TIGER

Journal Articles: 20 results
Nature's Way To Make the Lantibiotics  Heather A. Relyea and Wilfred A. van der Donk
This article focuses on one class of antimicrobial compounds, the lantibiotics, and discusses their biosynthetic pathways as well as their molecular mode of action. In the course of the review, the meaning of the terms regio-, chemo-, and stereoselectivity are discussed.
Relyea, Heather A.; van der Donk, Wilfred A. J. Chem. Educ. 2006, 83, 1769.
Applications of Chemistry |
Bioorganic Chemistry |
Biotechnology |
Biosynthesis |
Catalysis |
Drugs / Pharmaceuticals |
Proteins / Peptides
Amino Acids  William F. Coleman
The Featured Molecules this month are the 20 standard alpha-amino acids found in proteins. The molecules are presented in two formats, the neutral form and the ionized form found in solution at physiologic pH.
Coleman, William F. J. Chem. Educ. 2006, 83, 1103.
Amino Acids |
Proteins / Peptides |
Molecular Properties / Structure |
Molecular Modeling |
Molecular Mechanics / Dynamics
Chemical Modification of Papain and Subtilisin: An Active Site Comparison. An Undergraduate Biochemistry Experiment   Mireille St-Vincent and Michael Dickman
This experiment demonstrates the specific chemistry of cysteine and serine residues in the active sites of papain and subtilisin.
St-Vincent, Mireille; Dickman, Michael. J. Chem. Educ. 2004, 81, 1048.
Amino Acids |
Bioorganic Chemistry |
Enzymes
The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids  Addison Ault
Examples of the industrial synthesis of pure amino acids are presented. The emphasis is on the synthesis of (S)-glutamic acid and, to a lesser extent, (S)-lysine and (R,S)-methionine. These amino acids account for about 90% of the total world production of amino acids.
Ault, Addison. J. Chem. Educ. 2004, 81, 347.
Amino Acids |
Biotechnology |
Chirality / Optical Activity |
Consumer Chemistry |
Enzymes |
Natural Products |
Stereochemistry |
Synthesis |
Food Science
Protein Design Using Unnatural Amino Acids  Basar Bilgiçer and Krishna Kumar
Using examples from the literature, this article describes the available methods for unnatural amino acid incorporation and highlights some recent applications including the design of hyperstable protein folds.
Bilgiçer, Basar; Kumar, Krishna. J. Chem. Educ. 2003, 80, 1275.
Amino Acids |
Bioorganic Chemistry |
Biotechnology |
Proteins / Peptides |
Synthesis |
Molecular Properties / Structure
Thin-Layer Electrophoresis  Tom Lyons Fisher, Tara Leslie Fitzsimmons, and I. David Reingold
Thin-layer electrophoresis apparatus.
Fisher, Tom Lyons; Fitzsimmons, Tara Leslie; Reingold, I. David. J. Chem. Educ. 2001, 78, 1241.
Amino Acids |
Electrophoresis |
Laboratory Equipment / Apparatus |
Separation Science
Nucleophilic and Enzymic Catalysis of p-Nitrophenylacetate Hydrolysis  Head, Michael B.; Mistry, Kalpna S.; Ridings, Bernard J.; Smith, Christopher A.; Parker, Mark J.
Experimental procedure for determining the relative effectiveness of several amino acids and enzymes in catalyzing the hydrolysis of p-nitrophenylacetate; sample data and analysis included.
Head, Michael B.; Mistry, Kalpna S.; Ridings, Bernard J.; Smith, Christopher A.; Parker, Mark J. J. Chem. Educ. 1995, 72, 184.
Amino Acids |
Enzymes |
Proteins / Peptides |
Catalysis
Qualitative amino acid analysis of small peptides by GC/MS  Mabbott, Gary A.
Besides being appealing to students the exercise described here gives them experiences in derivation methods that are often necessary in order to make nonvolatile samples amenable to gas chromatography separation.
Mabbott, Gary A. J. Chem. Educ. 1990, 67, 441.
Amino Acids |
Qualitative Analysis |
Gas Chromatography |
Mass Spectrometry |
Instrumental Methods
Isolation of the active site of cytochrome c by reverse-phase high-performance liquid chromatography  Kenigsberg, Paul A.; Blanke, Steven R.; Hager, Lowell P.
To serve as an introduction to research, an advanced-level graduate laboratory course should be challenging, incorporate currently relevant techniques, offer more responsibility to students, and contain a minimum of technical pitfalls. The following experiment meets all the aforementioned criteria.
