TIGER

Journal Articles: 38 results
A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Majors Laboratory  Kiel E. Lazarski, Alan A. Rich, and Cheryl M. Mascarenhas
Describes a one-pot, enantioselective, Robinson annulation geared towards the second-year organic chemistry major and demonstrating aspects of green chemistry.
Lazarski, Kiel E.; Rich, Alan A.; Mascarenhas, Cheryl M. J. Chem. Educ. 2008, 85, 1531.
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Gas Chromatography |
HPLC |
NMR Spectroscopy |
Synthesis |
Green Chemistry
The Resolution of Ibuprofen, 2-(4′-Isobutylphenyl)propionic Acid  James V. McCullagh
In this experiment the over-the-counter pain reliever ibuprofen is resolved using (S)-(-)-a-phenethylamine as the resolving agent. This procedure has several key advantages over previous resolution experiments.
McCullagh, James V. J. Chem. Educ. 2008, 85, 941.
Chirality / Optical Activity |
Drugs / Pharmaceuticals |
Enantiomers |
Quantitative Analysis |
Separation Science
The Same and Not the Same: Chirality, Topicity, and Memory of Chirality  Wolfgang H. Kramer and Axel G. Griesbeck
Describes a simple molecular approach that aids students in learning stereochemical terms, definitions, and concepts, particularly when chemical structures are drawn in two dimensions.
Kramer, Wolfgang H.; Griesbeck, Axel G. J. Chem. Educ. 2008, 85, 701.
Chirality / Optical Activity |
Stereochemistry
Synthesis of Anomeric Methyl Fructofuranosides and Their Separation on an Ion-exchange Resin  Erkki Nurminen, Päivi Poijärvi, Katja Koskua, and Jari Hovinen
Treatment of d-fructose with methanol in the presence of acid as a catalyst gives a mixture of methyl--d-fructopyranoside, methyl-a-D-fructofuranoside, and methyl--d- fructofuranoside, which are separated on an ion exchange column and characterized polarimetrically.
Nurminen, Erkki; Poijärvi, Päivi; Koskua, Katja; Hovinen, Jari. J. Chem. Educ. 2007, 84, 1480.
Carbocations |
Chirality / Optical Activity |
Chromatography |
Ion Exchange |
NMR Spectroscopy |
Synthesis |
Thin Layer Chromatography |
Carbohydrates
Amino Acids  William F. Coleman
The Featured Molecules this month are the 20 standard alpha-amino acids found in proteins. The molecules are presented in two formats, the neutral form and the ionized form found in solution at physiologic pH.
Coleman, William F. J. Chem. Educ. 2006, 83, 1103.
Amino Acids |
Proteins / Peptides |
Molecular Properties / Structure |
Molecular Modeling |
Molecular Mechanics / Dynamics
Cotton Effect in Copper–Proline Complexes in the Visible Region  Victor Volkov and Rolf Pfister
This article suggests taking advantage of the visible dd electronic transition of Cu2+, which allows one to contrast the normal optical rotatory dispersion response of d- and l-proline in aqueous solution with the strong Cotton effect observed when these amino acids are complexed with a metal cation.
Volkov, Victor; Pfister, Rolf. J. Chem. Educ. 2005, 82, 1663.
Chirality / Optical Activity |
IR Spectroscopy |
Molecular Properties / Structure |
Spectroscopy |
Stereochemistry |
UV-Vis Spectroscopy |
Amino Acids |
Coordination Compounds |
Crystal Field / Ligand Field Theory
Chiral Crystallization of Ethylenediamine Sulfate  Lawrence Koby, Jyothi B. Ningappa, Maria Dakessian, and Louis A. Cuccia
Optimized conditions for the chiral crystallization of ethylenediamine sulfate, which can serve as an ideal undergraduate experiment, are described. Large, flat, colorless crystals of ethylenediamine sulfate are obtained in an undisturbed evaporation dish within a period of approximately five to seven days. The crystals are ideal for polarimetry studies and observation using Polaroid sheets. Students become familiar with polarizing filters and how they can be used to distinguish between dextrorotatory and levorotatory crystals.
Koby, Lawrence; Ningappa, Jyothi B.; Dakessian, Maria; Cuccia, Louis A. J. Chem. Educ. 2005, 82, 1043.
