TIGER

Journal Articles: 97 results
Borohydride Reduction of Estrone  Animesh Aditya, David E. Nichols, and G. Marc Loudon
This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity using chiral hindered ketones that undergo facile reduction with sodium borohydride. The resulting diastereomeric estradiols can be analyzed and differentiated by thin-layer chromatography and melting point.
Aditya, Animesh; Nichols, David E.; Loudon, G. Marc. J. Chem. Educ. 2008, 85, 1535.
Aldehydes / Ketones |
Diastereomers |
IR Spectroscopy |
Microscale Lab |
Stereochemistry |
Steroids |
Thin Layer Chromatography
Acid-Catalyzed Enolization of β-Tetralone  Brahmadeo Dewprashad, Anthony Nesturi, and Joel Urena
This experiment allows students to use 1H NMR to compare the rates of substitution of benzylic and non-benzylic a hydrogens of -tetralone and correlate their findings with predictions made by resonance theory.
Dewprashad, Brahmadeo; Nesturi, Anthony; Urena, Joel. J. Chem. Educ. 2008, 85, 829.
Aldehydes / Ketones |
Isotopes |
Mechanisms of Reactions |
NMR Spectroscopy |
Reactive Intermediates |
Resonance Theory |
Synthesis
The Baeyer–Villiger Oxidation with Trifluoroacetic Acid and Household Sodium Percarbonate  Richard A. Kjonaas and Anthony E. Clemons
Reports a method for carrying out the BaeyerVilliger oxidation of cyclopentanone to d-valerolactone in a large-section introductory organic chemistry laboratory course.
Kjonaas, Richard A.; Clemons, Anthony E. J. Chem. Educ. 2008, 85, 827.
Aldehydes / Ketones |
Esters |
NMR Spectroscopy |
Oxidation / Reduction |
Synthesis
Microwave-Assisted Organic Synthesis in the Organic Teaching Lab: A Simple, Greener Wittig Reaction  Eric Martin and Cynthia Kellen-Yuen
A microwave-assisted Wittig reaction has been developed for the organic teaching laboratory. Utilizing this technique, a variety of styrene derivatives have been synthesized from aromatic aldehydes in good yields. The mixture of cis and trans alkenes produced also provides instructors with opportunities to emphasize the spectroscopic analysis of product mixtures.
Martin, Eric; Kellen-Yuen, Cynthia. J. Chem. Educ. 2007, 84, 2004.
Aldehydes / Ketones |
Alkenes |
Chromatography |
Green Chemistry |
Mass Spectrometry |
NMR Spectroscopy |
Spectroscopy |
Synthesis
Probing the Rate-Determining Step of the Claisen–Schmidt Condensation by Competition Reactions  Kendrew K. W. Mak, Wing-Fat Chan, Ka-Ying Lung, Wai-Yee Lam, Weng-Cheong Ng, and Siu-Fung Lee
This article describes a physical organic experiment to identify the rate-determining step of the ClaisenSchmidt condensation of benzaldehyde and acetophenone by studying the linear free energy relationship.
Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung. J. Chem. Educ. 2007, 84, 1819.
Aldehydes / Ketones |
Aromatic Compounds |
Gas Chromatography |
Kinetics |
Mechanisms of Reactions |
Synthesis
Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones  Nicholas G. Angelo, Laura K. Henchey, Adam J. Waxman, James W. Canary, Paramjit S. Arora, and Donald Wink
Describes an experiment in which students perform the aldol condensation on an unknown aldehyde and ketone and make use of TLC, column chromatography, recrystallization, and characterization by 1H NMR, GCMS, and FTIR.
Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald. J. Chem. Educ. 2007, 84, 1816.
Aldehydes / Ketones |
Chromatography |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Spectroscopy |
Thin Layer Chromatography
Hydration of Acetylene: A 125th Anniversary  Dmitry A. Ponomarev and Sergey M. Shevchenko
The discovery the hydration of alkynes catalyzed by mercury ions by Mikhail Kucherov made possible industrial production of acetaldehyde from acetylene and had a profound effect on the development of industrial chemistry in the 1920th centuries.
Ponomarev, Dmitry A.; Shevchenko, Sergey M. J. Chem. Educ. 2007, 84, 1725.
Addition Reactions |
Aldehydes / Ketones |
Alkynes |
Catalysis |
Industrial Chemistry |
Reactions
A Knoevenagel Initiated Annulation Reaction Using Room Temperature or Microwave Conditions  A. Gilbert Cook
The product of a Knoevenagel initiated annulation reaction is identified through a guided prelab exercise of the synthesis of the Hagemann ester, and then through the analysis of GCMS, NMR, and IR spectra. The stereochemistry of the product is determined through the NMR spectrum and Karplus curve, and the student is required to write a mechanism for the reaction.
Cook, A. Gilbert. J. Chem. Educ. 2007, 84, 1477.
Aldehydes / Ketones |
Conformational Analysis |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
Mechanisms of Reactions |
NMR Spectroscopy |
Stereochemistry |
Synthesis
A Guided-Inquiry Approach to the Sodium Borohydride Reduction and Grignard Reaction of Carbonyl Compounds  Robert E. Rosenberg
Students teams identify unknowns and their reaction products and use their data to deduce that esters are less electrophilic than the other carbonyl compounds present, that Grignard reagents are more nucleophilic than sodium borohydride, and that carboxylic acid derivatives do not undergo the nucleophilic addition reactions that are characteristic of aldehydes and ketones.
Rosenberg, Robert E. J. Chem. Educ. 2007, 84, 1474.
Addition Reactions |
Aldehydes / Ketones |
Esters |
Grignard Reagents |
IR Spectroscopy |
Oxidation / Reduction |
Reactions |
Student-Centered Learning
Oxidation of Aromatic Aldehydes Using Oxone  Rajani Gandhari, Padma P. Maddukuri, and Thottumkara K. Vinod
Describes an eco-friendly procedure for the oxidation of aldehydes to carboxylic acids in water or a water-ethanol mixture using Oxone as the oxidant. The use of eco-friendly solvents, a non-toxic reagent, and the elimination of extraction solvents in the procedure demonstrate important green chemistry themes to students.
Gandhari, Rajani; Maddukuri, Padma P.; Vinod, Thottumkara K. J. Chem. Educ. 2007, 84, 852.
