TIGER

Journal Articles: 107 results
Frank Westheimer's Early Demonstration of Enzymatic Specificity  Addison Ault
Reviews one of the most significant accomplishments of one of the most respected chemists of the 20th centurya series of stereospecific enzymatic oxidation and reduction experiments that led chemists to recognize enantiotopic and diastereotopic relationships of atoms, or groups of atoms, within molecules.
Ault, Addison. J. Chem. Educ. 2008, 85, 1246.
Asymmetric Synthesis |
Bioorganic Chemistry |
Catalysis |
Chirality / Optical Activity |
Enantiomers |
Enzymes |
Isotopes |
Nucleophilic Substitution |
Oxidation / Reduction |
Stereochemistry
The Preparation and Enzymatic Hydrolysis of a Library of Esters  Elizabeth M. Sanford and Traci L. Smith
In this investigative case study, students work collaboratively to prepare and characterize a library of esters using Fischer esterification and alcoholysis of acid chlorides and their subsequent enzymatic hydrolysis by pig liver and orange peel esterases.
Sanford, Elizabeth M.; Smith, Traci L. J. Chem. Educ. 2008, 85, 944.
Drugs / Pharmaceuticals |
Enzymes |
Esters |
Industrial Chemistry |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Thin Layer Chromatography
OMLeT—An Alternative Approach to Learning Metabolism: Glycolysis and the TCA Cycle as an Example  Charles M. Stevens, Dylan M. Silver, Brad Behm, Raymond J. Turner, and Michael G. Surette
Using PHP Hypertext Preprocessor scripting, the dynamic OMLeT (Online Metabolism Learning Tool) Web site is geared towards different learning styles and allows the student to process metabolic pathways (glycolysis and TCA cycle) via a user-defined approach.
Stevens, Charles M.; Silver, Dylan M.; Behm, Brad; Turner, Raymond J.; Surette, Michael G. J. Chem. Educ. 2007, 84, 2024.
Bioenergetics |
Enzymes |
Learning Theories |
Metabolism |
Proteins / Peptides
Biochemical View: A Web Site Providing Material for Teaching Biochemistry Using Multiple Approaches  Fernanda C. Dórea, Higor S. Rodrigues, Oscar M. M. Lapouble, Márcio R. Pereira, Mariana S. Castro, and Wagner Fontes
Biochemical View is a free, full access Web site whose main goals are to complement existing biochemistry instruction and materials, provide material to teachers preparing conventional and online courses, and popularize the use of these resources in undergraduate courses.
Dórea, Fernanda C.; Rodrigues, Higor S.; Lapouble, Oscar M. M.; Pereira, Márcio R.; Castro, Mariana S.; Fontes, Wagner. J. Chem. Educ. 2007, 84, 1866.
Amino Acids |
Bioenergetics |
Carbohydrates |
Enzymes |
Glycolysis |
Lipids |
Metabolism |
Fatty Acids
A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles  John Njagi, John Warner, and Silvana Andreescu
Describes a laboratory experiment on the development of a biosensor in which students apply electrochemical methods to deposit gold nanoparticles onto electrode surfaces, immobilize an enzyme using glutaraldehyde chemistry, and perform quantitative analysis of phenol using a biosensor with amperometric detection.
Njagi, John; Warner, John; Andreescu, Silvana. J. Chem. Educ. 2007, 84, 1180.
Bioanalytical Chemistry |
Electrochemistry |
Enzymes |
Oxidation / Reduction |
Phenols
Receptor Surface Models in the Classroom: Introducing Molecular Modeling to Students in a 3-D World  Werner J. Geldenhuys, Michael Hayes, Cornelis J. Van der Schyf, David D. Allen, and Sarel F. Malan
Proposes a novel method for teaching drug interactions with a receptor, enzyme, or any other macromolecule or protein using plastic molecular models and aluminum foil.
Geldenhuys, Werner J.; Hayes, Michael; Van der Schyf, Cornelis J.; Allen, David D.; Malan, Sarel F. J. Chem. Educ. 2007, 84, 979.
Bioorganic Chemistry |
Drugs / Pharmaceuticals |
Laboratory Computing / Interfacing |
Medicinal Chemistry |
Molecular Modeling |
Enzymes
Glycosyltransferases A and B: Four Critical Amino Acids Determine Blood Type  Natisha L. Rose, Monica M. Palcic, and Stephen V. Evans
Human A, B, and O blood type is determined by the presence or absence of distinct carbohydrate structures on red blood cells. In this review the chemistry of the blood group ABO system and the role of glycosyltransferase A, glycosyltransferase B, and the four amino acids critical to determining blood group status are discussed.
Rose, Natisha L.; Palcic, Monica M.; Evans, Stephen V. J. Chem. Educ. 2005, 82, 1846.
Carbohydrates |
Enzymes |
Kinetics |
Bioorganic Chemistry |
Crystals / Crystallography |
Molecular Biology |
X-ray Crystallography |
Amino Acids
Organic Chemistry of the Cell: An Interdisciplinary Approach To Learning with a Focus on Reading, Analyzing, and Critiquing Primary Literature  Craig A. Almeida and Louis J. Liotta
Describes a sophomore-level learning community entitled Organic Chemistry of the Cell comprised of two linked courses, Organic Chemistry I and Cell Biology, and an Integrative Seminar. The Integrative Seminar is grounded in the reading, critical analysis, and discussion of primary literature that ties together organic chemistry and cell biology.
Almeida, Craig A.; Liotta, Louis J. J. Chem. Educ. 2005, 82, 1794.
Biological Cells |
Bioorganic Chemistry |
Drugs / Pharmaceuticals |
Enzymes |
Molecular Biology |
Student-Centered Learning
Use of Enzymes in Organic Synthesis: Reduction of Ketones by Baker's Yeast Revisited  James Patterson and Snorri Th. Sigurdsson
The undergraduate organic laboratory Bakers Yeast Reduction of Ethyl Acetoacetate has been improved in two different ways. First, the addition of small quantities of hexane to the aqueous yeast system along with an improved workup protocol has dramatically increased the yield and reproducibility of the ketone conversion to the corresponding alcohol with a high enantiomeric excess. Second, the enantiomeric excess of the alcohol product was ascertained by coupling the alcohol mixture with a chiral acid and analyzing the resulting mixture of diastereomeric esters by proton NMR.
Patterson, James; Sigurdsson, Snorri Th. J. Chem. Educ. 2005, 82, 1049.