Chirality / Optical Activity |
Crystals / Crystallography |
Stereochemistry |
Physical Properties
The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids  Addison Ault
Examples of the industrial synthesis of pure amino acids are presented. The emphasis is on the synthesis of (S)-glutamic acid and, to a lesser extent, (S)-lysine and (R,S)-methionine. These amino acids account for about 90% of the total world production of amino acids.
Ault, Addison. J. Chem. Educ. 2004, 81, 347.
Amino Acids |
Biotechnology |
Chirality / Optical Activity |
Consumer Chemistry |
Enzymes |
Natural Products |
Stereochemistry |
Synthesis |
Food Science
"Chiral Acetate": The Preparation, Analysis, and Applications of Chiral Acetic Acid  Addison Ault
Production of chiral acetic acid using deuterium and tritium and its application to understanding stereochemistry and the specificity of enzymatic reactions.
Ault, Addison. J. Chem. Educ. 2003, 80, 333.
Chirality / Optical Activity |
Enzymes |
Isotopes |
Synthesis |
Stereochemistry |
Enrichment / Review Materials |
Carboxylic Acids |
Enantiomers |
Reactions |
Mechanisms of Reactions
The World's First "Pastarimeter": An Analogous Demonstration of Polarimetry Using Pasta Fusilli  Claire Saxon, Scott Brindley, Nic Jervis, Graeme R. Jones, E. David Morgan, and Christopher A. Ramsden
Demonstration in which clockwise pasta in one glass tube causes exiting water to rotate in that direction while counter clockwise pasta in a second tube has the opposite effect.
Saxon, Claire; Brindley, Scott; Jervis, Nic; Jones, Graeme R.; Morgan, E. David; Ramsden, Christopher A. J. Chem. Educ. 2002, 79, 1214.
Chirality / Optical Activity |
Stereochemistry
Introducing Chiroscience into the Organic Laboratory Curriculum  Kenny B. Lipkowitz, Tim Naylor, and Keith S. Anliker
"Chiroscience" is a young but robust industry linking science and technology with chemistry and biology; includes description of an asymmetric reduction of a ketone followed by an assessment of the enantiomeric excess by GC using a chiral stationary phase.
Lipkowitz, Kenny B.; Naylor, Tim; Anliker, Keith S. J. Chem. Educ. 2000, 77, 305.
Chirality / Optical Activity |
Chromatography |
Mechanisms of Reactions |
Synthesis |
Separation Science |
Stereochemistry |
Gas Chromatography |
Aldehydes / Ketones
Preparation of (S)-(+)-5,8a-Dimethyl-3,4,8,8a-tetrahydro-1,6(2H,7H)-naphthalenedione: An Undergraduate Experiment in Asymmetric Synthesis  Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E.
An asymmetric Robinson annelation suitable for the undergraduate organic laboratory.
Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E. J. Chem. Educ. 1995, 72, 270.
Synthesis |
Chirality / Optical Activity |
Aldehydes / Ketones
Representation of the stereochemistry of amino acids in textbooks  Behrman, E. J.; Means, G. E.; Zhang, H.
Authors recommend either a return to the standard Fischer convention or the amino-carboxyl linear (AC linear) projection to represent amino acids. Current textbook conventions lead to confusion among readers.
Behrman, E. J.; Means, G. E.; Zhang, H. J. Chem. Educ. 1993, 70, 282.
Amino Acids
Chiral crackers: A palatable approach to optical isomerism  Griffin, Susan F.
Crackers obtained from the grocery store can be used to help students understand enantiomers.
Griffin, Susan F. J. Chem. Educ. 1991, 68, 1029.
Chirality / Optical Activity |
Stereochemistry |
Enantiomers
Qualitative amino acid analysis of small peptides by GC/MS  Mabbott, Gary A.
Besides being appealing to students the exercise described here gives them experiences in derivation methods that are often necessary in order to make nonvolatile samples amenable to gas chromatography separation.
Mabbott, Gary A. J. Chem. Educ. 1990, 67, 441.
Amino Acids |
Qualitative Analysis |
Gas Chromatography |
Mass Spectrometry |
Instrumental Methods
Microscale synthesis and analysis of a dipeptide  Blatchly, Richard A.; Allen, Timothy R.; Bergstrom, Dirk T.; Shinozaki, Yuji
The synthesis of a dipeptide from its component amino acids and its analysis by chiral-phase thin-layer chromatography.