Aldehydes / Ketones |
Aromatic Compounds |
Aqueous Solution Chemistry |
Carboxylic Acids |
Green Chemistry |
Mechanisms of Reactions |
NMR Spectroscopy |
Oxidation / Reduction
Using a Premade Grignard Reagent To Synthesize Tertiary Alcohols in a Convenient Investigative Organic Laboratory Experiment  Michael A. G. Berg and Roy D. Pointer
Describes the use of a commercially available Grignard reagent in a Grignard synthesis that avoided the failures typically associated with the Grignard reaction.
Berg, Michael A. G.; Pointer, Roy D. J. Chem. Educ. 2007, 84, 483.
Aldehydes / Ketones |
Grignard Reagents |
IR Spectroscopy |
NMR Spectroscopy |
Organometallics |
Synthesis
The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway  R. David Crouch, Amie Richardson, Jessica L. Howard, Rebecca L. Harker, and Kathryn H. Barker
Describes an experiment offering the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated addition of a ketone to an aldehyde.
Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H. J. Chem. Educ. 2007, 84, 475.
Addition Reactions |
Aldehydes / Ketones |
Green Chemistry |
NMR Spectroscopy |
Reactions |
Synthesis
A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory  George D. Bennett
The proline-catalyzed aldol condensation between acetone and isobutyraldehyde proceeds in good yield and with high enantioselectivity at room temperature. This multi-week experiment also illustrates a number of principles and trade-offs of green chemistry.
Bennett, George D. J. Chem. Educ. 2006, 83, 1871.
Addition Reactions |
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Green Chemistry |
Mechanisms of Reactions |
Stereochemistry
Synthesis of meso-Diethyl-2,2′-dipyrromethane in Water. An Experiment in Green Organic Chemistry  Abilio J. F. N. Sobral
In this laboratory activity, students are introduced to the synthesis of dipyrromethanes important precursors for porphyrin and calix[4]pyrrolethrough the acid-catalyzed condensation of pyrrole and 3-pentanone to produce meso-diethyl-2,2'-dipyrromethane.
Sobral, Abilio J. F. N. J. Chem. Educ. 2006, 83, 1665.
Aldehydes / Ketones |
Aqueous Solution Chemistry |
Green Chemistry |
Synthesis
A Discovery-Learning 2,4-Dinitrophenylhydrazone Experiment  Bruno M. Vittimberga and Ben Ruekberg
Selections of liquid aldehydes and ketones are proposed for students to determine what property is the best predictor of the color (yellow to red) of their 2,4-dinitrophenylhydrazone derivative. Students may use a computer (spreadsheet or word processor) to analyze their results.
Vittimberga, Bruno M.; Ruekberg, Ben. J. Chem. Educ. 2006, 83, 1661.
Aldehydes / Ketones |
Molecular Properties / Structure |
Physical Properties |
Qualitative Analysis
Microwave-Mediated Synthesis of Lophine: Developing a Mechanism To Explain a Product   R. David Crouch, Jessica L. Howard, Jennifer L. Zile, and Kathryn H. Barker
Describes the microwave-mediated preparation of lophine (2,4,5-triphenylimidazole). The experiment also provides an opportunity for students to employ the principles of carbonyl chemistry in devising a mechanism to explain the formation of the product.
Crouch, R. David; Howard, Jessica L.; Zile, Jennifer L.; Barker, Kathryn H. J. Chem. Educ. 2006, 83, 1658.
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Aromatic Compounds |
Microscale Lab |
Molecular Modeling |
Synthesis |
NMR Spectroscopy
Synthesis and Analysis of a Versatile Imine for the Undergraduate Organic Chemistry Laboratory  Jacqueline Bennett, Kristen Meldi, and Christopher Kimmell II
In this experiment students prepare and analyze N-p-methoxyphenyl (N-PMP) alpha-imino ethyl glyoxalate, an imine that has been used in the synthesis of biologically active molecules. The stability and versatility of this imine allow it to be used in subsequent reactions, offering a variety of possible multistep synthetic strategies.
Bennett, Jacqueline; Meldi, Kristen; Kimmell, Christopher, II. J. Chem. Educ. 2006, 83, 1221.
Aldehydes / Ketones |
Gas Chromatography |
Green Chemistry |
Mass Spectrometry |
NMR Spectroscopy |
Synthesis
Enantioselective Reduction by Crude Plant Parts: Reduction of Benzofuran-2-yl Methyl Ketone with Carrot (Daucus carota) Bits  Silvana Ravía, Daniela Gamenara, Valeria Schapiro, Ana Bellomo, Jorge Adum, Gustavo Seoane, and David Gonzalez
Presents the enantioselective reduction of a ketone by crude plant parts, using carrot (Daucus carota) as the reducing agent.
Ravía, Silvana; Gamenara, Daniela; Schapiro, Valeria; Bellomo, Ana; Adum, Jorge; Seoane, Gustavo; Gonzalez, David. J. Chem. Educ. 2006, 83, 1049.
Aldehydes / Ketones |
Biotechnology |
Catalysis |
Chromatography |
Green Chemistry |
Oxidation / Reduction |
Stereochemistry |
Separation Science
Ozonolysis Problems That Promote Student Reasoning  Ray A. Gross Jr.
The structural features inherent in acyclic monoterpenes that follow the isoprene rule often lead to unique sets of ozonolysis products from which their structures, excluding stereochemistry, can be determined from molecular formulas only. This article shows how students may elucidate the structures of these compounds by analysis of the oxidative and reductive workup products.
Gross, Ray A., Jr. J. Chem. Educ. 2006, 83, 604.
Aldehydes / Ketones |
Alkenes |
Alkynes |
Carboxylic Acids |
Oxidation / Reduction |
Student-Centered Learning
Diastereoselectivity in the Reduction of α-Hydroxyketones. An Experiment for the Chemistry Major Organic Laboratory  David B. Ball
Describes a research type, inquiry-based project where students synthesize racemic ahydroxyketones using umpolung, a polarity-reversal approach; investigate chelating versus non-chelating reducing agents; and determine the diastereoselectivity of these reducing processes by NMR spectroscopy.
Ball, David B. J. Chem. Educ. 2006, 83, 101.
Addition Reactions |
Aldehydes / Ketones |
Chirality / Optical Activity |
Chromatography |
Conferences |
Constitutional Isomers |
Enantiomers |
NMR Spectroscopy |
Stereochemistry |
Synthesis |
Conformational Analysis
The Discovery-Oriented Approach to Organic Chemistry. 6. Selective Reduction in Organic Chemistry: Reduction of Aldehydes in the Presence of Esters Using Sodium Borohydride  Ashvin R. Baru and Ram S. Mohan
Describes two discovery oriented lab experiments involving the chemoselective reduction of vanillin acetate and methyl 4-formylbenzoate in the presence of esters using sodium borohydride, followed by product identification using 1H and 13C NMR spectroscopy.
