TIGER

Journal Articles: 62 results
Borohydride Reduction of Estrone  Animesh Aditya, David E. Nichols, and G. Marc Loudon
This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity using chiral hindered ketones that undergo facile reduction with sodium borohydride. The resulting diastereomeric estradiols can be analyzed and differentiated by thin-layer chromatography and melting point.
Aditya, Animesh; Nichols, David E.; Loudon, G. Marc. J. Chem. Educ. 2008, 85, 1535.
Aldehydes / Ketones |
Diastereomers |
IR Spectroscopy |
Microscale Lab |
Stereochemistry |
Steroids |
Thin Layer Chromatography
Acid-Catalyzed Enolization of β-Tetralone  Brahmadeo Dewprashad, Anthony Nesturi, and Joel Urena
This experiment allows students to use 1H NMR to compare the rates of substitution of benzylic and non-benzylic a hydrogens of -tetralone and correlate their findings with predictions made by resonance theory.
Dewprashad, Brahmadeo; Nesturi, Anthony; Urena, Joel. J. Chem. Educ. 2008, 85, 829.
Aldehydes / Ketones |
Isotopes |
Mechanisms of Reactions |
NMR Spectroscopy |
Reactive Intermediates |
Resonance Theory |
Synthesis
Synthesis and Characterization of 9-Hydroxyphenalenone Using 2D NMR Techniques  Benjamin Caes and Dell Jensen Jr.
The synthesis of 9-Hydroxyphenalenone produces a planar multicyclic beta-ketoenol, the tautomerization of which results in C2v symmetry on the NMR time scale, thus simplifying the spectra and providing a unique structure for teaching 2D NMR spectroscopy.
Caes, Benjamin; Jensen, Dell, Jr. J. Chem. Educ. 2008, 85, 413.
Alcohols |
Aldehydes / Ketones |
Aromatic Compounds |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis
Using Ozone in Organic Chemistry Lab: The Ozonolysis of Eugenol  Bruce M. Branan, Joshua T. Butcher, and Lawrence R. Olsen
This organic laboratory involves the ozonolysis of eugenol (clove oil) followed by a reductive workup that generates an aldehyde easily identified by its NMR and IR spectra.
Branan, Bruce M.; Butcher, Joshua T.; Olsen, Lawrence R. J. Chem. Educ. 2007, 84, 1979.
Aldehydes / Ketones |
Gases |
IR Spectroscopy |
Laboratory Equipment / Apparatus |
Natural Products |
NMR Spectroscopy |
Synthesis |
Oxidation / Reduction
Determination of Solvent Effects on Keto—Enol Equilibria of 1,3-Dicarbonyl Compounds Using NMR  A. Gilbert Cook and Paul M. Feltman
Expands the classic physical chemistry experiment using of proton NMR to determine the equilibrium position of tautomeric 1,3-dicarbonyl compounds in various solvents.
Cook, A. Gilbert; Feltman, Paul M. J. Chem. Educ. 2007, 84, 1827.
Aldehydes / Ketones |
Equilibrium |
Hydrogen Bonding |
Molecular Modeling |
Molecular Properties / Structure |
NMR Spectroscopy |
Solutions / Solvents |
Thermodynamics
Probing the Rate-Determining Step of the Claisen–Schmidt Condensation by Competition Reactions  Kendrew K. W. Mak, Wing-Fat Chan, Ka-Ying Lung, Wai-Yee Lam, Weng-Cheong Ng, and Siu-Fung Lee
This article describes a physical organic experiment to identify the rate-determining step of the ClaisenSchmidt condensation of benzaldehyde and acetophenone by studying the linear free energy relationship.
Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung. J. Chem. Educ. 2007, 84, 1819.
Aldehydes / Ketones |
Aromatic Compounds |
Gas Chromatography |
Kinetics |
Mechanisms of Reactions |
Synthesis
A Knoevenagel Initiated Annulation Reaction Using Room Temperature or Microwave Conditions  A. Gilbert Cook
The product of a Knoevenagel initiated annulation reaction is identified through a guided prelab exercise of the synthesis of the Hagemann ester, and then through the analysis of GCMS, NMR, and IR spectra. The stereochemistry of the product is determined through the NMR spectrum and Karplus curve, and the student is required to write a mechanism for the reaction.
Cook, A. Gilbert. J. Chem. Educ. 2007, 84, 1477.