Enzymes |
NMR Spectroscopy |
Stereochemistry |
Gas Chromatography |
Synthesis
Chemical Modification of Papain and Subtilisin: An Active Site Comparison. An Undergraduate Biochemistry Experiment   Mireille St-Vincent and Michael Dickman
This experiment demonstrates the specific chemistry of cysteine and serine residues in the active sites of papain and subtilisin.
St-Vincent, Mireille; Dickman, Michael. J. Chem. Educ. 2004, 81, 1048.
Amino Acids |
Bioorganic Chemistry |
Enzymes
Removal of Zinc from Carbonic Anhydrase. A Kinetics Experiment for Upper-Level Chemistry Laboratories  Kathryn R. Williams and Bhavin Adhyaru
The Zn(II) ion in the active site of carbonic anhydrase can be removed by complexation with 2,6-pyridinedicarboxylate (dipicolinate).
Williams, Kathryn R.; Adhyaru, Bhavin. J. Chem. Educ. 2004, 81, 1045.
Kinetics |
Biophysical Chemistry |
Nuclear / Radiochemistry |
Enzymes |
Instrumental Methods
The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids  Addison Ault
Examples of the industrial synthesis of pure amino acids are presented. The emphasis is on the synthesis of (S)-glutamic acid and, to a lesser extent, (S)-lysine and (R,S)-methionine. These amino acids account for about 90% of the total world production of amino acids.
Ault, Addison. J. Chem. Educ. 2004, 81, 347.
Amino Acids |
Biotechnology |
Chirality / Optical Activity |
Consumer Chemistry |
Enzymes |
Natural Products |
Stereochemistry |
Synthesis |
Food Science
Some Like It Cold: A Computer-Based Laboratory Introduction to Sequence and Tertiary Structure Comparison of Cold-Adapted Lactate Dehydrogenases Using Bioinformatics Tools  M. Sue Lowery and Leigh A. Plesniak
Students download sequences and structures from appropriate databases, create sequence alignments, and carry out molecular modeling exercises, and then form hypotheses about the mechanism of biochemical adaptation for function and stability. This laboratory is appropriate for biochemistry and molecular biology laboratory courses, special topics, and advanced biochemistry lecture courses, and can be adapted for honors high school programs.
Lowery, M. Sue; Plesniak, Leigh A. J. Chem. Educ. 2003, 80, 1300.
Enzymes |
Molecular Modeling |
Proteins / Peptides |
Molecular Properties / Structure
"Chiral Acetate": The Preparation, Analysis, and Applications of Chiral Acetic Acid  Addison Ault
Production of chiral acetic acid using deuterium and tritium and its application to understanding stereochemistry and the specificity of enzymatic reactions.
Ault, Addison. J. Chem. Educ. 2003, 80, 333.
Chirality / Optical Activity |
Enzymes |
Isotopes |
Synthesis |
Stereochemistry |
Enrichment / Review Materials |
Carboxylic Acids |
Enantiomers |
Reactions |
Mechanisms of Reactions
Collaboration between Chemistry and Biology to Introduce Spectroscopy, Electrophoresis, and Molecular Biology as Tools for Biochemistry  Vicky L. H. Bevilacqua, Jennifer L. Powers, Connie Tran, Swapan S. Jain, Reem Chabayta, Dale L. Vogelien, Ralph J. Rascati, Michelle Hall, and Kathleen Diehl
Program that integrates a variety of instrumental techniques across the biological and chemistry curricula, including biochemistry, plant physiology, genetics, and forensics.
Bevilacqua, Vicky L. H.; Powers, Jennifer L.; Vogelien, Dale L.; Rascati, Ralph J.; Hall, Michelle; Diehl, Kathleen; Tran, Connie; Jain, Swapan S.; Chabayta, Reem . J. Chem. Educ. 2002, 79, 1311.
Biotechnology |
Enzymes |
Forensic Chemistry |
Hormones |
Instrumental Methods |
Kinetics |
Plant Chemistry |
Proteins / Peptides |
UV-Vis Spectroscopy
Application of Datalogger in Biosensing: A Glucose Biosensor  Martin M. F. Choi and Pui Shan Wong
Using an eggshell as a platform for the immobilization of glucose oxidase while determining glucose concentration through the depletion of oxygen as measured by an oxygen sensor and datalogger.
Choi, Martin M. F.; Wong, Pui Shan. J. Chem. Educ. 2002, 79, 982.
Carbohydrates |
Enzymes |
Instrumental Methods |
Laboratory Computing / Interfacing |
Qualitative Analysis |
Quantitative Analysis
Factors Affecting Reaction Kinetics of Glucose Oxidase  Kristin A. Johnson
Demonstration based on a biochemical kinetics experiment in which the rate of reaction varies with the enzyme concentration, substrate concentration, substrate used in the reaction, and temperature.
Johnson, Kristin A. J. Chem. Educ. 2002, 79, 74.
Enzymes |
Kinetics |
Proteins / Peptides |
Carbohydrates |
Catalysis |
Rate Law
A Modification of a Lactase Experiment by Use of Commercial Test Strips  Tammy J. Melton
Using urinalysis test strips to detect the presence of glucose.
Melton, Tammy J. J. Chem. Educ. 2001, 78, 1243.
Carbohydrates |
Catalysis |
Drugs / Pharmaceuticals |
Enzymes |
Nonmajor Courses |
Qualitative Analysis |
Laboratory Equipment / Apparatus
Bioanalytical Experiments for the Undergraduate Laboratory: Monitoring Glucose in Sports Drinks  J. Justin Gooding, Wenrong Yang, and Manihar Situmorang
Introducing students to the techniques of bioanalytical chemistry by using a solution-based enzyme assay and an enzyme electrode for the analysis of glucose concentrations in sports drinks.
Gooding, J. Justin; Yang, Wenrong; Situmorang, Manihar. J. Chem. Educ. 2001, 78, 788.
Electrochemistry |
Enzymes |
Food Science |
Quantitative Analysis |
Applications of Chemistry |
Carbohydrates
Correction to "Drug Metabolism: The Body's Defense against Chemical Attack" (J. Chem. Educ. 2000, 77, 349-353)  
Corrections to molecular structures.