Baru, Ashvin R.; Mohan, Ram S. J. Chem. Educ. 2005, 82, 1674.
NMR Spectroscopy |
Alcohols |
Aldehydes / Ketones |
Esters |
Oxidation / Reduction |
Thin Layer Chromatography |
Synthesis
Using Building-Block Puzzles To Practice Drawing Organic Mechanisms  Ender Erdik
This pencil-and-paper activity is designed to test the ability of students in writing intermediates and products in the reactions of ketones. An undergraduate student who is successful in organic chemistry at the sophomore level is expected to fill in empty boxes with the appropriate "building blocks", which are atoms and atom groups (neutral or ionic). Solving the puzzle will give the formulas of reactants, reactive intermediates, and products. Students test their understanding of reaction mechanisms while having fun.
Erdik, Ender. J. Chem. Educ. 2005, 82, 1325.
Reactive Intermediates |
Synthesis |
Aldehydes / Ketones |
Mechanisms of Reactions
An Improved Preparation of 2,4-Dinitrophenylhydrazine Reagent  Ben Ruekberg and Eric Rossoni
In the analysis of aldehydes and ketones (both for characterizing the functional group and identifying such compounds by the melting points of their derivatives), 2,4-dinitrophenylhydrazine reagent is often used. Of the several formulations of this reagent, the most popular uses sulfuric acid. The method involves making a paste of 2,4-dinitro-phenylhydrazine in concentrated sulfuric acid, dispersion of the paste in ethanol, addition of water, and the filtration of the reagent. This improvement uses milder conditions, which may obviate the need for the final filtration. Those responsible for preparation of stock reagent solutions for classes should note that this method facilitates scaling up the preparation.
Ruekberg, Ben; Rossoni, Eric. J. Chem. Educ. 2005, 82, 1310.
Aldehydes / Ketones |
Laboratory Equipment / Apparatus |
Laboratory Management
A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride  Lori L. White and Kevin W. Kittredge
We report a microwave-assisted reduction of cyclohexanone by sodium borohydride that is supported on SiO2. The reaction was completed in less than 3 minutes. Workup and analysis by GCMS, IR, and 1H NMR was possible in a two and half-hour laboratory session. This reduction was used successfully in a second-year organic chemistry laboratory. Students were exposed to a green chemistry reaction using solid-state-supported reactants in the absence of solvent.
White, Lori L.; Kittredge, Kevin W. J. Chem. Educ. 2005, 82, 1055.
Oxidation / Reduction |
Solid State Chemistry |
Green Chemistry |
Alcohols |
Aldehydes / Ketones
Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment  Sam H. Leung and Stephen A. Angel
In this experiment (E)- and (Z)-1-(4-bromophenyl)-2-phenylethene are synthesized by a solvent-free Wittig reaction. The reaction is effected by grinding the reactants in a mortar with a pestle. Both the E and Z isomers of the product are produced as evidenced by thin-layer chromatography and 1H NMR analysis. The E isomer is isolated by crystallization with ethanol in this experiment. In addition to learning about the Wittig reaction, students are also introduced to the ideas of mechanochemistry and green chemistry.
Leung, Sam H.; Angel, Stephen A. J. Chem. Educ. 2004, 81, 1492.
Chromatography |
Green Chemistry |
Microscale Lab |
NMR Spectroscopy |
Synthesis |
Reactions |
Aldehydes / Ketones |
Alkenes
The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery  John W. Nicholson and Alan Wilson
This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries.
Nicholson, John W.; Wilson, Alan. J. Chem. Educ. 2004, 81, 1362.
Synthesis |
Carboxylic Acids |
Aldehydes / Ketones
Preparing Students for Research: Synthesis of Substituted Chalcones as a Comprehensive Guided-Inquiry Experience  James R. Vyvyan, Donald L. Pavia, Gary M. Lampman, and George S. Kriz Jr.
An aldol condensation of substituted benzaldehydes with substituted acetophones to produce substituted benzalacetophenones (chalcones) in a guided-inquiry approach.
Vyvyan, James R.; Pavia, Donald L.; Lampman, Gary M.; Kriz, George S., Jr. J. Chem. Educ. 2002, 79, 1119.
Medicinal Chemistry |
Microscale Lab |
Natural Products |
NMR Spectroscopy |
Synthesis |
Aromatic Compounds |
Aldehydes / Ketones
Discovery-Oriented Approach To Organic Synthesis: Tandem Aldol Condensation-Michael Addition Reactions. Identifying Diastereotopic Hydrogens in an Achiral Molecule by NMR Spectroscopy  Nanette Wachter-Jurcsak and Kendra Reddin
Procedure illustrating aldol condensation and Michael addition reactions.
Wachter-Jurcsak, Nanette; Reddin, Kendra. J. Chem. Educ. 2001, 78, 1264.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Aromatic Compounds |
Aldehydes / Ketones |
Addition Reactions |
Mechanisms of Reactions
The TCICA Test for Distinguishing Aldehydes and Ketones  Gene A. Hiegel, Christine Juska, and Michelle Kim
Distinguishing aldehydes from ketones through their reaction with TCICA (trichloroisocyanuric acid).
Hiegel, Gene A.; Juska, Christine; Kim, Michelle. J. Chem. Educ. 2001, 78, 1105.
Qualitative Analysis |
Aldehydes / Ketones
Diastereoselective Synthesis of (+/-)-1,2-Diphenyl-1,2-propanediol. A Discovery-Based Grignard Reaction Suitable for a Large Organic Lab Course  James A. Ciaccio, Roxana P. Bravo, Antoinette L. Drahus, John B. Biggins, Rosalyn V. Concepcion, and David Cabrera
An experiment that probes the diastereoselectivity of the reaction between a Grignard reagent and a common, inexpensive alpha-chiral ketone; introduces students to pi-facial discrimination by having them establish the stereochemical course of kinetically controlled nucleophilic addition to a carbonyl.
Ciaccio, James A.; Bravo, Roxana P.; Drahus, Antoinette L.; Biggins, John B.; Concepcion, Rosalyn V.; Cabrera, David. J. Chem. Educ. 2001, 78, 531.