Aldehydes / Ketones |
Conformational Analysis |
Gas Chromatography |
IR Spectroscopy |
Mass Spectrometry |
Mechanisms of Reactions |
NMR Spectroscopy |
Stereochemistry |
Synthesis
A Guided-Inquiry Approach to the Sodium Borohydride Reduction and Grignard Reaction of Carbonyl Compounds  Robert E. Rosenberg
Students teams identify unknowns and their reaction products and use their data to deduce that esters are less electrophilic than the other carbonyl compounds present, that Grignard reagents are more nucleophilic than sodium borohydride, and that carboxylic acid derivatives do not undergo the nucleophilic addition reactions that are characteristic of aldehydes and ketones.
Rosenberg, Robert E. J. Chem. Educ. 2007, 84, 1474.
Addition Reactions |
Aldehydes / Ketones |
Esters |
Grignard Reagents |
IR Spectroscopy |
Oxidation / Reduction |
Reactions |
Student-Centered Learning
Oxidation of Aromatic Aldehydes Using Oxone  Rajani Gandhari, Padma P. Maddukuri, and Thottumkara K. Vinod
Describes an eco-friendly procedure for the oxidation of aldehydes to carboxylic acids in water or a water-ethanol mixture using Oxone as the oxidant. The use of eco-friendly solvents, a non-toxic reagent, and the elimination of extraction solvents in the procedure demonstrate important green chemistry themes to students.
Gandhari, Rajani; Maddukuri, Padma P.; Vinod, Thottumkara K. J. Chem. Educ. 2007, 84, 852.
Aldehydes / Ketones |
Aromatic Compounds |
Aqueous Solution Chemistry |
Carboxylic Acids |
Green Chemistry |
Mechanisms of Reactions |
NMR Spectroscopy |
Oxidation / Reduction
The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway  R. David Crouch, Amie Richardson, Jessica L. Howard, Rebecca L. Harker, and Kathryn H. Barker
Describes an experiment offering the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated addition of a ketone to an aldehyde.
Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H. J. Chem. Educ. 2007, 84, 475.
Addition Reactions |
Aldehydes / Ketones |
Green Chemistry |
NMR Spectroscopy |
Reactions |
Synthesis
A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory  George D. Bennett
The proline-catalyzed aldol condensation between acetone and isobutyraldehyde proceeds in good yield and with high enantioselectivity at room temperature. This multi-week experiment also illustrates a number of principles and trade-offs of green chemistry.
Bennett, George D. J. Chem. Educ. 2006, 83, 1871.
Addition Reactions |
Aldehydes / Ketones |
Asymmetric Synthesis |
Catalysis |
Chirality / Optical Activity |
Green Chemistry |
Mechanisms of Reactions |
Stereochemistry
Photochemical Dimerization of Dibenzylideneacetone. A Convenient Exercise in [2+2] Cycloaddition Using Chemical Ionization Mass Spectrometry  G. Nageswara Rao, Chelli Janardhana, V. Ramanathan, T. Rajesh, and P. Harish Kumar
Presents a laboratory procedure for the photochemical dimerization of dibenzylideneacetone, a dienone. The dimerization is confirmed by chemical ionization mass spectrometry, and other spectroscopic techniques are used to establish the structure of the product.
Rao, G. Nageswara; Janardhana, Chelli; Ramanathan, V.; Rajesh, T.; Kumar, P. Harish. J. Chem. Educ. 2006, 83, 1667.
Aldehydes / Ketones |
Alkenes |
Chromatography |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Photochemistry |
Thin Layer Chromatography
Synthesis of meso-Diethyl-2,2′-dipyrromethane in Water. An Experiment in Green Organic Chemistry  Abilio J. F. N. Sobral
In this laboratory activity, students are introduced to the synthesis of dipyrromethanes important precursors for porphyrin and calix[4]pyrrolethrough the acid-catalyzed condensation of pyrrole and 3-pentanone to produce meso-diethyl-2,2'-dipyrromethane.
Sobral, Abilio J. F. N. J. Chem. Educ. 2006, 83, 1665.
Aldehydes / Ketones |
Aqueous Solution Chemistry |
Green Chemistry |
Synthesis
A Discovery-Learning 2,4-Dinitrophenylhydrazone Experiment  Bruno M. Vittimberga and Ben Ruekberg
Selections of liquid aldehydes and ketones are proposed for students to determine what property is the best predictor of the color (yellow to red) of their 2,4-dinitrophenylhydrazone derivative. Students may use a computer (spreadsheet or word processor) to analyze their results.