Blatchly, Richard A.; Allen, Timothy R.; Bergstrom, Dirk T.; Shinozaki, Yuji J. Chem. Educ. 1989, 66, 965.
Microscale Lab |
Synthesis |
Proteins / Peptides |
Thin Layer Chromatography |
Amino Acids
Lecture demonstrations for organic/ biochemistry allied health courses  Deavor, James P.
Simple demonstrations on enantiomeric pairs and protein structure.
Deavor, James P. J. Chem. Educ. 1988, 65, 622.
Enantiomers |
Chirality / Optical Activity |
Proteins / Peptides |
Nonmajor Courses |
Amino Acids
Molecular structure and chirality  Brand, David J.; Fisher, Jed
Clarification of the meaning of the term chiral and its application to both chiral and achiral molecules.
Brand, David J.; Fisher, Jed J. Chem. Educ. 1987, 64, 1035.
Molecular Properties / Structure |
Chirality / Optical Activity |
Stereochemistry |
Enantiomers
The enzymatic resolution of aromatic amino acids  Sheardy, Riehard; Liotta, L.; Steinhart, E.; Champion, R.; Rinker, J.; Planutis, M.; Salinkas, J.; Boyer, T.; Carcanague, D.
This article presents an experiment that can demonstrate as many principles of steroisomersim as possible and is also efficient in terms of time and preparation.
Sheardy, Riehard; Liotta, L.; Steinhart, E.; Champion, R.; Rinker, J.; Planutis, M.; Salinkas, J.; Boyer, T.; Carcanague, D. J. Chem. Educ. 1986, 63, 646.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers |
Aromatic Compounds |
Amino Acids |
Enzymes
A proposed new convention for graphic presentation of molecular geometry and topography  Maehr, Hubert
A review of the popular conventions for drawing molecular structures and a proposal to define strictly graphic symbols in terms of topographic and geometric descriptor properties.
Maehr, Hubert J. Chem. Educ. 1985, 62, 114.
Molecular Modeling |
Molecular Properties / Structure |
Stereochemistry |
Chirality / Optical Activity
The possible chirality of tetrahedral carbon atoms with two substituents of identical constitution  Schafer, Lothar; Van Alsenoy, C.; Van Den Enden, L.
Because of differences in bond angles, species of the form Cabc2 may in fact be chiral.
Schafer, Lothar; Van Alsenoy, C.; Van Den Enden, L. J. Chem. Educ. 1984, 61, 945.
Chirality / Optical Activity |
Molecular Properties / Structure |
Stereochemistry |
Enantiomers
Specification of R/S in a multichiral molecule (3)  Aronson, John N.
Any system, simple or complex, cannot be used successfully to relate the R, S designations to Fischer projections if an incorrect two-dimensional projection is made of the three-dimensional model of the structure.
Aronson, John N. J. Chem. Educ. 1984, 61, 90.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity
Specification of R/S in a multichiral molecule (2)  Milakofsky, Louis
Suggested method has been presented before.
Milakofsky, Louis J. Chem. Educ. 1984, 61, 90.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity
Specification of R/S in a multichiral molecule (1)  Diehl, Justin W.
Suggested method becomes extremely difficult for a multichiral molecule.
Diehl, Justin W. J. Chem. Educ. 1984, 61, 90.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity
Two-dimensional chirality in three-dimensional chemistry  Wintner, Claude E.
The author points out a valuable way to enhance students' understanding of 3-dimensional stereochemistry: through the concept of 2-dimensional chirality.
Wintner, Claude E. J. Chem. Educ. 1983, 60, 550.
Stereochemistry |
Chirality / Optical Activity |
Molecular Properties / Structure
Reactions between chiral molecules: A handy analogy  Richardson, W. S.
Simulating a reaction between R and S structures through the shaking of hands.
Richardson, W. S. J. Chem. Educ. 1982, 59, 649.
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers |
Reactions
Stereochemistry and macromolecules: Principles and applications  Quirk, Roderic P.
This article was written to provide an introduction to the basic concepts of polymer stereochemistry and their applications.