J. Chem. Educ. 2001, 78, 312.
Carbohydrates |
Drugs / Pharmaceuticals |
Enzymes |
Medicinal Chemistry |
Metabolism |
Synthesis
A Simple Method for Demonstrating Enzyme Kinetics Using Catalase from Beef Liver Extract  Kristin A. Johnson
A simple visual method of demonstrating enzyme kinetics using beef liver catalase. Filter paper is saturated with beef liver extract and placed into a solution of hydrogen peroxide. The catalase in the extract decomposes the hydrogen peroxide to water and oxygen. Oxygen forms on the filter paper, and the filter paper rises to the top of the beaker. Catalase activity is measured by timing the rise of the enzyme-soaked filter paper to the top of beakers containing different concentrations of hydrogen peroxide.
Johnson, A. Kristin. J. Chem. Educ. 2000, 77, 1451.
Enzymes |
Kinetics |
Proteins / Peptides |
Reactions
Enzymatic Spectrophotometric Reaction Rate Determination of Glucose in Fruit Drinks and Carbonated Beverages. An Analytical Chemistry Laboratory Experiment for Food Science-Oriented Students  Argyro-Maria G. Vasilarou and Constantinos A. Georgiou
This laboratory experiment demonstrates the implementation of reaction rate kinetic methods of analysis, the use of enzymes as selective analytical reagents for the determination of substrates, the kinetic masking of ascorbic acid interference, and the analysis of glucose in drinks and beverages.
Vasilarou, Argyro-Maria G.; Georgiou, Constantinos A. J. Chem. Educ. 2000, 77, 1327.
Enzymes |
Food Science |
Kinetics |
Quantitative Analysis |
Carbohydrates
An Unexpected Event When Chymotrypsin Performs Its Physiological Role  Ivan G. Darvey
One of the events that occur during the chymotrypsin-catalyzed hydrolysis of proteins is an example of an exception to a rule of thumb taught in introductory organic chemistry courses, namely, that amides can't readily be converted to esters. If biochemistry teachers and the authors of textbooks of biochemistry commented on this unusual reaction, it would emphasize further the remarkable part chymotrypsin plays as a catalyst in carrying out its main perceived "physiological role".
Darvey, Ivan G. J. Chem. Educ. 2000, 77, 422.
Catalysis |
Enzymes |
Amides |
Esters
An Analytical Laboratory Experiment in Error Analysis: Repeated Determination of Glucose Using Commercial Glucometers  Paul L. Edmiston and Theodore R. Williams
Glucometers measure reflectance from enzyme test strips to quantitate glucose concentrations in blood. Since the typical measurement takes less than two minutes, large data sets can be obtained for statistical analysis. Students design experiments to answer specific questions concerning the performance of the glucometers.
Edmiston, Paul L.; Williams, Theodore R. J. Chem. Educ. 2000, 77, 377.
Chemometrics |
Carbohydrates |
Enzymes
An Alternative Procedure for the Glucose Oxidase Assay of Glucose as Applied to the Lactase Activity Assay  T. Corbin Mullis, Jeffery T. Winge, and S. Todd Deal
The glucose oxidase assay of glucose has been modified to eliminate the use of micropipets. The modification involves the use of disposable Pasteur pipets and a specified number of drops of each reagent. This simplified technique gives accurate and reproducible results.
Mullis, T. Corbin; Winge, Jeffery T.; Deal, S. Todd. J. Chem. Educ. 1999, 76, 1711.
Enzymes |
Carbohydrates |
Laboratory Equipment / Apparatus |
Laboratory Management
Homogeneous Immunoassays: Historical Perspective and Future Promise  Edwin F. Ullman
The founding and growth of Syva Company is examined in the context of its leadership role in the development of homogeneous immunoassays. The simple mix and read protocols of these methods offer advantages in routine analytical and clinical applications.
Ullman, Edwin F. J. Chem. Educ. 1999, 76, 781.
Biotechnology |
Enzymes |
Atomic Properties / Structure |
Free Radicals |
Photochemistry |
Medicinal Chemistry |
Proteins / Peptides
Kinetics of Papain: An Introductory Biochemistry Laboratory Experiment  Kathleen Cornely, Eric Crespo, Michael Earley, Rachel Kloter, Aime Levesque, and Mary Pickering
In this experiment, we investigate the kinetics of the thiol protease papain. A specific substrate, Na-benzoyl-arginine-p-nitroanilide (BAPNA), is used, which takes advantage of the fact that papain interacts with a phenylalanine residue two amino acids away from the peptide bond cleaved. Upon hydrolysis by papain, a bright yellow product is released, p-nitroaniline. This allows the reaction to be monitored spectrophotometrically by measuring the rate of formation of the p-nitroaniline product as a function of the increase in absorbance of the solution at the lmax of p-nitroaniline (400 nm) over time at various substrate concentrations. These data are used to plot a Lineweaver-Burk plot from which the vmax and KM are obtained.
Cornely, Kathleen; Crespo, Eric; Earley, Michael; Kloter, Rachel; Levesque, Aime; Pickering, Mary. J. Chem. Educ. 1999, 76, 644.
Enzymes |
Kinetics |
UV-Vis Spectroscopy
Redox Buffer Strength  Robert de Levie
The proper functioning of enzymes in bodily fluids requires that the pH be maintained within rather narrow limits. The first line of defense against large pH fluctuations in such fluids is the passive control provided by the presence of pH buffers. It is equally important for many enzymes that the redox potential is kept within a narrow range. In that case, stability of the potential is most readily achieved with a redox buffer. In this communication the redox buffer strength is defined by analogy with acid-base buffer strength.
de Levie, Robert. J. Chem. Educ. 1999, 76, 574.
Aqueous Solution Chemistry |
Electrochemistry |
Oxidation / Reduction |
Acids / Bases |
Enzymes
A 19F NMR Study of Enzyme Activity  Keith E. Peterman, Kevin Lentz, and Jeffery Duncan
This basic enzyme activity laboratory experiment demonstrates how 19F NMR can be used in biochemical studies and presents the advantages of 19F NMR over 1H NMR for studies of this nature. This is a viable laboratory experiment for junior/senior-level courses in instrumental analytical chemistry, biochemistry, molecular biology, or spectroscopy.
Peterman, Keith E.; Lentz, Kevin; Duncan, Jeffery. J. Chem. Educ. 1998, 75, 1283.
Instrumental Methods |
Enzymes |
NMR Spectroscopy |
Spectroscopy
Immobilized Lactase in the Biochemistry Laboratory  Matthew J. Allison and C. Larry Bering
Lactase from over-the-counter tablets for patients with lactose intolerance is immobilized in polyacrylamide, which is then milled into small beads and placed into a chromatography column. A lactose solution is added to the column and the eluant is assayed using the glucose oxidase assay, available as a kit.