Vittimberga, Bruno M.; Ruekberg, Ben. J. Chem. Educ. 2006, 83, 1661.
Aldehydes / Ketones |
Molecular Properties / Structure |
Physical Properties |
Qualitative Analysis
Microwave-Mediated Synthesis of Lophine: Developing a Mechanism To Explain a Product   R. David Crouch, Jessica L. Howard, Jennifer L. Zile, and Kathryn H. Barker
Describes the microwave-mediated preparation of lophine (2,4,5-triphenylimidazole). The experiment also provides an opportunity for students to employ the principles of carbonyl chemistry in devising a mechanism to explain the formation of the product.
Crouch, R. David; Howard, Jessica L.; Zile, Jennifer L.; Barker, Kathryn H. J. Chem. Educ. 2006, 83, 1658.
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Aromatic Compounds |
Microscale Lab |
Molecular Modeling |
Synthesis |
NMR Spectroscopy
Synthesis and Analysis of a Versatile Imine for the Undergraduate Organic Chemistry Laboratory  Jacqueline Bennett, Kristen Meldi, and Christopher Kimmell II
In this experiment students prepare and analyze N-p-methoxyphenyl (N-PMP) alpha-imino ethyl glyoxalate, an imine that has been used in the synthesis of biologically active molecules. The stability and versatility of this imine allow it to be used in subsequent reactions, offering a variety of possible multistep synthetic strategies.
Bennett, Jacqueline; Meldi, Kristen; Kimmell, Christopher, II. J. Chem. Educ. 2006, 83, 1221.
Aldehydes / Ketones |
Gas Chromatography |
Green Chemistry |
Mass Spectrometry |
NMR Spectroscopy |
Synthesis
Reductive Amination: A Remarkable Experiment for the Organic Laboratory  Kim M. Touchette
The synthesis of N-(2-hydroxy-3-methoxybenzyl)-N-p-tolylacetamide is a fast, simple three-step sequence that serves as a useful example of the reductive amination reaction for the organic chemistry laboratory.
Touchette, Kim M. J. Chem. Educ. 2006, 83, 929.
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Green Chemistry |
Instrumental Methods |
IR Spectroscopy |
NMR Spectroscopy |
Oxidation / Reduction |
Solids
Ozonolysis Problems That Promote Student Reasoning  Ray A. Gross Jr.
The structural features inherent in acyclic monoterpenes that follow the isoprene rule often lead to unique sets of ozonolysis products from which their structures, excluding stereochemistry, can be determined from molecular formulas only. This article shows how students may elucidate the structures of these compounds by analysis of the oxidative and reductive workup products.
Gross, Ray A., Jr. J. Chem. Educ. 2006, 83, 604.
Aldehydes / Ketones |
Alkenes |
Alkynes |
Carboxylic Acids |
Oxidation / Reduction |
Student-Centered Learning
Diastereoselectivity in the Reduction of α-Hydroxyketones. An Experiment for the Chemistry Major Organic Laboratory  David B. Ball
Describes a research type, inquiry-based project where students synthesize racemic ahydroxyketones using umpolung, a polarity-reversal approach; investigate chelating versus non-chelating reducing agents; and determine the diastereoselectivity of these reducing processes by NMR spectroscopy.
Ball, David B. J. Chem. Educ. 2006, 83, 101.
Addition Reactions |
Aldehydes / Ketones |
Chirality / Optical Activity |
Chromatography |
Conferences |
Constitutional Isomers |
Enantiomers |
NMR Spectroscopy |
Stereochemistry |
Synthesis |
Conformational Analysis
The Discovery-Oriented Approach to Organic Chemistry. 6. Selective Reduction in Organic Chemistry: Reduction of Aldehydes in the Presence of Esters Using Sodium Borohydride  Ashvin R. Baru and Ram S. Mohan
Describes two discovery oriented lab experiments involving the chemoselective reduction of vanillin acetate and methyl 4-formylbenzoate in the presence of esters using sodium borohydride, followed by product identification using 1H and 13C NMR spectroscopy.
Baru, Ashvin R.; Mohan, Ram S. J. Chem. Educ. 2005, 82, 1674.