Mechanisms of Reactions |
Synthesis |
Organometallics |
Stereochemistry |
Grignard Reagents |
Aldehydes / Ketones
Synthesis of Derivatives of (1R)-(-)- and (1S)-(+)-10-Camphorsulfonic Acid  Steven C. Cermak and David F. Wiemer
The preparation of optically active (camphorsulfonyl)oxaziridines from commercially available (1R)-(-) and/or (1S)-(+)10-camphorsulfonic acid provides a clear demonstration of the lack of relationship between absolute configuration and optical rotation. The parent sulfonic acid can be converted to the corresponding acid chloride and then to the sulfonamide, sulfonylimine, and finally to an oxaziridine in a series of practical organic laboratory experiments.
Cermak, Steven C.; Wiemer, David F. J. Chem. Educ. 1999, 76, 1715.
Stereochemistry |
Synthesis |
Aromatic Compounds |
Ethers |
Alcohols |
Aldehydes / Ketones |
Acids / Bases
An Aldehyde Derivative  J. Hodge Markgraf and Bo Yoon Choi
A system in which aldehydes are condensed with 1,2-benzenedimethylthiol in the presence of anhydrous ferric chloride on silica gel to give 3-substituted 1,5-dihyhdro-2,4-benzodithiepines. Melting points of the derivatives were taken as a means of identification of unknown compounds.
Markgraf, J. Hodge; Choi, Bo Yoon. J. Chem. Educ. 1998, 75, 222.
Aldehydes / Ketones |
Synthesis
A Grignard-like Organic Reaction in Water  Gary W. Breton and Christine A. Hughey
A known Grignard-like reaction between allyl bromide and benzaldehyde mediated by zinc metal in aqueous media. The procedure retains the desirable features of the traditional Grignard reaction, while eliminating some of the commonly encountered difficulties.
Breton, Gary W.; Hughey, Christine A. J. Chem. Educ. 1998, 75, 85.
Microscale Lab |
Aromatic Compounds |
Aldehydes / Ketones |
Alcohols |
Synthesis |
Mechanisms of Reactions
Determination of Formaldehyde in Cigarette Smoke  Jon W. Wong, Kenley K. Ngim, Jason P. Eiserich, Helen C. H. Yeo, Takayuki Shibamoto, and Scott A. Mabury
This experiment involves the collection, derivatization, extraction, and analysis of formaldehyde from cigarette smoke using two methods. Formaldehyde is extracted from smoke and derivitized with a solution of 2,4-DNPH with subsequent cleanup by solid-phase extraction and analysis of the hydrazone by HPLC with UV detection; additionally a solution of cysteamine yields the corresponding thiazolidine derivative that is liquid/liquid extracted and subsequently analyzed by either GC with NPD or FPD (sulfur mode).
Wong, Jon W.; Ngim, Kenley K.; Eiserich, Jason P.; Yeo, Helen C. H.; Shibamoto, Takayuki; Mabury, Scott A. J. Chem. Educ. 1997, 74, 1100.
Learning Theories |
Chromatography |
Quantitative Analysis |
Separation Science |
Aldehydes / Ketones |
Applications of Chemistry
Catalytic Transfer Hydogenation Reactions for Undergraduate Practical Programs  R. W. Hanson
A brief review of catalytic transfer hydrogenation (CTH) reactions is given. Attention is drawn, particularly, to the utility of ammonium formate as the hydrogen donor in this type of reaction.
Hanson, R. W. J. Chem. Educ. 1997, 74, 430.
Catalysis |
Aldehydes / Ketones |
Alcohols |
Amines / Ammonium Compounds |
Mechanisms of Reactions
A -78°C Sequential Michael Addition for the Organic Lab  Michael W. Tanis
This paper introduces a cold-temperature enolate alkylation reaction that can be performed safely and inexpensively by undergraduate students in approximately two 3-hour lab sessions.
Tanis, Michael W. J. Chem. Educ. 1997, 74, 112.
Addition Reactions |
Alkenes |
Aldehydes / Ketones |
Synthesis
Carbonyl and Conjugate Additions to Cyclohexenone: Experiments Illustrating Reagent Selectivity  Michael G. Organ and Paul Anderson
Undergraduate students leaving an organic chemistry program should have exposure to these concepts and hands-on experience in dealing practically with the issue of selectivity. In this paper, selective addition of a nucleophile to either end of the enone moiety in cyclohexenone is examined.
Organ, Michael G.; Anderson, Paul. J. Chem. Educ. 1996, 73, 1193.
Addition Reactions |
Aldehydes / Ketones |
Mechanisms of Reactions
An Organoleptic Laboratory Experiment  John M. Risley
Compounds in ten different classes of organic molecules that are used in the fragrance and food industry are provided to students. Students whiff the vapors of each compound and describe the organoleptic properties using a set of terms utilized in the fragrance and food industry. A set of questions guides students to an understanding of the relationship between structure of molecules and smell.
Risley, John M. J. Chem. Educ. 1996, 73, 1181.
Molecular Properties / Structure |
Consumer Chemistry |
Physical Properties |
Nonmajor Courses |
Alcohols |
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Carboxylic Acids |
Esters |
Ethers |
Phenols
An Efficient Microscale Procedure for the Preparation of 3,5-Dinitrobenzoates  Richard F. Smith and Gaetano M. Cristalli
A laboratory to introduce the concept and technique of mass spectroscopy to introductory organic students; sample data and analysis included.
Smith, Richard F.; Cristalli, Gaetano M. J. Chem. Educ. 1995, 72, A160.
Mass Spectrometry |
Gas Chromatography |
Aldehydes / Ketones |
Instrumental Methods |
Qualitative Analysis |
Microscale Lab
Baeyer-Villiger Oxidation of Indane-1-ones: Monitoring of the Reaction by VPC and IR Spectroscopy  Elie Stephan
Procedure for the Baeyer-Villiger oxidation of indane-1-ones.
Stephan, Elie. J. Chem. Educ. 1995, 72, 1142.
IR Spectroscopy |
Synthesis |
Mechanisms of Reactions |
Oxidation / Reduction |
Aldehydes / Ketones
Products of aldol addition and related reactions: Notation for their prediction  Nwaukwai, Stephen O.
A simple method that can be used to predict products of aldols and aldol-tye addition reactions.
Nwaukwai, Stephen O. J. Chem. Educ. 1993, 70, 626.
Addition Reactions |
Aldehydes / Ketones |
Nomenclature / Units / Symbols
Microscale reactions of vanillin   Fowler, Rosemary G.