Allison, Matthew J.; Bering, C. Larry. J. Chem. Educ. 1998, 75, 1278.
Enzymes |
Biotechnology
Enzyme-Linked Antibodies: A Laboratory Introduction to the ELISA  Gretchen L. Anderson and Leo A. McNellis
A fast and economical laboratory exercise is presented that qualitatively demonstrates the power of enzyme-linked antibodies to detect a specific antigen. Although ELISAs are commonly used in disease diagnosis in clinical settings, this application uses biotin, covalently attached to albumin, to take advantage of readily available reagents and avoids problems associated with potentially pathogenic antigens.
Anderson, Gretchen L.; McNellis, Leo A. J. Chem. Educ. 1998, 75, 1275.
Enzymes |
Nonmajor Courses |
Medicinal Chemistry
A Simple Method To Demonstrate the Enzymatic Production of Hydrogen from Sugar  Natalie Hershlag, Ian Hurley, and Jonathan Woodward
In the experimental protocol described here, it has been demonstrated that the common sugar glucose can be used to produce hydrogen using two enzymes, glucose dehydrogenase and hydrogenase. No sophisticated or expensive hydrogen detection equipment is required-only a redox dye, benzyl viologen, which turns purple when it is reduced. The color can be detected by a simple colorimeter.
Hershlag, Natalie; Hurley, Ian; Woodward, Jonathan. J. Chem. Educ. 1998, 75, 1270.
Enzymes |
Kinetics |
UV-Vis Spectroscopy |
Carbohydrates |
Applications of Chemistry
Working with Enzymes - Where Is Lactose Digested? An Enzyme Assay for Nutritional Biochemistry Laboratories  Sandi R. Pope, Tonya D. Tolleson, R. Jill Williams, Russell D. Underhill, and S. Todd Deal
An enzyme assay utilizing lactase enzyme from crushed LactAid tablets and a 5% lactose solution ("synthetic milk"). In the experiment, the students assay the activity of the enzyme on the "synthetic milk" at pHs of approximately 1, 6, and 8 with the stated goal of determining where lactose functions in the digestive tract. The activity of the lactase may be followed chromatographically or spectrophotometrically.
Pope, Sandi R.; Tolleson, Tonya D.; Williams, R. Jill; Underhill, Russell D.; Deal, S. Todd. J. Chem. Educ. 1998, 75, 761.
Enzymes |
Carbohydrates |
Catalysis |
Chromatography |
Spectroscopy |
Nutrition
Disadvantages of Double Reciprocal Plots  R. Bruce Martin
Because they involve grossly uneven weightings of points, the linear and formally similar double reciprocal Benesi-Hildebrand and Lineweaver-Burke plots should never be used to resolve equilibrium and enzyme kinetic results.
Martin, R. Bruce. J. Chem. Educ. 1997, 74, 1238.
Biophysical Chemistry |
Enzymes |
Equilibrium |
Kinetics
Two Simulations for Windows: Abstract of Volume 5D, Number 1  
Enzyme Lab: A Virtual Lab for Enzyme kinetics, and Lake Study for Windows.
J. Chem. Educ. 1997, 74, 871.
Enzymes
Use of Blood-Glucose Test Strips for Introducing Enzyme Electrodes and Modern Biosensors  Joseph Wang and Carlo Macca
Little attention is given to the field of chemical sensors, despite the growing importance of these devices in real-life applications. In this article we introduce students to modern biosensor technology, and in particular to disposable screen-printed glucose strips
Wang, Joseph; Maccà, Carlo. J. Chem. Educ. 1996, 73, 797.
Biotechnology |
Enzymes |
Applications of Chemistry
The Neglected Element in Sophomore Organic Chemistry  Kelly L. Bieda and Suzzane T. Purrington
There are many aspects of organic chemistry that would benefit from the inclusion of organofluorine chemistry. The properties of fluorine help in the clarification of many topics such as bond strength, leaving groups, substitution reactions, radical reactions, polymers, pharmaceuticals, and enzymes.
Bieda, Kelly L.; Purrington, Suzanne T. J. Chem. Educ. 1996, 73, 754.
Drugs / Pharmaceuticals |
Enzymes |
Polymerization |
Nucleophilic Substitution
The Well-Read Biochemist  Gale Rhodes
This article describes how I use a collection of poems, essays, and fiction to inspire my biochemistry students to make connections between the arcane world of cellular chemistry and the wider world of literature and the humanities.
Rhodes, Gale. J. Chem. Educ. 1996, 73, 732.
Enzymes |
Kinetics |
Metabolism |
Proteins / Peptides |
Membranes
Biochemical Data on the Web  Barmettler, Peter
186. Searching for information about enzymes, receptors, and other biochemical data is a painstaking task for chemists even in well-equipped libraries. The World Wide Web (WWW), also called the information superhighway, offers now an alternative approach, which is especially advantageous for homology modeling.
Barmettler, Peter J. Chem. Educ. 1996, 73, 520.
Enzymes |
Drugs / Pharmaceuticals |
Proteins / Peptides |
Receptors
Chemoenzymatic Synthesis of an Enantiomerically Pure Lactone: A Three-Step Synthesis for Undergraduate Organic Chemistry Laboratory  Cynthia K. McClure and H. Keith Chenault
A three-step laboratory sequence for the undergraduate organic laboratory is described. This series of experiments requires a student to use the product from one reaction as the starting material for a subsequent reaction, and thus the affords the student a "real world" experience of multistep synthesis.
McClure, Cynthia K.; Chenault, H. Keith. J. Chem. Educ. 1996, 73, 467.
Synthesis |
Catalysis |
Enzymes |
IR Spectroscopy
A Problem-Based Learning Design for Teaching Biochemistry  Richard F. Dods
This article describes the design of a biochemistry course that uses problem-based learning. Examples of some of the problems incorporated into the course are described in detail.
Dods, Richard F. J. Chem. Educ. 1996, 73, 225.
Proteins / Peptides |
Enzymes |
Learning Theories
Enzymatic Resolution of (+/-)-Menthol Using Transesterification with Methyl (2R)-(+)-2-Chloropropanoate: A Biocatalyzed Reaction Studied by NMR Spectroscopy and Polarimetry for an Advanced Undergraduate Project in Modern Organic Chemistry  C. Poiré, C. Rabiller, C. Chon, and P. Hudhomme
Lipase from Candida rugosa is used as an efficient biocatalyst for the kinetic resolution of (+/-)-Menthol. Methyl (2R)-(+)-2-chloropropanoate is chosen as an acyl donor for the transesterification reaction of menthol.