NMR Spectroscopy |
Alcohols |
Aldehydes / Ketones |
Esters |
Oxidation / Reduction |
Thin Layer Chromatography |
Synthesis
A Microwave-Assisted Reduction of Cyclohexanone Using Solid-State-Supported Sodium Borohydride  Lori L. White and Kevin W. Kittredge
We report a microwave-assisted reduction of cyclohexanone by sodium borohydride that is supported on SiO2. The reaction was completed in less than 3 minutes. Workup and analysis by GCMS, IR, and 1H NMR was possible in a two and half-hour laboratory session. This reduction was used successfully in a second-year organic chemistry laboratory. Students were exposed to a green chemistry reaction using solid-state-supported reactants in the absence of solvent.
White, Lori L.; Kittredge, Kevin W. J. Chem. Educ. 2005, 82, 1055.
Oxidation / Reduction |
Solid State Chemistry |
Green Chemistry |
Alcohols |
Aldehydes / Ketones
The Base-Induced Reaction of Salicylaldehyde with 1-Bromobutane in Acetone: Two Related Examples of Chemical Problem Solving  Holly D. Bendorf and Chriss E. McDonald
Each student performs his or her own experimental work, running one of the two reactions, and acquiring the proton and carbon NMR, IR, and mass spectra. The students work in groups to propose structures for the products and mechanisms for their formation. The students are also asked to address why the reactions take different courses.
Bendorf, Holly D.; McDonald, Chriss E. J. Chem. Educ. 2003, 80, 1185.
Chromatography |
Mass Spectrometry |
NMR Spectroscopy |
Aromatic Compounds |
Aldehydes / Ketones |
Ethers |
Phenols |
IR Spectroscopy
Discovery-Oriented Approach To Organic Synthesis: Tandem Aldol Condensation-Michael Addition Reactions. Identifying Diastereotopic Hydrogens in an Achiral Molecule by NMR Spectroscopy  Nanette Wachter-Jurcsak and Kendra Reddin
Procedure illustrating aldol condensation and Michael addition reactions.
Wachter-Jurcsak, Nanette; Reddin, Kendra. J. Chem. Educ. 2001, 78, 1264.
NMR Spectroscopy |
Synthesis |
Stereochemistry |
Aromatic Compounds |
Aldehydes / Ketones |
Addition Reactions |
Mechanisms of Reactions
Diastereoselective Synthesis of (+/-)-1,2-Diphenyl-1,2-propanediol. A Discovery-Based Grignard Reaction Suitable for a Large Organic Lab Course  James A. Ciaccio, Roxana P. Bravo, Antoinette L. Drahus, John B. Biggins, Rosalyn V. Concepcion, and David Cabrera
An experiment that probes the diastereoselectivity of the reaction between a Grignard reagent and a common, inexpensive alpha-chiral ketone; introduces students to pi-facial discrimination by having them establish the stereochemical course of kinetically controlled nucleophilic addition to a carbonyl.
Ciaccio, James A.; Bravo, Roxana P.; Drahus, Antoinette L.; Biggins, John B.; Concepcion, Rosalyn V.; Cabrera, David. J. Chem. Educ. 2001, 78, 531.
Mechanisms of Reactions |
Synthesis |
Organometallics |
Stereochemistry |
Grignard Reagents |
Aldehydes / Ketones
Synthesis of Derivatives of (1R)-(-)- and (1S)-(+)-10-Camphorsulfonic Acid  Steven C. Cermak and David F. Wiemer
The preparation of optically active (camphorsulfonyl)oxaziridines from commercially available (1R)-(-) and/or (1S)-(+)10-camphorsulfonic acid provides a clear demonstration of the lack of relationship between absolute configuration and optical rotation. The parent sulfonic acid can be converted to the corresponding acid chloride and then to the sulfonamide, sulfonylimine, and finally to an oxaziridine in a series of practical organic laboratory experiments.
Cermak, Steven C.; Wiemer, David F. J. Chem. Educ. 1999, 76, 1715.
Stereochemistry |
Synthesis |
Aromatic Compounds |
Ethers |
Alcohols |
Aldehydes / Ketones |
Acids / Bases
A Simple Organic Microscale Experiment Illustrating the Equilibrium Aspect of the Aldol Condensation  Ernest A. Harrison Jr.
A simple microscale experiment has been developed that illustrates the equilibrium aspect of the aldol condensation by using two versions of the standard preparation of tetraphenylcyclopentadienone from benzil and 1,3-diphenyl- 2-propanone.
Harrison, Ernest A., Jr. J. Chem. Educ. 1998, 75, 636.