In this paper five microscale experiments which allow first-year organic student sot study the properties and reactions of vanillin are presented.
Fowler, Rosemary G. J. Chem. Educ. 1992, 69, A43.
Aldehydes / Ketones |
Aromatic Compounds |
Phenols |
Microscale Lab |
IR Spectroscopy |
NMR Spectroscopy
Preparing and purifying 2,4-dinitrophenylhydrazones: Alternatives to the Brady procedure  Zhang, Juan; Hertzler, Russell L.; Eisenbraun, E. J.
Problems with and an alternative to the Brady procedure for preparing 2,4-dinitrophenylhydrazone; using a sulfonic acid ion-exchange resin in refluxing toluene.
Zhang, Juan; Hertzler, Russell L.; Eisenbraun, E. J. J. Chem. Educ. 1992, 69, 1037.
Synthesis |
Catalysis |
Aldehydes / Ketones
Identification of methylcyclohexanones by NMR  Gurst, Jerome E.
Distinguishing between three isomeric methylcyclohexanones using NMR.
Gurst, Jerome E. J. Chem. Educ. 1992, 69, 774.
Aldehydes / Ketones |
NMR Spectroscopy |
Diastereomers
Pinacol rearrangement of cyclopentylcyclohexane-1,1'-diol revisited.  Sands, Richard D.
Two cyclic diols are treated with ice-cold boron trifluoride etherate to make rearrangement instead of diene formation the major product.
Sands, Richard D. J. Chem. Educ. 1992, 69, 667.
Mechanisms of Reactions |
Alcohols |
Aldehydes / Ketones
Schiff base puzzle project.  Todd, David.
Students pick an unknown substituted aniline and a substituted benzaldehyde, produces the corresponding Schiff base from them, and compares its melting point to those of 25 possible Schiff bases (their structures and melting points being given).
Todd, David. J. Chem. Educ. 1992, 69, 584.
Qualitative Analysis |
Aldehydes / Ketones |
Amines / Ammonium Compounds
Corn chip aroma: A classroom demonstration on the preparation of a Schiff base  Sartori, Antony T.; Wood, William F.
Preparing 3-methylimino-2-butanone.
Sartori, Antony T.; Wood, William F. J. Chem. Educ. 1992, 69, 572.
Aldehydes / Ketones |
Synthesis |
Reactions |
Mechanisms of Reactions
A source of isomer-drawing assignments  Kjonaas, Richard A.
A comprehensive source from which instructors can choose a wide variety of good isomer drawing examples to use as homework assignments and exam questions.
Kjonaas, Richard A. J. Chem. Educ. 1992, 69, 452.
Stereochemistry |
Alcohols |
Alkanes / Cycloalkanes |
Alkenes |
Aldehydes / Ketones |
Ethers |
Esters |
Alkynes
Beta-keto esters from tin(II) chloride catalyzed reactions of aldehydes with ethyl diazoacetate: An undergraduate laboratory experiment drawn from the current literature  Brockwell, Joyce C.; Holmquist, Christopher R.
This is an experimental procedure for producing longer-chain keto esters from unconjugated aldehydes on reaction with ethyl diazoacetate catalyzed by Lewis acids for use in an undergraduate laboratory.
Brockwell, Joyce C.; Holmquist, Christopher R. J. Chem. Educ. 1992, 69, 68.
Catalysis |
Synthesis |
Lewis Acids / Bases |
Aldehydes / Ketones |
Esters
A novel ketone derivative  Melamedi, Dan; Pickering, Miles
The authors propose the use of thioketals as derivatives as a safer alternative that also illustrates an interesting but rarely visited corner of undergraduate organic chemistry.
Melamedi, Dan; Pickering, Miles J. Chem. Educ. 1991, 68, 1046.
Aldehydes / Ketones
The water solubility of 2-butanol: A widespread error  Alger, Donald B.
There seems to be widespread misreporting of the solubility of 2-butanol. This misreporting is an example of the importance of consulting original sources.
Alger, Donald B. J. Chem. Educ. 1991, 68, 939.
Alcohols |
Aldehydes / Ketones |
Precipitation / Solubility
An internal comparison of the intermolecular forces of common organic functional groups: A thin-layer chromatography experiment  Beauvais, Robert; Holman, R. W.
Due to the latest trends in organic chemistry textbook content sequences, it has become desirable to develop an experiment that is rapid, simple, and general, that would compare and contrast the various functional group classes of organic molecules in terms of their relative polarities, dipole moments, and intermolecular forces of attraction.
Beauvais, Robert; Holman, R. W. J. Chem. Educ. 1991, 68, 428.
Alkanes / Cycloalkanes |
Alkenes |
Alcohols |
Carboxylic Acids |
Aldehydes / Ketones |
Esters |
Qualitative Analysis |
Thin Layer Chromatography |
Noncovalent Interactions |
Molecular Properties / Structure
The synthesis of 2-methyl-4-heptanone  de Jong, Elma A.; Feringa, Ben L.
2-methyl-4-heptanone is an ant pheromone used to alarm fellow ants. The synthesis described in this article is greeted with interest by students.
de Jong, Elma A.; Feringa, Ben L. J. Chem. Educ. 1991, 68, 71.
Aldehydes / Ketones |
Natural Products |
Synthesis |
Grignard Reagents
Sherlock Holmes and the fraudulent ketone  Waddell, Thomas G.; Rybolt, Thomas R.
A chemical mystery featuring Sherlock Holmes and Dr. Watson.
Waddell, Thomas G.; Rybolt, Thomas R. J. Chem. Educ. 1990, 67, 1006.
Enrichment / Review Materials |
Aldehydes / Ketones
A simple procedure for the base-catalyzed cleavage of benzopinacolone to triphenylmethane: An undergraduate experiment  Stranberg, Michael; Anselme, J. -P.
A simple procedure for the base-catalyzed cleavage of benzopinacolone to triphenylmethane: An undergraduate experiment.
Stranberg, Michael; Anselme, J. -P. J. Chem. Educ. 1990, 67, 616.
Catalysis |
Aldehydes / Ketones |
Mechanisms of Reactions |
Synthesis
The palladium-catalyzed oxidation of 2-vinylnaphthalene: A microscale organic synthesis experiment   Byers, Jeffrey H.; Ashfaq, Aalla; Morse, Wendy R.
The Wacker oxidation experiment as described is cost-efficient due to the small scale employed, and is a valuable addition to the undergraduate organic curriculum.