Poiré, C.; Rabiller, C.; Chon, C.; Hudhomme, P. J. Chem. Educ. 1996, 73, 93.
Bioorganic Chemistry |
Alcohols |
Catalysis |
Enzymes |
NMR Spectroscopy
Blood or Taco Sauce?: The Chemistry behind Criminalists' Testimony in the O. J. Simpson Murder Case  Donald B. DuPré
A presumptive test for blood using phenolphthalein and hydrogen peroxide was mentioned on several occasions in the murder trial of O. J. Simpson. The chemistry behind this test, along with cautions as to false positives, is discussed for use as a relevant and newsworthy lecture topic or demonstration in general chemistry or biochemistry.
DuPré, Donald B. J. Chem. Educ. 1996, 73, 60.
Enzymes
Novel Biocatalysts Will Work Even Better for Industry  Alan Wiseman
Bioconversions using immobilized enzymes or immobilized cells are widely used in the food and pharmaceutical industries. Redesign of enzymes and adoption of enzyme mimics will greatly enhance such catalytic processes, so too will the introduction of novel pathways into cells by recombinant DNA techniques.
Wiseman, Alan. J. Chem. Educ. 1996, 73, 55.
Food Science |
Drugs / Pharmaceuticals |
Enzymes
Methods in Carbohydrate Chemistry. Volume 10, Enzymic Methods (BeMiller, James N.)  
New title in a continuing series.
J. Chem. Educ. 1995, 72, A109.
Carbohydrates |
Enzymes
Tetrahedron Organic Chemistry Series. Volume 12, Enzymes in Synthetic Organic Chemistry (Wong, Chi-Huey, Whitesides, George M.; Baldwin, J. E.; Magnus, P. D.)  
Continuing series.
J. Chem. Educ. 1995, 72, A94.
Synthesis |
Enzymes
Breaking Bonds versus Chopping Heads: The Enzyme as Butcher  Todd P. Silverstein
Analogy to help biochemistry students understand concepts of Michaelis-Menten kinetics; active site/binding site; activation energy; substrate saturation; cooperativity; allosteric effects; and inhibitors.
Silverstein, Todd P. J. Chem. Educ. 1995, 72, 645.
Catalysis |
Enzymes |
Kinetics |
Proteins / Peptides |
Mechanisms of Reactions |
Reactions |
Rate Law
An Integrated Approach to the Undergraduate Biochemistry Laboratory   James G. Harman, John A. Anderson, Richard A. Nakashima, and Robert W. Shaw
Plan to improve the undergraduate biochemistry laboratory curriculum, including list and brief description of tutorials and experiments.
Harman, James G.; Anderson, John A.; Nakashima, Richard A.; Shaw, Robert W. J. Chem. Educ. 1995, 72, 641.
Enzymes |
Proteins / Peptides
Kinetic Study of the Enzyme Urease from Dolichos biflorus  Natarajan, K. R.
Procedure for studying the enzyme urease to catalyze the hydrolysis of urea.
Natarajan, K. R. J. Chem. Educ. 1995, 72, 556.
Enzymes
Inhibition of Enzymatic Browning Reaction by Sulfite  Kim, Hie-Joon
Laboratory procedure for demonstrating the function of sulfite as an effective food additive.
Kim, Hie-Joon J. Chem. Educ. 1995, 72, 242.
Enzymes |
Food Science |
Consumer Chemistry |
Industrial Chemistry
Nucleophilic and Enzymic Catalysis of p-Nitrophenylacetate Hydrolysis  Head, Michael B.; Mistry, Kalpna S.; Ridings, Bernard J.; Smith, Christopher A.; Parker, Mark J.
Experimental procedure for determining the relative effectiveness of several amino acids and enzymes in catalyzing the hydrolysis of p-nitrophenylacetate; sample data and analysis included.
Head, Michael B.; Mistry, Kalpna S.; Ridings, Bernard J.; Smith, Christopher A.; Parker, Mark J. J. Chem. Educ. 1995, 72, 184.
Amino Acids |
Enzymes |
Proteins / Peptides |
Catalysis
A Fast Restriction Enzyme Experiment for the Undergraduate Biochemistry Lab  Farrell, Shawn O.
The article describes a rapid experiment using restriction enzymes. It can be done in one three-hour lab and yields reliable results.
Farrell, Shawn O. J. Chem. Educ. 1994, 71, 1095.
Enzymes
An Effective Approach for Teaching Intermolecular Interactions  Campanario, Juan Miguel; Bronchalo, Enrique; Hidalgo, Miguel Angel
Using electrostatic potential to help students achieve a better understanding of molecular interactions.
Campanario, Juan Miguel; Bronchalo, Enrique; Hidalgo, Miguel Angel J. Chem. Educ. 1994, 71, 761.
Noncovalent Interactions |
Molecular Recognition |
Enzymes |
Crystal Field / Ligand Field Theory
On the Use of Least Squares To Fit Data in Linear Form  Chong, Delano P.
Analysis of Michaelis-Menten kinetics as an example of using least squares to fit data in a linear form.
Chong, Delano P. J. Chem. Educ. 1994, 71, 489.
Chemometrics |
Enzymes |
Kinetics
The preparation of furoin-A biomimetic reaction  Hanson, R. W.
A procedure for the title reaction using a nontoxic analog to cyanide.
Hanson, R. W. J. Chem. Educ. 1993, 70, 257.
Enzymes |
Bioorganic Chemistry |
Catalysis
Detoxifying enzymes and insect symbionts  Shen, Samuel K.; Dowd, Patrick F.
Enzymes and pathways for the detoxification of substances in a variety of organisms.
Shen, Samuel K.; Dowd, Patrick F. J. Chem. Educ. 1992, 69, 796.
Enzymes |
Toxicology
A biochemistry project to study mushroom tyrosinase: Enzyme localization, isoenzymes, and detergent activation  Rodriquez, Marta Olga; Flurkey, William H.
Investigating mushroom tyrosinase isoenzymes in different tissue sections of commercial mushrooms.
Rodriquez, Marta Olga; Flurkey, William H. J. Chem. Educ. 1992, 69, 767.
Enzymes |
Electrophoresis |
Kinetics
The conversion of chemical energy: Part 2. Biochemical examples  Wink, Donald J.