Equilibrium |
Reactions |
Mechanisms of Reactions |
Microscale Lab |
Aldehydes / Ketones
Nucleophilic Addition vs. Substituion: A Puzzle for the Organic Laboratory  Ernest F. Silversmith
The chemistry of beta-carbonyl compounds is studied. Beta-carbonyl compounds react with hydrazines to give products with a 5-membered ring containing two nitrogens. The experiment makes students determine whether ethyl 2-acetyl-3-oxobutanoate reacts like a beta-diketone or like a beta-keto ester.
Silversmith, Ernest F. J. Chem. Educ. 1998, 75, 221.
Learning Theories |
Nucleophilic Substitution |
Aldehydes / Ketones |
Esters |
Mechanisms of Reactions
Determination of Formaldehyde in Cigarette Smoke  Jon W. Wong, Kenley K. Ngim, Jason P. Eiserich, Helen C. H. Yeo, Takayuki Shibamoto, and Scott A. Mabury
This experiment involves the collection, derivatization, extraction, and analysis of formaldehyde from cigarette smoke using two methods. Formaldehyde is extracted from smoke and derivitized with a solution of 2,4-DNPH with subsequent cleanup by solid-phase extraction and analysis of the hydrazone by HPLC with UV detection; additionally a solution of cysteamine yields the corresponding thiazolidine derivative that is liquid/liquid extracted and subsequently analyzed by either GC with NPD or FPD (sulfur mode).
Wong, Jon W.; Ngim, Kenley K.; Eiserich, Jason P.; Yeo, Helen C. H.; Shibamoto, Takayuki; Mabury, Scott A. J. Chem. Educ. 1997, 74, 1100.
Learning Theories |
Chromatography |
Quantitative Analysis |
Separation Science |
Aldehydes / Ketones |
Applications of Chemistry
Catalytic Transfer Hydogenation Reactions for Undergraduate Practical Programs  R. W. Hanson
A brief review of catalytic transfer hydrogenation (CTH) reactions is given. Attention is drawn, particularly, to the utility of ammonium formate as the hydrogen donor in this type of reaction.
Hanson, R. W. J. Chem. Educ. 1997, 74, 430.
Catalysis |
Aldehydes / Ketones |
Alcohols |
Amines / Ammonium Compounds |
Mechanisms of Reactions
A -78°C Sequential Michael Addition for the Organic Lab  Michael W. Tanis
This paper introduces a cold-temperature enolate alkylation reaction that can be performed safely and inexpensively by undergraduate students in approximately two 3-hour lab sessions.
Tanis, Michael W. J. Chem. Educ. 1997, 74, 112.
Addition Reactions |
Alkenes |
Aldehydes / Ketones |
Synthesis
Carbonyl and Conjugate Additions to Cyclohexenone: Experiments Illustrating Reagent Selectivity  Michael G. Organ and Paul Anderson
Undergraduate students leaving an organic chemistry program should have exposure to these concepts and hands-on experience in dealing practically with the issue of selectivity. In this paper, selective addition of a nucleophile to either end of the enone moiety in cyclohexenone is examined.
Organ, Michael G.; Anderson, Paul. J. Chem. Educ. 1996, 73, 1193.
Addition Reactions |
Aldehydes / Ketones |
Mechanisms of Reactions
An Efficient Microscale Procedure for the Preparation of 3,5-Dinitrobenzoates  Richard F. Smith and Gaetano M. Cristalli
A laboratory to introduce the concept and technique of mass spectroscopy to introductory organic students; sample data and analysis included.
Smith, Richard F.; Cristalli, Gaetano M. J. Chem. Educ. 1995, 72, A160.
Mass Spectrometry |
Gas Chromatography |
Aldehydes / Ketones |
Instrumental Methods |
Qualitative Analysis |
Microscale Lab
Baeyer-Villiger Oxidation of Indane-1-ones: Monitoring of the Reaction by VPC and IR Spectroscopy  Elie Stephan
Procedure for the Baeyer-Villiger oxidation of indane-1-ones.
Stephan, Elie. J. Chem. Educ. 1995, 72, 1142.
IR Spectroscopy |
Synthesis |
Mechanisms of Reactions |
Oxidation / Reduction |
Aldehydes / Ketones
A Centenary Synthesis of Carone and Dicarvelone  Armstead, D. E. F.
Procedure for synthesizing carone and dicarvelone.
Armstead, D. E. F. J. Chem. Educ. 1995, 72, 550.
Synthesis |
Aldehydes / Ketones
Baker's Yeast Reduction of alpha-Diketones: A Four-Hour Experiment for Undergraduate Students  Besse, Pascale; Bolte, Jean; Veschambre, Henri
Procedure for quickly and efficiently reducing alpha-diketones using bakers' yeast.
