. Educ. 1999, 76, 644.
Enzymes |
Kinetics |
UV-Vis Spectroscopy
A 19F NMR Study of Enzyme Activity  Keith E. Peterman, Kevin Lentz, and Jeffery Duncan
This basic enzyme activity laboratory experiment demonstrates how 19F NMR can be used in biochemical studies and presents the advantages of 19F NMR over 1H NMR for studies of this nature. This is a viable laboratory experiment for junior/senior-level courses in instrumental analytical chemistry, biochemistry, molecular biology, or spectroscopy.
Peterman, Keith E.; Lentz, Kevin; Duncan, Jeffery. J. Chem. Educ. 1998, 75, 1283.
Instrumental Methods |
Enzymes |
NMR Spectroscopy |
Spectroscopy
Tetrahedron Organic Chemistry Series. Volume 12, Enzymes in Synthetic Organic Chemistry (Wong, Chi-Huey, Whitesides, George M.; Baldwin, J. E.; Magnus, P. D.)  
Continuing series.
J. Chem. Educ. 1995, 72, A94.
Synthesis |
Enzymes
Nucleophilic and Enzymic Catalysis of p-Nitrophenylacetate Hydrolysis  Head, Michael B.; Mistry, Kalpna S.; Ridings, Bernard J.; Smith, Christopher A.; Parker, Mark J.
Experimental procedure for determining the relative effectiveness of several amino acids and enzymes in catalyzing the hydrolysis of p-nitrophenylacetate; sample data and analysis included.
Head, Michael B.; Mistry, Kalpna S.; Ridings, Bernard J.; Smith, Christopher A.; Parker, Mark J. J. Chem. Educ. 1995, 72, 184.
Amino Acids |
Enzymes |
Proteins / Peptides |
Catalysis
An Effective Approach for Teaching Intermolecular Interactions  Campanario, Juan Miguel; Bronchalo, Enrique; Hidalgo, Miguel Angel
Using electrostatic potential to help students achieve a better understanding of molecular interactions.
Campanario, Juan Miguel; Bronchalo, Enrique; Hidalgo, Miguel Angel J. Chem. Educ. 1994, 71, 761.
Noncovalent Interactions |
Molecular Recognition |
Enzymes |
Crystal Field / Ligand Field Theory
The conversion of chemical energy: Part 2. Biochemical examples  Wink, Donald J.
Biological systems regulate energy transfer reactions through enzymes that permit a spontaneous reaction to go faster through a mechanism that also accomplishes work instead of, or in addition to, releasing energy as heat.
Wink, Donald J. J. Chem. Educ. 1992, 69, 264.
Enzymes |
Bioorganic Chemistry |
Bioenergetics
An NMR study of the stereochemistry of the fumarase-catalyzed hydration of fumaric acid  Olsen, Julie A.; Olsen, Robert J.
An NMR study of the stereochemistry of the fumarase-catalyzed hydration of fumaric acid.
Olsen, Julie A.; Olsen, Robert J. J. Chem. Educ. 1991, 68, 436.
Acids / Bases |
NMR Spectroscopy |
Enzymes |
Molecular Modeling |
Diastereomers
Effects of "crowding" in protein solutions  Ralston, G. B.
The effects of macromolecular nonideality and crowding on chemical equilibria, association reactions, and enzyme kinetics.
Ralston, G. B. J. Chem. Educ. 1990, 67, 857.
Proteins / Peptides |
Equilibrium |
Reactions |
Enzymes |
Kinetics
Binding energy and enzymatic catalysis  Hansen, David E.; Raines, Ronald T.
The authors discuss the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis and review the principle that many catalytic factors are realized by the use of this binding energy.
Hansen, David E.; Raines, Ronald T. J. Chem. Educ. 1990, 67, 483.
Enzymes |
Catalysis |
Thermodynamics
A convenient synthesis of aspartame  Lindeberg, Gunnar
The one tube, enzymatic synthesis of the dipeptide sweetener aspartame.
Lindeberg, Gunnar J. Chem. Educ. 1987, 64, 1062.