Biological systems regulate energy transfer reactions through enzymes that permit a spontaneous reaction to go faster through a mechanism that also accomplishes work instead of, or in addition to, releasing energy as heat.
Wink, Donald J. J. Chem. Educ. 1992, 69, 264.
Enzymes |
Bioorganic Chemistry |
Bioenergetics
Enzyme activity: The ping-pong ball torture analogy  Helser, Terry L.
The author uses this analogy to help students visualize and understand the effect of reaction conditions on the initial rate of an enzyme-catalyzed reaction.
Helser, Terry L. J. Chem. Educ. 1992, 69, 137.
Enzymes |
Reactions
Enzyme activity: A simple analogy   Abel, Kenton B.; Halenz, Donald R.
Presented here is a simple analogy that has helped students in our classes grasp the concept of enzyme activity
Abel, Kenton B.; Halenz, Donald R. J. Chem. Educ. 1992, 69, 9.
Enzymes
An NMR study of the stereochemistry of the fumarase-catalyzed hydration of fumaric acid  Olsen, Julie A.; Olsen, Robert J.
An NMR study of the stereochemistry of the fumarase-catalyzed hydration of fumaric acid.
Olsen, Julie A.; Olsen, Robert J. J. Chem. Educ. 1991, 68, 436.
Acids / Bases |
NMR Spectroscopy |
Enzymes |
Molecular Modeling |
Diastereomers
Superoxide dismutase and the Briggs-Rauscher reaction  Franz, David A.
Oxygen-derived species provide chemistry teachers with excellent examples for discussion of molecular-orbital theory, bond order and reactivity, redox potentials, radical reactivity, disproportionation, and enzyme activity.
Franz, David A. J. Chem. Educ. 1991, 68, 57.
Enzymes |
Biophysical Chemistry |
MO Theory |
Oxidation / Reduction |
Covalent Bonding
Effects of "crowding" in protein solutions  Ralston, G. B.
The effects of macromolecular nonideality and crowding on chemical equilibria, association reactions, and enzyme kinetics.
Ralston, G. B. J. Chem. Educ. 1990, 67, 857.
Proteins / Peptides |
Equilibrium |
Reactions |
Enzymes |
Kinetics
Binding energy and enzymatic catalysis  Hansen, David E.; Raines, Ronald T.
The authors discuss the fundamental role that the favorable free energy of binding of the rate-determining transition state plays in catalysis and review the principle that many catalytic factors are realized by the use of this binding energy.
Hansen, David E.; Raines, Ronald T. J. Chem. Educ. 1990, 67, 483.
Enzymes |
Catalysis |
Thermodynamics
An enzyme immunoassay for human transferrin  Russo, Salvatore F.; Dahlberg, Judy Utter
The field of immunology provides a powerful method for detecting specific noncatalytic proteins.
Russo, Salvatore F.; Dahlberg, Judy Utter J. Chem. Educ. 1990, 67, 175.
Enzymes |
Medicinal Chemistry |
Proteins / Peptides
Student comparisons of analytical chemical methods in undergraduate chemistry courses  Harrison, Aline M.; Peterman, Keith E.
Four experiments in which different analytical methods are used to make the same measurement for purposes of comparison.
Harrison, Aline M.; Peterman, Keith E. J. Chem. Educ. 1989, 66, 772.
Gravimetric Analysis |
Atomic Properties / Structure |
Titration / Volumetric Analysis |
NMR Spectroscopy |
UV-Vis Spectroscopy |
Enzymes |
Quantitative Analysis
Azosulfonamides: Preparation and binding to carbonic anhydrase: A bioorganic chemistry experiment  Manalang, Mary G.; Bundy, Hallie F.
Preparation of azosulfonamide, visible absorption analysis of free and enzyme-bond azosulfonamide, and titration of BCA with azosulfonamide.
Manalang, Mary G.; Bundy, Hallie F. J. Chem. Educ. 1989, 66, 609.
Bioorganic Chemistry |
Synthesis |
Proteins / Peptides |
Titration / Volumetric Analysis |
Enzymes
Analysis of kinetic data with a spreadsheet program  Henderson, John
An article about spreadsheet templates that accept concentration versus time data for several runs of an experiment, determination of least-squares lines through data points for each run, and will allow the user to exclude points from the least-squares calculation.
Henderson, John J. Chem. Educ. 1988, 65, A150.
Chemometrics |
Laboratory Computing / Interfacing |
UV-Vis Spectroscopy |
Rate Law |
Kinetics |
Enzymes
The biochemistry of brewing   Bering, Charles L.
There are few topics that hold the attention of students as much as the one presented in this paper.
Bering, Charles L. J. Chem. Educ. 1988, 65, 519.
Biological Cells |
Carbohydrates |
Applications of Chemistry |
Alcohols |
Metabolism |
Enzymes |
Biotechnology |
Molecular Biology |
Consumer Chemistry
A convenient synthesis of aspartame  Lindeberg, Gunnar
The one tube, enzymatic synthesis of the dipeptide sweetener aspartame.
Lindeberg, Gunnar J. Chem. Educ. 1987, 64, 1062.
Synthesis |
Enzymes |
Proteins / Peptides
The metabolism of xenobiotic chemicals  Cullen, John W.
Metabolic processes can produce compounds that are more toxic than that originally inhaled or ingested; considers Phase I and Phase II reactions and their major constituents.
Cullen, John W. J. Chem. Educ. 1987, 64, 396.
Metabolism |
Toxicology |
Enzymes |
Drugs / Pharmaceuticals
RNA's as catalysts: A new class on enzymes  McCorkle, George M.; Altman, Sidney
Analysis of two RNA's that act as enzymes, upsetting the long-held position that all enzymes are proteins.
McCorkle, George M.; Altman, Sidney J. Chem. Educ. 1987, 64, 221.
Catalysis |
Enzymes
Metabolic questions  Akers, Hugh A.
Students are asked to construct a metabolic pathway from a description of a sequence of events and to identify (logical) cofactors that are anticipated to be utilized.
Akers, Hugh A. J. Chem. Educ. 1987, 64, 159.
Metabolism |
Enzymes
Enzyme technology: A practical topic in basic chemical education   Grunwald, Peter
This article elucidates how a new important field of development and research like biotechnology can be integrated into a normal chemistry course.
Grunwald, Peter J. Chem. Educ. 1986, 63, 775.