Besse, Pascale; Bolte, Jean; Veschambre, Henri J. Chem. Educ. 1995, 72, 277.
Oxidation / Reduction |
Synthesis |
Aldehydes / Ketones
Preparation of (S)-(+)-5,8a-Dimethyl-3,4,8,8a-tetrahydro-1,6(2H,7H)-naphthalenedione: An Undergraduate Experiment in Asymmetric Synthesis  Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E.
An asymmetric Robinson annelation suitable for the undergraduate organic laboratory.
Markgraf, J. Hodge; Fei, John F.; Ruckman, Robert E. J. Chem. Educ. 1995, 72, 270.
Synthesis |
Chirality / Optical Activity |
Aldehydes / Ketones
A More Affordable Undergraduate Experiment on the Reduction of Acetophenone by Yeast  Lee, Moses; Huntington, Martha
Preparation of Mosher's esters through the reduction of acetophenone with baker's yeast.
Lee, Moses; Huntington, Martha J. Chem. Educ. 1994, 71, A62.
Microscale Lab |
Aromatic Compounds |
Aldehydes / Ketones |
Oxidation / Reduction |
Stereochemistry |
Chirality / Optical Activity |
Esters |
Synthesis
Models of 2-Butanone: Using Graphics To Illustrate Complementary Approaches to Molecular Structure and Reactivity  Hanks, T. W.
157. Ways in which a graphics workstation can be used to illustrate various concepts of molecular structure.
Hanks, T. W. J. Chem. Educ. 1994, 71, 62.
Aldehydes / Ketones |
Molecular Properties / Structure |
Molecular Modeling |
Molecular Mechanics / Dynamics |
Stereochemistry |
Quantum Chemistry |
MO Theory
Products of aldol addition and related reactions: Notation for their prediction  Nwaukwai, Stephen O.
A simple method that can be used to predict products of aldols and aldol-tye addition reactions.
Nwaukwai, Stephen O. J. Chem. Educ. 1993, 70, 626.
Addition Reactions |
Aldehydes / Ketones |
Nomenclature / Units / Symbols
Identification of methylcyclohexanones by NMR  Gurst, Jerome E.
Distinguishing between three isomeric methylcyclohexanones using NMR.
Gurst, Jerome E. J. Chem. Educ. 1992, 69, 774.
Aldehydes / Ketones |
NMR Spectroscopy |
Diastereomers
Beta-keto esters from tin(II) chloride catalyzed reactions of aldehydes with ethyl diazoacetate: An undergraduate laboratory experiment drawn from the current literature  Brockwell, Joyce C.; Holmquist, Christopher R.
This is an experimental procedure for producing longer-chain keto esters from unconjugated aldehydes on reaction with ethyl diazoacetate catalyzed by Lewis acids for use in an undergraduate laboratory.
Brockwell, Joyce C.; Holmquist, Christopher R. J. Chem. Educ. 1992, 69, 68.
Catalysis |
Synthesis |
Lewis Acids / Bases |
Aldehydes / Ketones |
Esters
The synthesis of 2-methyl-4-heptanone  de Jong, Elma A.; Feringa, Ben L.
2-methyl-4-heptanone is an ant pheromone used to alarm fellow ants. The synthesis described in this article is greeted with interest by students.
de Jong, Elma A.; Feringa, Ben L. J. Chem. Educ. 1991, 68, 71.
Aldehydes / Ketones |
Natural Products |
Synthesis |
Grignard Reagents
g-Nonanoic lactone: Synthesis of a fragrance and flavor enhancer in the undergraduate laboratory  Bunce, Richard A.; Reeves, Henry D.
The experiment describes the synthesis of ?-nonanoic lactone, an un-natural compound having the odor and flavor of coconuts.
Bunce, Richard A.; Reeves, Henry D. J. Chem. Educ. 1990, 67, 69.
Synthesis |
Aldehydes / Ketones
The preparation of 4-hydroxy-2,3,4,5-tetraphenyl-2-cyclopenten-1-one and its base catalyzed conversion into 2,3,4,5-tetraphenycyclopentadienone: An organic laboratory experiment   Harrison, Ernest A., Jr.
An organic laboratory experiment that permits direct observation of a pedagogically interesting transformation.
Harrison, Ernest A., Jr. J. Chem. Educ. 1988, 65, 828.