Kenigsberg, Paul A.; Blanke, Steven R.; Hager, Lowell P. J. Chem. Educ. 1990, 67, 177.
HPLC |
Proteins / Peptides
Oxidation of cysteine to cystine using hydrogen peroxide  Hill, John W.; Coy, Robert B.; Lewandowski, Peter E.
This synthesis has several advantages as an undergraduate laboratory exercise.
Hill, John W.; Coy, Robert B.; Lewandowski, Peter E. J. Chem. Educ. 1990, 67, 172.
Amino Acids |
Oxidation / Reduction
The catalytic function of enzymes  Splittgerber, Allan G.
Review of the structure, function, and factors that influence the action of enzymes.
Splittgerber, Allan G. J. Chem. Educ. 1985, 62, 1008.
Catalysis |
Enzymes |
Mechanisms of Reactions |
Proteins / Peptides |
Molecular Properties / Structure
Protein denaturation: A physical chemistry project lab  Pickering, Miles; Crabtree, Robert H.
This experiment links physical chemistry with biology and can be done with in advanced freshman course.
Pickering, Miles; Crabtree, Robert H. J. Chem. Educ. 1981, 58, 513.
Proteins / Peptides |
Biophysical Chemistry |
Molecular Properties / Structure
Confusion over D and L Nomenclature  Yuan, Sun-Shine
The use of the (R,S) convention will eliminate (D,L) confusion.
Yuan, Sun-Shine J. Chem. Educ. 1980, 57, 528.
Amino Acids |
Stereochemistry |
Nomenclature / Units / Symbols
Bromolain. Experiments illustrating proteolytic enzyme action  Reigh, Darryel L.
The following set of exercises provides a simple visual method of demonstrations some of the characteristics of enzymes in general, such as heat and pH lability and inhibition, as well as some specific properties of bromelain intide hydrolysis. These experiments can be used with freshman in introductory courses and juniors in biochemistry.
Reigh, Darryel L. J. Chem. Educ. 1976, 53, 386.
Enzymes |
pH |
Food Science |
Natural Products |
Proteins / Peptides
Allied health chemistry laboratory. Amino acids, insulin, proteins, and skin  Dever, David F.
Describes an allied health chemistry laboratory involving amino acids, insulin, proteins and skin that begins with the construction of molecular models of amino acids and proteins.
Dever, David F. J. Chem. Educ. 1975, 52, 338.
Amino Acids |
Proteins / Peptides |
Medicinal Chemistry |
Nonmajor Courses |
Molecular Properties / Structure |
Molecular Modeling |
Applications of Chemistry
Sulfur compounds. Pollution, health effects, and biological function  Leh, F.; Chan, K. M.
Reviews the role of sulfur and its compounds in pollution and adverse health effects as well as biological functions.
Leh, F.; Chan, K. M. J. Chem. Educ. 1973, 50, 246.
Nonmetals |
Proteins / Peptides
The use of talc as a tlc adsorbent  Walsh, Brother Joseph M.
Describes the use of talc as a thin layer chromatography adsorbent, particularly with respect to the separation of flavonoids, sugars, and proteins.
Walsh, Brother Joseph M. J. Chem. Educ. 1967, 44, 294.
Thin Layer Chromatography |
Chromatography |
Separation Science |
Proteins / Peptides |
Carbohydrates
Polyethylene and pipecleaner models of biological polymers  Pollard, Harvey Bruce
An accurate method for modeling polysaccharides, nucleic acids, and proteins involves the use of pipecleaners, polyethylene tubing, and proteins.
Pollard, Harvey Bruce J. Chem. Educ. 1966, 43, 327.
Proteins / Peptides |
Molecular Modeling |
Molecular Properties / Structure |
Carbohydrates
Structural variety of natural products  Roderick, William R.
Classes of natural products examined includes alkynes; quinones; benzpyrones; small and large rings; sulfur, nitrogen, and halogen-containing compounds; and new amino acids.
Roderick, William R. J. Chem. Educ. 1962, 39, 2.
Natural Products |
Amino Acids |
Alkynes |
Aromatic Compounds
Potentialities of protein isomerism  Asimov, Isaac
The permutations generated by structural isomerism in proteins could be demonstrated more convincingly and realistically if the amino acid compositions of actual proteins were taken into consideration.
Asimov, Isaac J. Chem. Educ. 1954, 31, 125.
Proteins / Peptides |
Molecular Properties / Structure |
Amino Acids |
Constitutional Isomers