Synthesis |
Enzymes |
Proteins / Peptides
The metabolism of xenobiotic chemicals  Cullen, John W.
Metabolic processes can produce compounds that are more toxic than that originally inhaled or ingested; considers Phase I and Phase II reactions and their major constituents.
Cullen, John W. J. Chem. Educ. 1987, 64, 396.
Metabolism |
Toxicology |
Enzymes |
Drugs / Pharmaceuticals
RNA's as catalysts: A new class on enzymes  McCorkle, George M.; Altman, Sidney
Analysis of two RNA's that act as enzymes, upsetting the long-held position that all enzymes are proteins.
McCorkle, George M.; Altman, Sidney J. Chem. Educ. 1987, 64, 221.
Catalysis |
Enzymes
The enzymatic resolution of aromatic amino acids  Sheardy, Riehard; Liotta, L.; Steinhart, E.; Champion, R.; Rinker, J.; Planutis, M.; Salinkas, J.; Boyer, T.; Carcanague, D.
This article presents an experiment that can demonstrate as many principles of steroisomersim as possible and is also efficient in terms of time and preparation.
Sheardy, Riehard; Liotta, L.; Steinhart, E.; Champion, R.; Rinker, J.; Planutis, M.; Salinkas, J.; Boyer, T.; Carcanague, D. J. Chem. Educ. 1986, 63, 646.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers |
Aromatic Compounds |
Amino Acids |
Enzymes
Musical mechanisms  Jones, Peter
Portraying the mechanism of the catalysis of hydrogen peroxide decomposition by catalase using an adaptation of musical notation.
Jones, Peter J. Chem. Educ. 1985, 62, 1093.
Catalysis |
Enzymes |
Mechanisms of Reactions
The catalytic function of enzymes  Splittgerber, Allan G.
Review of the structure, function, and factors that influence the action of enzymes.
Splittgerber, Allan G. J. Chem. Educ. 1985, 62, 1008.
Catalysis |
Enzymes |
Mechanisms of Reactions |
Proteins / Peptides |
Molecular Properties / Structure
Zinc enzymes  Bertini, I.; Luchinat, C.; Monnanni, R.
The role played by catalytic and noncatalytic zinc in biochemical systems. From the "State of the Art Symposium: Bioinorganic Chemistry", held at the ACS meeting, Miami, 1985.
Bertini, I.; Luchinat, C.; Monnanni, R. J. Chem. Educ. 1985, 62, 924.
Enzymes |
Bioinorganic Chemistry |
Lewis Acids / Bases |
Proteins / Peptides
Methemoglobinemia: An illness caused by the ferric state  Senozan, N. M.
Hemoglobin's ability to carry oxygen depends on the iron being in the +2 state; methemoglobinemia involves the oxidation of hemoglobin iron to the +3 state.
Senozan, N. M. J. Chem. Educ. 1985, 62, 181.
Proteins / Peptides |
Enzymes |
Medicinal Chemistry |
Oxidation / Reduction |
Oxidation State
Making candy with enzymes  Kirschenbaum, Donald M.
How is a liquid-center, chocolate-covered cherry made?
Kirschenbaum, Donald M. J. Chem. Educ. 1984, 61, 652.
Enzymes |
Food Science
Isoenzymes  Daugherty, N. A.
The separation, identification, and measurement of isoenzymes is an appropriate topic for a special lecture in general chemistry.
Daugherty, N. A. J. Chem. Educ. 1979, 56, 442.
Enzymes |
Proteins / Peptides |
pH |
Electrophoresis |
Separation Science |
Electrochemistry |
Applications of Chemistry
Some aspects of the bioinorganic chemistry of molybdenum  Swedo, Kathleen Bizot; Enemark, John H.
The biological role of molybdenum, biophysical studies of the molybdenum atoms in molybdo-enzymes, and aspects of coordination chemistry that bear on the understanding of molybdo-enzymes.
Swedo, Kathleen Bizot; Enemark, John H. J. Chem. Educ. 1979, 56, 70.
Bioinorganic Chemistry |
Organometallics |
Enzymes |
Coordination Compounds |
Transition Elements
New skeletal-space-filling models. A model of an enzyme active site  Clarke, Frank H.