Aldehydes / Ketones |
Phenols |
Alkanes / Cycloalkanes |
IR Spectroscopy |
Synthesis
A visual manifestation of the Norrish Type I reaction: The cyclohexanone sunburn dosimeter  Carroll, Felix A.; Strouse, Geoffrey F.; Hain, Jon M.
Irradiation of aqueous cyclohexanone solutions produces hex-5-enal and butylketene; the latter reacts with water to form caproic acid, which lowers the pH of the solution and thus can be used to measure the progress of the reaction.
Carroll, Felix A.; Strouse, Geoffrey F.; Hain, Jon M. J. Chem. Educ. 1987, 64, 84.
Photochemistry |
pH |
Aldehydes / Ketones
Selective oxidation in the presence of a heterocycle  Bowles, K. Dean; Quincy, David A.; McKenna, John I.; Natale, N. R.
The process of weighing the advantages and disadvantages of various oxidation methods are presented in this paper.
Bowles, K. Dean; Quincy, David A.; McKenna, John I.; Natale, N. R. J. Chem. Educ. 1986, 63, 358.
Alcohols |
Aldehydes / Ketones |
Heterocycles |
Oxidation / Reduction |
Carboxylic Acids
Computer-assisted quantitative infrared conformational analysis of alpha, beta-unsaturated ketones  Tisnes, P.; Perry, M.
Investigates the s-cis <> s-trans conformational equilibrium of alpha, beta-unsaturated ketones.
Tisnes, P.; Perry, M. J. Chem. Educ. 1985, 62, 903.
Aldehydes / Ketones |
Conformational Analysis |
IR Spectroscopy |
Stereochemistry |
Molecular Properties / Structure |
Quantitative Analysis
3-Ketoesters by malonic synthesis  Pollet, Patrick L.
This essay reviews a synthesis strategy.
Pollet, Patrick L. J. Chem. Educ. 1983, 60, 244.
Synthesis |
Carboxylic Acids |
Aldehydes / Ketones |
Alkylation
A reinvestigation of the synthesis of 4-methyl-3-heptanol  Hoffman, Robert V.; Alexander, M. D.; Buntain, Gregory; Hardenstein, Richard; Mattox, Cynthia; McLaughlin, Susan; McMinn, Denise; Spray, Scott; White, Steven
A previously reported laboratory may have reported gas chromatographic separation of the 4-methyl-3-heptanol diastereomiers in error. The side reactions in the Grignard reaction account for the observed results.
Hoffman, Robert V.; Alexander, M. D.; Buntain, Gregory; Hardenstein, Richard; Mattox, Cynthia; McLaughlin, Susan; McMinn, Denise; Spray, Scott; White, Steven J. Chem. Educ. 1983, 60, 78.
Hormones |
Alcohols |
Grignard Reagents |
IR Spectroscopy |
NMR Spectroscopy |
Aldehydes / Ketones |
Gas Chromatography |
Synthesis |
Natural Products
Favorskii rearrangement in bridged polycyclic compounds  Chenier, Philip J.
Favorskii rearrangement in bridged polycyclic compounds: This can be classified as an intramolecular rearrangement from carbon to carbon, involving a migrating group Z moving without its electrons from migrating origin A to an electron-rich terminus B.
Chenier, Philip J. J. Chem. Educ. 1978, 55, 286.
Mechanisms of Reactions |
Carboxylic Acids |
Aldehydes / Ketones |
Aromatic Compounds
Synthesis of 4-methyl-3-heptanol and 4-methyl-3-heptanone. Two easily synthesized insect pheromones  Einterz, Robert M.; Ponder, Jay W.; Lenox, Ronald S.
A two step reaction sequence involving the Grignard synthesis of an alcohol followed by oxidation of this alcohol to the corresponding ketone.
Einterz, Robert M.; Ponder, Jay W.; Lenox, Ronald S. J. Chem. Educ. 1977, 54, 382.
Natural Products |
Synthesis |
Applications of Chemistry |
Grignard Reagents |
Mechanisms of Reactions |
Stereochemistry |
Alcohols |
Aldehydes / Ketones
The scope of the Haworth synthesis  Agranat, Israel; Shih, Yu-Shan
The duality of the Haworth synthesis as revealed most conspicuously in the preparation of both anthracene and phenanthrene, widens the scope of the method. On the basis of the reversibility of Friedel-Crafts acylation in PPA, the Haworth synthesis may serve as a route to linearly annelated-as well as to angularly annelated polynuclear aromatic hydrocarbons.