Enzymes |
Catalysis |
Enrichment / Review Materials |
Biotechnology
The enzymatic resolution of aromatic amino acids  Sheardy, Riehard; Liotta, L.; Steinhart, E.; Champion, R.; Rinker, J.; Planutis, M.; Salinkas, J.; Boyer, T.; Carcanague, D.
This article presents an experiment that can demonstrate as many principles of steroisomersim as possible and is also efficient in terms of time and preparation.
Sheardy, Riehard; Liotta, L.; Steinhart, E.; Champion, R.; Rinker, J.; Planutis, M.; Salinkas, J.; Boyer, T.; Carcanague, D. J. Chem. Educ. 1986, 63, 646.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers |
Aromatic Compounds |
Amino Acids |
Enzymes
Optical projection experiments to demonstrate new curricula contents   Perina, Ivo
Demonstration of experiments by optical projection compared with classic demonstration of experiments has a number of advantages.
Perina, Ivo J. Chem. Educ. 1986, 63, 344.
Alcohols |
Enzymes |
Atmospheric Chemistry
Musical mechanisms  Jones, Peter
Portraying the mechanism of the catalysis of hydrogen peroxide decomposition by catalase using an adaptation of musical notation.
Jones, Peter J. Chem. Educ. 1985, 62, 1093.
Catalysis |
Enzymes |
Mechanisms of Reactions
Use of the "cubic snake" as a molecular model  Gilon, Chaim
Using a "cubic snake" to model macromolecules.
Gilon, Chaim J. Chem. Educ. 1985, 62, 1074.
Molecular Modeling |
Molecular Properties / Structure |
Proteins / Peptides |
Enzymes
The catalytic function of enzymes  Splittgerber, Allan G.
Review of the structure, function, and factors that influence the action of enzymes.
Splittgerber, Allan G. J. Chem. Educ. 1985, 62, 1008.
Catalysis |
Enzymes |
Mechanisms of Reactions |
Proteins / Peptides |
Molecular Properties / Structure
Zinc enzymes  Bertini, I.; Luchinat, C.; Monnanni, R.
The role played by catalytic and noncatalytic zinc in biochemical systems. From the "State of the Art Symposium: Bioinorganic Chemistry", held at the ACS meeting, Miami, 1985.
Bertini, I.; Luchinat, C.; Monnanni, R. J. Chem. Educ. 1985, 62, 924.
Enzymes |
Bioinorganic Chemistry |
Lewis Acids / Bases |
Proteins / Peptides
Biochemistry off the shelf  Wilson, Jerry L.
Rather than using animal sources for biochemistry experiments, non-animal sources are inexpensive, readily available, and require no special storage.
Wilson, Jerry L. J. Chem. Educ. 1985, 62, 796.
Enzymes |
Carbohydrates |
Lipids |
Metabolism
Methemoglobinemia: An illness caused by the ferric state  Senozan, N. M.
Hemoglobin's ability to carry oxygen depends on the iron being in the +2 state; methemoglobinemia involves the oxidation of hemoglobin iron to the +3 state.
Senozan, N. M. J. Chem. Educ. 1985, 62, 181.
Proteins / Peptides |
Enzymes |
Medicinal Chemistry |
Oxidation / Reduction |
Oxidation State
A useful model for the "lock and key" analogy  Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A.
A model that nicely illustrates this principle is the "SOMA" puzzle cube.
Fenster, Ariel E.; Harpp, David N.; Schwarcz, Joseph A. J. Chem. Educ. 1984, 61, 967.
Molecular Modeling |
Molecular Properties / Structure |
Molecular Recognition |
Enzymes
Making candy with enzymes  Kirschenbaum, Donald M.
How is a liquid-center, chocolate-covered cherry made?
Kirschenbaum, Donald M. J. Chem. Educ. 1984, 61, 652.
Enzymes |
Food Science
Invert sugar (and a honey of a problem)  Wendland, Ray
Question regarding the optical rotation of sucrose, and a sucrose/dextrose/levulose mixture.
Wendland, Ray J. Chem. Educ. 1982, 59, 217.
Carbohydrates |
Chirality / Optical Activity |
Enzymes
Isoenzymes  Daugherty, N. A.
The separation, identification, and measurement of isoenzymes is an appropriate topic for a special lecture in general chemistry.
Daugherty, N. A. J. Chem. Educ. 1979, 56, 442.
Enzymes |
Proteins / Peptides |
pH |
Electrophoresis |
Separation Science |
Electrochemistry |
Applications of Chemistry
The electrophoresis of indicators: An analogy to isoenzyme separation  Daugherty, N. A.; Lavallee, D. K.
A lecture demonstration that illustrates the principles involved in the separation of isoenzymes but avoids the problems inherent in isoenzyme separations.
Daugherty, N. A.; Lavallee, D. K. J. Chem. Educ. 1979, 56, 353.
Electrochemistry |
Electrophoresis |
Dyes / Pigments |
Enzymes |
Separation Science
Some aspects of the bioinorganic chemistry of molybdenum  Swedo, Kathleen Bizot; Enemark, John H.
The biological role of molybdenum, biophysical studies of the molybdenum atoms in molybdo-enzymes, and aspects of coordination chemistry that bear on the understanding of molybdo-enzymes.
Swedo, Kathleen Bizot; Enemark, John H. J. Chem. Educ. 1979, 56, 70.
Bioinorganic Chemistry |
Organometallics |
Enzymes |
Coordination Compounds |
Transition Elements
New skeletal-space-filling models. A model of an enzyme active site  Clarke, Frank H.
Reviews the molecular modeling systems available for representing organic and biochemical structures; includes requirements and coordinates for a model of the alpha chymotrypsin active site.
Clarke, Frank H. J. Chem. Educ. 1977, 54, 230.
Molecular Properties / Structure |
Enzymes |
Molecular Modeling |
Molecular Recognition
Cycloamyloses  Bergeron, Raymond J.
Examines an unusual carbohydrate system of current interest in the hope of generating some enthusiasm for the topic.
Bergeron, Raymond J. J. Chem. Educ. 1977, 54, 204.
Carbohydrates |
Molecular Properties / Structure |
Thermodynamics |
Kinetics |
Enzymes |
Spectroscopy
Simple models for tough concepts  Cavagnol, Richard M.; Barnett, Thomas
One of the most challenging aspects of instructional interaction is the presentation of dynamic chemical concepts interaction is the presentation of dynamic chemical concepts in a way that is both believable and understandable. The authors have devised a series of models that are simple, inexpensive, and require very little time or skill to construct. They allow students to visualize a whole spectrum of phenomena from atomic structure to enzyme-substrate interactions.