Quirk, Roderic P. J. Chem. Educ. 1981, 58, 540.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
Facile assignment of R,S designations to Fischer projections  Price, Howard C.
Suggests a method of assigning R,S designations to Fischer projections that easier than that described in the cited article.
Price, Howard C. J. Chem. Educ. 1980, 57, 528.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
Glutamic acid in pheromone synthesis: A useful chiral synthon  Smith, Leverett R.; Williams, Howard J.
Outlines synthetic routes for the formation of various pheromones from glutamic acid.
Smith, Leverett R.; Williams, Howard J. J. Chem. Educ. 1979, 56, 696.
Synthesis |
Chirality / Optical Activity |
Natural Products |
Stereochemistry |
Enantiomers |
Amino Acids
Sterospecificity in the palm of your hand  Treptow, Richard S.
A simple demonstration to illustrate the reaction between two optically active agents.
Treptow, Richard S. J. Chem. Educ. 1973, 50, 131.
Stereochemistry |
Chirality / Optical Activity |
Enantiomers |
Molecular Properties / Structure
The resolution of DL-histidine: An organic chemistry experiment using an ion exchange resin  Bosch, Arthur J.
This experiment involves the isolation of the amino acid, D-histidine, from DL-histidine, and gives a product with high optical purity while demonstrating the use of an ion exchange resin and mixed solvent recrystallization.
Bosch, Arthur J. J. Chem. Educ. 1969, 46, 691.
Ion Exchange |
Amino Acids |
Chirality / Optical Activity |
Enantiomers
Systematic names for the tartaric acids  Baxter, J. N.
Examines the use of the small capital letters D and L in naming tartaric acids.
Baxter, J. N. J. Chem. Educ. 1964, 41, 619.
Nomenclature / Units / Symbols |
Acids / Bases |
Carbohydrates |
Chirality / Optical Activity |
Enantiomers
An introduction to the sequence rule: A system for the specification of absolute configuration  Cahn, R. S.
This paper describes the relatively simple methods that suffice for specifying the absolute configuration of the majority of optically active organic compounds - those containing asymmetric carbon atoms.
Cahn, R. S. J. Chem. Educ. 1964, 41, 116.
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Nomenclature / Units / Symbols
The stereochemistry of complex inorganic compounds  Busch, Daryle H.
Examines optical activity, absolute configuration, stereospecificity, linkage isomers, electronic isomers, and template reactions.
Busch, Daryle H. J. Chem. Educ. 1964, 41, 77.
Stereochemistry |
Coordination Compounds |
Crystal Field / Ligand Field Theory |
Chirality / Optical Activity |
Stereochemistry |
Molecular Properties / Structure
Three-dimensional effects in biochemistry  Ingraham, Lloyd L.
Explores stereospecificity and stereoselectivity; rigidity requirements; steric effects; and stereospecificity when not required mechanistically.
Ingraham, Lloyd L. J. Chem. Educ. 1964, 41, 66.
Molecular Properties / Structure |
Catalysis |
Enzymes |
Molecular Recognition |
Mechanisms of Reactions |
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
Assignment of D and L prefixes to the tartaric acids  Vickery, Hubert Bradford
Discusses conventions regarding the assignment of D and L prefixes to the tartaric acids.
Vickery, Hubert Bradford J. Chem. Educ. 1957, 34, 339.
Molecular Properties / Structure |
Enantiomers |
Stereochemistry |
Chirality / Optical Activity |
Nomenclature / Units / Symbols
Assignment of D and L prefixes to the tartaric acids: The Wohl conventions  Abernethy, John Leo
Examines the Wohl system for designating dextro- and levorotatory tartaric acids.
Abernethy, John Leo J. Chem. Educ. 1957, 34, 150.
Nomenclature / Units / Symbols |
Molecular Properties / Structure |
Enantiomers |
Stereochemistry |
Chirality / Optical Activity |
Acids / Bases
Assignment of D and L prefixes to the tartaric acids: An unsettled stereochemical question  Nenitzescu, Costin D.
Examines the Wohl and Freudenberg systems of designating dextro- and levorotatory tartaric acids.
Nenitzescu, Costin D. J. Chem. Educ. 1957, 34, 147.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Acids / Bases |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity