TIGER

Journal Articles: 15 results
Oxidation of Aromatic Aldehydes Using Oxone  Rajani Gandhari, Padma P. Maddukuri, and Thottumkara K. Vinod
Describes an eco-friendly procedure for the oxidation of aldehydes to carboxylic acids in water or a water-ethanol mixture using Oxone as the oxidant. The use of eco-friendly solvents, a non-toxic reagent, and the elimination of extraction solvents in the procedure demonstrate important green chemistry themes to students.
Gandhari, Rajani; Maddukuri, Padma P.; Vinod, Thottumkara K. J. Chem. Educ. 2007, 84, 852.
Aldehydes / Ketones |
Aromatic Compounds |
Aqueous Solution Chemistry |
Carboxylic Acids |
Green Chemistry |
Mechanisms of Reactions |
NMR Spectroscopy |
Oxidation / Reduction
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Developing Critical Thinking Skills: The "Sabotaged" Synthesis of Methyl p-Bromobenzoate  Eric J. Mahan and Mary Alice Nading
Before beginning an experiment, students are told that someone might have sabotaged their experiment to produce other-than-expected results. The objective is to perform the experiment, determine if any sabotage has occurred, and, if so, identify the changes that were made to the reagents as well as the person responsible.
Mahan, Eric J.; Nading, Mary Alice. J. Chem. Educ. 2006, 83, 1652.
Alcohols |
Carboxylic Acids |
Esters |
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Synthesis
The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery  John W. Nicholson and Alan Wilson
This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries.
Nicholson, John W.; Wilson, Alan. J. Chem. Educ. 2004, 81, 1362.
Synthesis |
Carboxylic Acids |
Aldehydes / Ketones
Soap from Nutmeg: An Integrated Introductory Organic Chemistry Laboratory Experiment  Marcio C. S. de Mattos and David E. Nicodem
A sequence of experiments in which trimyristin is extracted, isolated, and purified from nutmeg, then converted to a soap (sodium myristate) and acidified to produce myristic acid.
de Mattos, Marcio C. S.; Nicodem, David E. J. Chem. Educ. 2002, 79, 94.
Natural Products |
Carboxylic Acids |
Consumer Chemistry |
Fatty Acids
Simulating How a Virus Spreads through a Population: An Introduction to Acid-Base Chemistry in the Organic Chemistry Laboratory  Ronald M. Jarret
The traditional lab exercise that achieves separation of a mixture of 4-aminoacetophenone and benzoic acid by chemically active extraction has been expanded to include an exercise that uses materials from the extraction experiment to simulate how a virus spreads through a population.
Jarret, Ronald M. J. Chem. Educ. 2001, 78, 525.
Acids / Bases |
Separation Science |
Solutions / Solvents |
Aromatic Compounds |
Carboxylic Acids
Organic Acids without a Carboxylic Acid Functional Group  G. V. Perez and Alice L. Perez
This paper presents several organic molecules that have been labeled as acids but do not contain a carboxylic acid functional group. Various chemical principles such as pKa, tautomerization, aromaticity, conformation, resonance, and induction are explored.
Perez, G. V.; Perez, Alice L. J. Chem. Educ. 2000, 77, 910.
Acids / Bases |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Phenols |
Carboxylic Acids |
Aromatic Compounds
Small Scale Determination of the pKa Values for Organic Acids  Flash, Patrick
Determination and interpretation of the pKa values for a series of organic acids as a concrete example of the effect of structure on acid strength.
Flash, Patrick J. Chem. Educ. 1994, 71, A6.
Acids / Bases |
Molecular Properties / Structure |
Carboxylic Acids
Nucleophilic aromatic substitution: A microscale organic experiment  Avila, Walter B.; Crow, Jeffrey L.; Utermoehlen, Clifford M.
This experiment demonstrates one feasible route in preparing ortho-substituted benzoic acids and is also an example of nucleophilic aromatic substitution chemistry.
Avila, Walter B.; Crow, Jeffrey L.; Utermoehlen, Clifford M. J. Chem. Educ. 1990, 67, 350.
Nucleophilic Substitution |
Aromatic Compounds |
Microscale Lab |
Carboxylic Acids
Selective oxidation in the presence of a heterocycle  Bowles, K. Dean; Quincy, David A.; McKenna, John I.; Natale, N. R.
The process of weighing the advantages and disadvantages of various oxidation methods are presented in this paper.
Bowles, K. Dean; Quincy, David A.; McKenna, John I.; Natale, N. R. J. Chem. Educ. 1986, 63, 358.
Alcohols |
Aldehydes / Ketones |
Heterocycles |
Oxidation / Reduction |
Carboxylic Acids
Amides and hydrazides from amine and hydrazine hydrochlorides  Shama, Sami A.; Tran, Thuran L.
The Schotten-Baumann procedure is extensively used for the preparation of carboxylic acid derivatives in the undergraduate chemistry laboratory.
Shama, Sami A.; Tran, Thuran L. J. Chem. Educ. 1978, 55, 816.
Amines / Ammonium Compounds |
Carboxylic Acids |
Synthesis
p-Carboxystyrene. A Wittig procedure in aqueous medium  Broos, Rene; Tavernier, Dirk; Anteunis, Marc
In this paper, the authors present a student preparation of p-carboxyl group, as it makes the reaction product soluble in alkaline and insoluble in acid medium, provides for an easy way of separation.
Broos, Rene; Tavernier, Dirk; Anteunis, Marc J. Chem. Educ. 1978, 55, 813.
Aqueous Solution Chemistry |
Acids / Bases |
Carboxylic Acids |
Separation Science
Favorskii rearrangement in bridged polycyclic compounds  Chenier, Philip J.
Favorskii rearrangement in bridged polycyclic compounds: This can be classified as an intramolecular rearrangement from carbon to carbon, involving a migrating group Z moving without its electrons from migrating origin A to an electron-rich terminus B.
Chenier, Philip J. J. Chem. Educ. 1978, 55, 286.
Mechanisms of Reactions |
Carboxylic Acids |
Aldehydes / Ketones |
Aromatic Compounds
Identification of carboxylic acids: Use of N-methylpiperazine and N-phenylpiperazine  Duff, J. G.; Yung, D. K.; Brenner, R. J.; Wilson, B. J.; Racz, W. J.
Demonstrates that N-phenylpiperazine is a useful reagent for the identification of carboxylic acids.
Duff, J. G.; Yung, D. K.; Brenner, R. J.; Wilson, B. J.; Racz, W. J. J. Chem. Educ. 1969, 46, 388.
Carboxylic Acids |
Qualitative Analysis
The decarboxylation of organic acid  March, Jerry
Simple aliphatic acids (except for acetic) do not give good yields of the corresponding alkanes through decarboxylation, although many organic chemistry textbooks cite this as a general method for the preparation of alkanes.
March, Jerry J. Chem. Educ. 1963, 40, 212.
Acids / Bases |
Reactions |
Synthesis |
Alkanes / Cycloalkanes |
Carboxylic Acids