Cavagnol, Richard M.; Barnett, Thomas J. Chem. Educ. 1976, 53, 643.
Enzymes |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Atomic Properties / Structure |
Transport Properties
Bromolain. Experiments illustrating proteolytic enzyme action  Reigh, Darryel L.
The following set of exercises provides a simple visual method of demonstrations some of the characteristics of enzymes in general, such as heat and pH lability and inhibition, as well as some specific properties of bromelain intide hydrolysis. These experiments can be used with freshman in introductory courses and juniors in biochemistry.
Reigh, Darryel L. J. Chem. Educ. 1976, 53, 386.
Enzymes |
pH |
Food Science |
Natural Products |
Proteins / Peptides
Questions [and] Answers  Campbell, J. A.
216-219. Four questions applying chemistry and their solutions.
Campbell, J. A. J. Chem. Educ. 1975, 52, 807.
Enrichment / Review Materials |
Enzymes |
Lipids |
Metabolism |
Fatty Acids
A space-filling model of the active site region of carboxypeptidase A  Sebastian, John F.; Butkus, John C.
A three-dimensional CPK space-filling model of the active site of carboxypeptidase A.
Sebastian, John F.; Butkus, John C. J. Chem. Educ. 1975, 52, 660.
Molecular Properties / Structure |
Molecular Modeling |
Enzymes |
Amino Acids
Questions [and] Answers  Campbell, J. A.
175-179. Five ecological chemistry questions and their answers.
Campbell, J. A. J. Chem. Educ. 1975, 52, 171.
Enrichment / Review Materials |
Photochemistry |
Catalysis |
Enzymes
A demonstration of enzyme activity for the "Sceptical Chymist"  Fried, Rainer; Howse, Margaret
A simple laboratory or demonstration that illustrates the nature and fundamental properties of enzymes through a color change.
Fried, Rainer; Howse, Margaret J. Chem. Educ. 1971, 48, 847.
Enzymes |
Rate Law
Simple method for demonstrating an enzymatic reaction  Tang, Chung-Shih
Uses taste sensations of papaya seeds under varying conditions to demonstrate an enzymatic reaction.
Tang, Chung-Shih J. Chem. Educ. 1970, 47, 692.
Enzymes |
Proteins / Peptides |
Food Science |
Reactions |
Consumer Chemistry |
Applications of Chemistry
Hydrogen sulfide under any other name still smells. A poisonous story  Brasted, Robert C.
The chemistry of hydrogen sulfide affords an excellent opportunity to integrate descriptive inorganic and coordination chemistry with biochemistry.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 574.
Descriptive Chemistry |
Molecular Properties / Structure |
Coordination Compounds |
Enzymes |
Proteins / Peptides
Disposable macromolecular model "kits"  Nicholson, Isadore
A brief note suggesting the use of colored pipe cleaners for the construction of three dimensional models of polymers, particularly enzymes and other proteins.
Nicholson, Isadore J. Chem. Educ. 1969, 46, 671.
Molecular Modeling |
Enzymes |
Proteins / Peptides
The principle of exponential change: Applications in chemistry, biochemistry, and radioactivity  Green, Frank O.
Examines the nature of exponential change and its applications to chemistry, biochemistry, and radioactivity, including radioactive decay, enzyme kinetics, colorimetry, spectrophotometry, and first order reaction kinetics.
Green, Frank O. J. Chem. Educ. 1969, 46, 451.
Nuclear / Radiochemistry |
Kinetics |
Enzymes |
Spectroscopy
Molecular models of metal chelates to illustrate enzymatic reactions  Hendrickson, H. Stewart; Srere, Paul A.
This paper describes an alternative to the Ogston model that uses a metal ion to discriminate between the symmetrical ends of the citrate molecule.
Hendrickson, H. Stewart; Srere, Paul A. J. Chem. Educ. 1968, 45, 539.
Molecular Modeling |
Molecular Properties / Structure |
Enzymes |
Organometallics |
Coordination Compounds
Reaction rate analysis and instrumentation: An experiment for the analytical laboratory  Pardue, Harry L.; Burke, Michael F.; Jones, David O.
This experiment exemplifies the use of operational amplifiers for measurement and analog computation in determining the glucose utilizing glucose enzyme.
Pardue, Harry L.; Burke, Michael F.; Jones, David O. J. Chem. Educ. 1967, 44, 684.
Kinetics |
Rate Law |
Catalysis |
Enzymes |
Carbohydrates
Interactions of enzymes and inhibitors  Baker, B. R.
Examines the kinetics and interactions of enzymes and inhibitors and considers specifically lactic dehydrogenase, dihydrofolic reductase, thymidine phosphorylate, guanase, and xanthine oxidase.
Baker, B. R. J. Chem. Educ. 1967, 44, 610.
Enzymes |
Catalysis |
Noncovalent Interactions |
Molecular Properties / Structure |
Molecular Recognition |
Hydrogen Bonding
Determination of glucose: A kinetics experiment for the analytical course  Toren, E. Clifford, Jr.
This determination of glucose demonstrates both kinetic and enzymatic methods of analysis.
Toren, E. Clifford, Jr. J. Chem. Educ. 1967, 44, 172.
Quantitative Analysis |
Carbohydrates |
Kinetics |
Enzymes
Three-dimensional effects in biochemistry  Ingraham, Lloyd L.
Explores stereospecificity and stereoselectivity; rigidity requirements; steric effects; and stereospecificity when not required mechanistically.
Ingraham, Lloyd L. J. Chem. Educ. 1964, 41, 66.
Molecular Properties / Structure |
Catalysis |
Enzymes |
Molecular Recognition |
Mechanisms of Reactions |
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
Demonstrating enzymatic hydrolysis of glucosides by paper chromatography  Darling, S. F.
The hydrolysis of beta-glucosides in the presence of beta-glucosidase is followed chromatographically using only micro amounts.
Darling, S. F. J. Chem. Educ. 1961, 38, 508.
Enzymes |
Chromatography |
Microscale Lab
Papain as an enzyme catalyst in undergraduate organic chemistry  Abernethy, John Leo; Kientz, Marvin
A rather large number of papain-catalyzed reactions can be selected for use in undergraduate organic laboratory work.
Abernethy, John Leo; Kientz, Marvin J. Chem. Educ. 1959, 36, 582.
Enzymes |
Catalysis