Agranat, Israel; Shih, Yu-Shan J. Chem. Educ. 1976, 53, 488.
Synthesis |
Catalysis |
Aromatic Compounds |
Aldehydes / Ketones
Preparation of phenanthridone. A multipurpose experiment for the organic laboratory  Hawbecker, Byron L.; Radovich, David A.; Tillotson, Loyal G.
It is desirable to have a series of multipurpose reactions available which can illustrate a variety of reaction types within a single, three hour lab period.
Hawbecker, Byron L.; Radovich, David A.; Tillotson, Loyal G. J. Chem. Educ. 1976, 53, 398.
Reactions |
Aromatic Compounds |
Aldehydes / Ketones
Illustrating gas chromatography and mass spectrometry. An undergraduate experiment  Gross, Michael L.; Olsen, Virgil K.; Forc, R. Ken
One lab period is used to separate and collect the components of a ketone mixture; the second lab period is used to explain and demonstrate the MS instrumentation and the interpretation of ketone spectra; and in part three the spectra of the separated ketones are analyzed by individual students.
Gross, Michael L.; Olsen, Virgil K.; Forc, R. Ken J. Chem. Educ. 1975, 52, 535.
Gas Chromatography |
Mass Spectrometry |
Aldehydes / Ketones
A crossed aldol condensation for the undergraduate laboratory  Angres, Isaac; Zieger, Herman E.
This two-step experiment for undergraduate organic chemistry students illustrates three basic ideas: organic chemistry students illustrate three basic ideas (1) crossed aldol condensation; (2) the acidity of benzylic hydrogen in hydrocarbons; and (3) reduction of a double bond in hydride transfer.
Angres, Isaac; Zieger, Herman E. J. Chem. Educ. 1974, 51, 64.
Aromatic Compounds |
Aldehydes / Ketones |
Acids / Bases |
Alcohols
Molecular weight determination of aldehydes and ketones. A quantitative organic experiment  Steinhaus, Ralph K.
The reaction between semicarbazide and an unknown ketone is used to determine molecular weight.
Steinhaus, Ralph K. J. Chem. Educ. 1973, 50, 293.
Physical Properties |
Quantitative Analysis |
Aldehydes / Ketones |
Oxidation / Reduction
Visualization of molecular orbitals. Formaldehyde  Olcott, Richard J.
Using a computer to generate three dimensional charge density distributions of the formaldehyde molecule.
Olcott, Richard J. J. Chem. Educ. 1972, 49, 614.
Aldehydes / Ketones |
Molecular Modeling |
Molecular Properties / Structure
Alkylations in organic chemistry  Mundy, Bradford P.
Examines some of the subtle factors involved in alkylations, including alkylations via enolates, alkylations via enamines, and alkylation of enolates derived from reduction of enone systems.
Mundy, Bradford P. J. Chem. Educ. 1972, 49, 91.
Synthesis |
Alkylation |
Aldehydes / Ketones |
Mechanisms of Reactions
Preparation of 2,3-diphenyl-1-indenone and related compounds  Clark, Thomas J.
The author describes a series of preparative experiments which students in organic chemistry have found enjoyable and instructive.
Clark, Thomas J. J. Chem. Educ. 1971, 48, 554.
Synthesis |
Aldehydes / Ketones |
Aromatic Compounds
Recrystallization and melting point determination  Kaye, Irving Allan; Yuska, Henry
This experiment is essentially an exercise in recrystallization and identification, by melting point and mixed melting point determination, an unknown ketone that has been transformed into either its 2,4-dinitrophenylhydrazone or semicarbazone derivative.
Kaye, Irving Allan; Yuska, Henry J. Chem. Educ. 1970, 47, 703.
Crystals / Crystallography |
Aldehydes / Ketones |
Qualitative Analysis
Qualitative test for ketones, aromatic aldehydes, and aliphatic aldehydes  Morrison, James D.
The Bordwell-Wellman solution of chromic anhydride in aqueous sulfuric acid is an excellent reagent for distinguishing aldehydes from ketones.
Morrison, James D. J. Chem. Educ. 1965, 42, 554.
Qualitative Analysis |
Aldehydes / Ketones |
Aromatic Compounds
The pyrolytic decomposition of carboxylate salts to ketones  Schultz, H. P.; Sichels, J. P.
Suggestions for research to accompany a previously published article.
Schultz, H. P.; Sichels, J. P. J. Chem. Educ. 1963, 40, A463.
Undergraduate Research |
Reactions |
Aldehydes / Ketones