Byers, Jeffrey H.; Ashfaq, Aalla; Morse, Wendy R. J. Chem. Educ. 1990, 67, 340.
Microscale Lab |
Synthesis |
Alkynes |
Aldehydes / Ketones |
Oxidation / Reduction
Laboratory experiments on phase-transfer-catalyzed reactions of neutral molecules  Mathur, Nawal K.; Narang, Chander K.
In order to illustrate the application of a phase transfer catalyst (PTC), the preparation of benzophenone oxime was attempted under different conditions.
Mathur, Nawal K.; Narang, Chander K. J. Chem. Educ. 1990, 67, 273.
Catalysis |
Aromatic Compounds |
Aldehydes / Ketones |
Phases / Phase Transitions / Diagrams
A series of synthetic organic experiments demonstrating physical organic principles  Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H.
The sequence of reactions described here incorporates several common synthetic organic transformations involving alkenes, alcohols, alkyl halides, and ketones that demonstrate some important principles of physical organic chemistry.
Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H. J. Chem. Educ. 1989, 66, 174.
Synthesis |
Alkenes |
Alcohols |
Aldehydes / Ketones |
Reactions
Photochemistry of phenyl alkyl ketones: The "Norrish type II" photoreaction: An organic photochemistry experiment   Marciniak, Bronislaw
In this paper a student laboratory experiment is described aimed to study the "Norrish type II" reception of valerophenone. The advantage of this experiment is that it can be performed with a simple irradiation system and with a gas chromatograph and it brings students into contact with some problems of organic photochemistry.
Marciniak, Bronislaw J. Chem. Educ. 1988, 65, 832.
Aldehydes / Ketones |
Photochemistry |
Phenols |
Chromatography
Example of the Robinson annulation procedure via phase transfer catalysis a beginning organic synthesis experiment  Soriano, D. S.; Lombardi, A. M.; Persichini, P. J.; Nalewajek, D.
A brief description of the procedure.
Soriano, D. S.; Lombardi, A. M.; Persichini, P. J.; Nalewajek, D. J. Chem. Educ. 1988, 65, 637.
Catalysis |
Aromatic Compounds |
Synthesis |
Aldehydes / Ketones
A conversion of methyl ketones into acetylenes: A project for a problem oriented or microscale organic chemistry course  Silveira, Augustine, Jr.; Orlando, Steven C.
The authors present their adaptation of an open-ended project on the conversion of methyl ketones into acetylenes for the microscale lab and describe its pedagogic utility.
Silveira, Augustine, Jr.; Orlando, Steven C. J. Chem. Educ. 1988, 65, 630.
Microscale Lab |
Aldehydes / Ketones |
Synthesis |
Nucleophilic Substitution |
Gas Chromatography
Organic lecture demonstrations  Silversmith, Ernest F.
Organic chemistry may not be known for its spectacular, attention getting chemical reactions. Nevertheless, this author describes a few organic chemistry reactions that put points across and generate interest. This article provides a convenient sources of demonstrations and urges others to add to the collection. Demonstrations concerning: carbohydrates, spectroscopy, proteins, amines, carbohydrates, carboxylic acids, and much more.
Silversmith, Ernest F. J. Chem. Educ. 1988, 65, 70.
Molecular Properties / Structure |
Nucleophilic Substitution |
Acids / Bases |
Physical Properties |
Alkenes |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity |
Aldehydes / Ketones |
Alcohols
A problem involving organic qualitative analysis  Silvert, D. J.
Five different organic compounds are to be identified from the result of three simple qualitative tests on each unknown (dichromate, DNPH, and iodoform tests).
Silvert, D. J. J. Chem. Educ. 1987, 64, 971.
Qualitative Analysis |
Alcohols |
Aldehydes / Ketones
An aldol condensation experiment using a number of aldehydes and ketones  Hathaway, Bruce A.
Four aldehydes and four ketones can be used to synthesize sixteen different products via an aldol condensation reaction.
Hathaway, Bruce A. J. Chem. Educ. 1987, 64, 367.
Aldehydes / Ketones
Tollens's test, fulminating silver, and silver fulminate  Jenkins, Ian D.
Preparation, application, and misinformation regarding Tollens's test for aldehydes and reducing sugars.
Jenkins, Ian D. J. Chem. Educ. 1987, 64, 164.
Aldehydes / Ketones |
Carbohydrates |
Qualitative Analysis |
Laboratory Management
A visual manifestation of the Norrish Type I reaction: The cyclohexanone sunburn dosimeter  Carroll, Felix A.; Strouse, Geoffrey F.; Hain, Jon M.
Irradiation of aqueous cyclohexanone solutions produces hex-5-enal and butylketene; the latter reacts with water to form caproic acid, which lowers the pH of the solution and thus can be used to measure the progress of the reaction.
Carroll, Felix A.; Strouse, Geoffrey F.; Hain, Jon M. J. Chem. Educ. 1987, 64, 84.
Photochemistry |
pH |
Aldehydes / Ketones
Selective oxidation in the presence of a heterocycle  Bowles, K. Dean; Quincy, David A.; McKenna, John I.; Natale, N. R.
The process of weighing the advantages and disadvantages of various oxidation methods are presented in this paper.
Bowles, K. Dean; Quincy, David A.; McKenna, John I.; Natale, N. R. J. Chem. Educ. 1986, 63, 358.
Alcohols |
Aldehydes / Ketones |
Heterocycles |
Oxidation / Reduction |
Carboxylic Acids
Computer-assisted quantitative infrared conformational analysis of alpha, beta-unsaturated ketones  Tisnes, P.; Perry, M.
Investigates the s-cis <> s-trans conformational equilibrium of alpha, beta-unsaturated ketones.
Tisnes, P.; Perry, M. J. Chem. Educ. 1985, 62, 903.
Aldehydes / Ketones |
Conformational Analysis |
IR Spectroscopy |
Stereochemistry |
Molecular Properties / Structure |
Quantitative Analysis
Oxidation of alcohols using calcium hypochlorite and solid/liquid phase-transfer catalysis  Hill, John W.; Jenson, Jeffrey A.; Henke, Charles F.; Yaritz, Joseph G.; Pedersen, Richard L.
Includes synthesis of an aldehyde from a primary alcohol as well as several ketones from secondary alcohols.
Hill, John W.; Jenson, Jeffrey A.; Henke, Charles F.; Yaritz, Joseph G.; Pedersen, Richard L. J. Chem. Educ. 1984, 61, 1118.