Reviews the molecular modeling systems available for representing organic and biochemical structures; includes requirements and coordinates for a model of the alpha chymotrypsin active site.
Clarke, Frank H. J. Chem. Educ. 1977, 54, 230.
Molecular Properties / Structure |
Enzymes |
Molecular Modeling |
Molecular Recognition
Cycloamyloses  Bergeron, Raymond J.
Examines an unusual carbohydrate system of current interest in the hope of generating some enthusiasm for the topic.
Bergeron, Raymond J. J. Chem. Educ. 1977, 54, 204.
Carbohydrates |
Molecular Properties / Structure |
Thermodynamics |
Kinetics |
Enzymes |
Spectroscopy
Simple models for tough concepts  Cavagnol, Richard M.; Barnett, Thomas
One of the most challenging aspects of instructional interaction is the presentation of dynamic chemical concepts interaction is the presentation of dynamic chemical concepts in a way that is both believable and understandable. The authors have devised a series of models that are simple, inexpensive, and require very little time or skill to construct. They allow students to visualize a whole spectrum of phenomena from atomic structure to enzyme-substrate interactions.
Cavagnol, Richard M.; Barnett, Thomas J. Chem. Educ. 1976, 53, 643.
Enzymes |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Atomic Properties / Structure |
Transport Properties
Bromolain. Experiments illustrating proteolytic enzyme action  Reigh, Darryel L.
The following set of exercises provides a simple visual method of demonstrations some of the characteristics of enzymes in general, such as heat and pH lability and inhibition, as well as some specific properties of bromelain intide hydrolysis. These experiments can be used with freshman in introductory courses and juniors in biochemistry.
Reigh, Darryel L. J. Chem. Educ. 1976, 53, 386.
Enzymes |
pH |
Food Science |
Natural Products |
Proteins / Peptides
Questions [and] Answers  Campbell, J. A.
216-219. Four questions applying chemistry and their solutions.
Campbell, J. A. J. Chem. Educ. 1975, 52, 807.
Enrichment / Review Materials |
Enzymes |
Lipids |
Metabolism |
Fatty Acids
A space-filling model of the active site region of carboxypeptidase A  Sebastian, John F.; Butkus, John C.
A three-dimensional CPK space-filling model of the active site of carboxypeptidase A.
Sebastian, John F.; Butkus, John C. J. Chem. Educ. 1975, 52, 660.
Molecular Properties / Structure |
Molecular Modeling |
Enzymes |
Amino Acids
Questions [and] Answers  Campbell, J. A.
175-179. Five ecological chemistry questions and their answers.
Campbell, J. A. J. Chem. Educ. 1975, 52, 171.
Enrichment / Review Materials |
Photochemistry |
Catalysis |
Enzymes
The principle of exponential change: Applications in chemistry, biochemistry, and radioactivity  Green, Frank O.
Examines the nature of exponential change and its applications to chemistry, biochemistry, and radioactivity, including radioactive decay, enzyme kinetics, colorimetry, spectrophotometry, and first order reaction kinetics.
Green, Frank O. J. Chem. Educ. 1969, 46, 451.
Nuclear / Radiochemistry |
Kinetics |
Enzymes |
Spectroscopy
Interactions of enzymes and inhibitors  Baker, B. R.
Examines the kinetics and interactions of enzymes and inhibitors and considers specifically lactic dehydrogenase, dihydrofolic reductase, thymidine phosphorylate, guanase, and xanthine oxidase.
Baker, B. R. J. Chem. Educ. 1967, 44, 610.
Enzymes |
Catalysis |
Noncovalent Interactions |
Molecular Properties / Structure |
Molecular Recognition |
Hydrogen Bonding
Papain as an enzyme catalyst in undergraduate organic chemistry  Abernethy, John Leo; Kientz, Marvin
A rather large number of papain-catalyzed reactions can be selected for use in undergraduate organic laboratory work.
Abernethy, John Leo; Kientz, Marvin J. Chem. Educ. 1959, 36, 582.
Enzymes |
Catalysis