Alcohols |
Oxidation / Reduction |
Catalysis |
Aldehydes / Ketones |
Synthesis
Acetaldehyde: a chemical whose fortunes have changed  Wittcoff, Harold A.
Acetaldehyde is an example of a chemical whose use is declining because chemists have replaced it with superior chemicals.
Wittcoff, Harold A. J. Chem. Educ. 1983, 60, 1044.
Aldehydes / Ketones |
Applications of Chemistry
A phase transfer catalyzed permanganate oxidation: preparation of vanillin from isoeugenol acetate  Lampman, Gary M.; Sharpe, Steven D.
There are several attractive features in this reaction sequence for the undergraduate laboratory. These include (1) use of a protecting acetate group, (2) use of a familiar "textbook" oxidant, potassium permanganate, (3) use of phase transfer catalyst, (4) preparing of an aldehyde, (5) short reaction period, and (6) the laboratory has a pleasant aroma.
Lampman, Gary M.; Sharpe, Steven D. J. Chem. Educ. 1983, 60, 503.
Oxidation / Reduction |
Catalysis |
Natural Products |
Synthesis |
Aldehydes / Ketones |
Alcohols |
Aromatic Compounds
Solvent increment not solvent correction: a suggested modification in the procedure of calculating wavelength of maximum ultraviolet absorption of alpha, beta-unsaturated aldehydes and ketones  Qureshi, Mohammad Ismail
This article describes a procedure for calculating the ? solvent max that removes an unnecessary, but typical source of confusion.
Qureshi, Mohammad Ismail J. Chem. Educ. 1983, 60, 149.
Spectroscopy |
Aldehydes / Ketones |
UV-Vis Spectroscopy
Preparation of solid derivatives by differential scanning calorimetry  Crandall, E. W.; Pennington, Maxine
Derivatives of alcohols, amines, phenols, aldehydes, ketones, and haloalkanes are prepared and their phase transitions observed using a differential scanning calorimeter.
Crandall, E. W.; Pennington, Maxine J. Chem. Educ. 1980, 57, 824.
Phases / Phase Transitions / Diagrams |
Aldehydes / Ketones |
Alcohols |
Amines / Ammonium Compounds |
Phenols |
Physical Properties |
Calorimetry / Thermochemistry
Chemical toxicology. Part I. Organic compounds  Carter, D. E.; Fernando, Quintus
General principles of toxicology, and particular consideration of aliphatics, aromatic, and halogenated hydrocarbons; alcohols, aldehydes, esters, ethers, and ketones; sulfides, mercaptans, and carbon disulfide; nitrogen-containing compounds; and carcinogens.
Carter, D. E.; Fernando, Quintus J. Chem. Educ. 1979, 56, 284.
Toxicology |
Alcohols |
Aldehydes / Ketones |
Esters |
Ethers |
Aromatic Compounds |
Amines / Ammonium Compounds |
Lipids
Aqueous chromic acid oxidation of secondary alcohols in diethyl ether: A convenient undergraduate organic chemistry experiment  Thompson, Kerry L.; Krishnamurthy, S.; Nylund, Thomas; Ravindranathan, M.
A two-phase procedure for the oxidation of secondary alcohols to ketones that is applicable to a wide variety of substrates.
Thompson, Kerry L.; Krishnamurthy, S.; Nylund, Thomas; Ravindranathan, M. J. Chem. Educ. 1979, 56, 203.
Aqueous Solution Chemistry |
Oxidation / Reduction |
Alcohols |
Ethers |
Synthesis |
Aldehydes / Ketones
Oxidation of primary alcohols to aldehydes with pyridinium chlorochromate. An organic chemistry experiment  Glaros, George
This organic chemistry experiment addresses a common misconception about aldehyde reactions.
Glaros, George J. Chem. Educ. 1978, 55, 410.
Alcohols |
Aldehydes / Ketones |
Reactions
Favorskii rearrangement in bridged polycyclic compounds  Chenier, Philip J.
Favorskii rearrangement in bridged polycyclic compounds: This can be classified as an intramolecular rearrangement from carbon to carbon, involving a migrating group Z moving without its electrons from migrating origin A to an electron-rich terminus B.
Chenier, Philip J. J. Chem. Educ. 1978, 55, 286.
Mechanisms of Reactions |
Carboxylic Acids |
Aldehydes / Ketones |
Aromatic Compounds
Classification test for aldehydes involving phase transfer catalysis  Durst, H. Dupont; Gokel, George W.
Although common spectroscopic methods have largely supplanted the more classical methods for distinguishing aldehydes from ketones in many applications, aldehyde classification tests remain very useful in actual laboratory practice as well as important pedagogical device in qualitative organic chemistry.
Durst, H. Dupont; Gokel, George W. J. Chem. Educ. 1978, 55, 206.
Aldehydes / Ketones |
Qualitative Analysis
The scope of the Haworth synthesis  Agranat, Israel; Shih, Yu-Shan
The duality of the Haworth synthesis as revealed most conspicuously in the preparation of both anthracene and phenanthrene, widens the scope of the method. On the basis of the reversibility of Friedel-Crafts acylation in PPA, the Haworth synthesis may serve as a route to linearly annelated-as well as to angularly annelated polynuclear aromatic hydrocarbons.
Agranat, Israel; Shih, Yu-Shan J. Chem. Educ. 1976, 53, 488.
Synthesis |
Catalysis |
Aromatic Compounds |
Aldehydes / Ketones
An undergraduate electroanalytical experiment  Janata, Jiri
This article presents a determination of vanillin and of other aromatic aldehyde can easily be accomplished by amperometric titration with a standard solution of 2,4-dinitrophenylhydazine.
Janata, Jiri J. Chem. Educ. 1976, 53, 399.
Electrochemistry |
Aldehydes / Ketones |
Titration / Volumetric Analysis |
Aromatic Compounds |
Natural Products
Preparation of phenanthridone. A multipurpose experiment for the organic laboratory  Hawbecker, Byron L.; Radovich, David A.; Tillotson, Loyal G.
It is desirable to have a series of multipurpose reactions available which can illustrate a variety of reaction types within a single, three hour lab period.
Hawbecker, Byron L.; Radovich, David A.; Tillotson, Loyal G. J. Chem. Educ. 1976, 53, 398.
Reactions |
Aromatic Compounds |
Aldehydes / Ketones
Illustrating gas chromatography and mass spectrometry. An undergraduate experiment  Gross, Michael L.; Olsen, Virgil K.; Forc, R. Ken
One lab period is used to separate and collect the components of a ketone mixture; the second lab period is used to explain and demonstrate the MS instrumentation and the interpretation of ketone spectra; and in part three the spectra of the separated ketones are analyzed by individual students.
Gross, Michael L.; Olsen, Virgil K.; Forc, R. Ken J. Chem. Educ. 1975, 52, 535.
Gas Chromatography |
Mass Spectrometry |
Aldehydes / Ketones
The photoisomerization of cyclic ketones: An experiment in organic chemistry  Haas, J. W., Jr.
This experiment deals with parameters such as the nature of the excited state, effect of triplet quenchers on product formation, chemical structure and reaction rate and quantum yield when cyclopentanone and cyclohexanone are irradiated at 254nm. These cyclic ketones provide a variety of photolysis information in a short time span, are conveniently analyzed by gas chromatography, and are readily available at the requisite levels of purity.
Haas, J. W., Jr. J. Chem. Educ. 1974, 51, 346.
Aldehydes / Ketones |
Aromatic Compounds |
Photochemistry |
Diastereomers |
Gas Chromatography
Preparative reduction of benzil: Use of a polarographic analyzer and simple current booster  Carney, J. H.; Mullis, O. J.
The authors report a simple laboratory experiment which demonstrates some of the preparative and mechanistic electrochemistry of ketones in acid solution. The also describe a simple and inexpensive apparatus for preparative scale electrochemistry.
Carney, J. H.; Mullis, O. J. J. Chem. Educ. 1974, 51, 343.
Electrochemistry |
Aldehydes / Ketones |
Acids / Bases |
Laboratory Equipment / Apparatus
Molecular weight determination of aldehydes and ketones. A quantitative organic experiment  Steinhaus, Ralph K.
The reaction between semicarbazide and an unknown ketone is used to determine molecular weight.
Steinhaus, Ralph K. J. Chem. Educ. 1973, 50, 293.
Physical Properties |
Quantitative Analysis |
Aldehydes / Ketones |
Oxidation / Reduction
Catalytic hydrogenation of ketones at moderate pressures. An organic demonstration-experiment  Kaye, Irving Allan
This procedure requires a moderate pressure hydrogenator and can be completed as a demonstration or a laboratory with a small number of students.
Kaye, Irving Allan J. Chem. Educ. 1972, 49, 131.
Catalysis |
Aldehydes / Ketones
Alkylations in organic chemistry  Mundy, Bradford P.
Examines some of the subtle factors involved in alkylations, including alkylations via enolates, alkylations via enamines, and alkylation of enolates derived from reduction of enone systems.
Mundy, Bradford P. J. Chem. Educ. 1972, 49, 91.
Synthesis |
Alkylation |
Aldehydes / Ketones |
Mechanisms of Reactions
Recrystallization and melting point determination  Kaye, Irving Allan; Yuska, Henry
This experiment is essentially an exercise in recrystallization and identification, by melting point and mixed melting point determination, an unknown ketone that has been transformed into either its 2,4-dinitrophenylhydrazone or semicarbazone derivative.
Kaye, Irving Allan; Yuska, Henry J. Chem. Educ. 1970, 47, 703.
Crystals / Crystallography |
Aldehydes / Ketones |
Qualitative Analysis
Hazardous chemicals data  National Fire Protection Association
Explains aspects of chemical hazard data and presents hazards associated with acetaldehyde.
National Fire Protection Association J. Chem. Educ. 1968, 45, A115.
Chemometrics |
Aldehydes / Ketones |
Laboratory Management
Acids as derivatives of aldehydes prepared with silver oxides  Thomason, Sandra C.; Kubler, Donald G.
Examines the use of silver(i) and silver(II) oxide to convert aldehydes into acid derivatives.
Thomason, Sandra C.; Kubler, Donald G. J. Chem. Educ. 1968, 45, 546.
Acids / Bases |
Aldehydes / Ketones |
Oxidation / Reduction |
Synthesis
Qualitative test for ketones, aromatic aldehydes, and aliphatic aldehydes  Morrison, James D.
The Bordwell-Wellman solution of chromic anhydride in aqueous sulfuric acid is an excellent reagent for distinguishing aldehydes from ketones.
Morrison, James D. J. Chem. Educ. 1965, 42, 554.
Qualitative Analysis |
Aldehydes / Ketones |
Aromatic Compounds
The pyrolytic decomposition of carboxylate salts to ketones  Schultz, H. P.; Sichels, J. P.
Suggestions for research to accompany a previously published article.
Schultz, H. P.; Sichels, J. P. J. Chem. Educ. 1963, 40, A463.
Undergraduate Research |
Reactions |
Aldehydes / Ketones
The acylation of aliphatic unsaturated hydrocarbons  Sharefkin, Jacob G.
Introductory organic chemistry textbooks discuss the Friedel-Crafts synthesis of aromatic ketones but usually do not treat the corresponding reaction in the aliphatic series.
Sharefkin, Jacob G. J. Chem. Educ. 1962, 39, 206.
Aromatic Compounds |
Aldehydes / Ketones |
Reactions |
Synthesis |
Mechanisms of Reactions
Letters  Smith, W. B.
The author suggests two experiments for determining the best method for preparing cyclopentanone from adipic acid.
Smith, W. B. J. Chem. Educ. 1961, 38, 638.
Aldehydes / Ketones |
Synthesis
Letters  Taylor, D. A. H.
Tollens reagent is not an infallible test for aldehydes.
Taylor, D. A. H. J. Chem. Educ. 1961, 38, 102.
Quantitative Analysis |
Aldehydes / Ketones
A laboratory exercise in catalytic dehydrogenation  Allison, Elizabeth; Gorsich, Richard; Binder, L. O.
Presents an apparatus that uses a copper catalyst to prepare aldehydes and ketones from alcohols through catalytic dehydrogenation.
Allison, Elizabeth; Gorsich, Richard; Binder, L. O. J. Chem. Educ. 1955, 32, 209.
Catalysis |
Alcohols |
Aldehydes / Ketones |
Synthesis
The Friedel-Crafts reaction in elementary organic laboratories  Wright, Oscar L.; Fuhlhage, Donald; Sheridan, Earl
Presents a modification of the Perrier ketone synthesis.
Wright, Oscar L.; Fuhlhage, Donald; Sheridan, Earl J. Chem. Educ. 1952, 29, 620.
Reactions |
Aldehydes / Ketones |
Synthesis