TIGER

Journal Articles: 28 results
Experimental Design and Optimization: Application to a Grignard Reaction  Naoual Bouzidi and Christel Gozzi
This 5-week project, which systematically investigates optimizing the synthesis of benzyl-1-cyclopentan-1-ol, constitutes an initiation into research methodology and experimental design to prepare the student-engineer for an industry internship. Other pedagogical goals include experience in synthetic techniques, obtaining reproducible yields, and using quantitative analysis methods.
Bouzidi, Naoual; Gozzi, Christel. J. Chem. Educ. 2008, 85, 1544.
Addition Reactions |
Alcohols |
Aldehydes / Ketones |
Chemometrics |
Gas Chromatography |
Organometallics |
Synthesis
Regioselectivity in Organic Synthesis: Preparation of the Bromohydrin of α-Methylstyrene  Brad Andersh, Kathryn N. Kilby, Meghan E. Turnis, and Drew L. Murphy
In the described experiment, the regiochemical outcome of the addition of "HOBr" to a-methylstyrene is investigated. Although both "classic" qualitative analysis and instrumental techniques are described, the emphasis of this experiment is on the utilization 13C and DEPT-135 NMR spectroscopy to determine the regiochemical outcome of the addition.
Andersh, Brad; Kilby, Kathryn N.; Turnis, Meghan E.; Murphy, Drew L. J. Chem. Educ. 2008, 85, 102.
Addition Reactions |
Alcohols |
Alkenes |
Constitutional Isomers |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis
Organic Functional Group Playing Card Deck  Michael J. Welsh
Organic functional group playing card deck used for review of the name and structure of organic functional groups that can be used to play any game that a normal deck of cards is used for.
Welsh, Michael J. J. Chem. Educ. 2003, 80, 426.
Nomenclature / Units / Symbols |
Nonmajor Courses |
Enrichment / Review Materials |
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amides |
Amines / Ammonium Compounds |
Aromatic Compounds |
Carboxylic Acids |
Esters |
Ethers |
Mechanisms of Reactions |
Synthesis
Ethanol Metabolism and the Transition from Organic Chemistry to Biochemistry  Richard D. Feinman
Introducing alcohol dehydrogenase and aldehyde dehydrogenase reactions in organic chemistry to ease transition to biochemistry.
Feinman, Richard D. J. Chem. Educ. 2001, 78, 1215.
Metabolism |
Oxidation / Reduction |
Reactions |
Mechanisms of Reactions |
Alcohols |
Carbohydrates
Organic-Solvent-Free Phase-Transfer Oxidation of Alcohols Using Hydrogen Peroxide  Martin Hulce and David W. Marks
Six representative alcohols are oxidized to the corresponding aldehyde or ketone, integrating the various techniques of extraction, drying, filtration, column chromatography, gas chromatography, NMR and IR spectroscopy, and reaction kinetics.
Hulce, Martin; Marks, David W. J. Chem. Educ. 2001, 78, 66.
Catalysis |
Oxidation / Reduction |
Reactions |
Kinetics |
Chromatography |
Gas Chromatography |
Separation Science |
NMR Spectroscopy |
IR Spectroscopy |
Alcohols |
Phenols
Kinetic Isotope Effect in the Chromic Acid Oxidation of Secondary Alcohols  Charles E. Harding, Christopher W. Mitchell, and Jozsef Devenyi
The kinetic isotope effect is an invaluable tool in studying certain organic reaction mechanisms. Two activities involving the technique that are suitable for introductory organic laboratory students are described. A simple competition experiment utilizing the benzhydrol?benzhydrol-d1 system and chromic acid oxidation is used to demonstrate qualitatively that there is a kinetic isotope effect involved in this process.
Harding, Charles E.; Mitchell, Christopher W.; Devenyi, Jozsef. J. Chem. Educ. 2000, 77, 1042.
Isotopes |
Kinetics |
Mechanisms of Reactions |
Alcohols |
Oxidation / Reduction
Computational Investigations for Undergraduate Organic Chemistry: Modeling Markovnikov and anti-Markovnikov Reactions for the Formation of Alkyl Halides and Alcohols  Rita K. Hessley
This paper describes how the early introduction of molecular modeling for the study of reaction mechanisms leading to alcohols from alkenes can increase students' involvement in their own learning and can effectively challenge their misapprehension about memorization.
Hessley, Rita K. J. Chem. Educ. 2000, 77, 794.
Computational Chemistry |
Alcohols |
Molecular Modeling |
Mechanisms of Reactions
The Oxidation of Primary Alcohols to Esters: Three Related Investigative Experiments  Chriss E. McDonald

McDonald, Chriss E. J. Chem. Educ. 2000, 77, 750.
Oxidation / Reduction |
Alcohols |
Esters |
Synthesis |
Mechanisms of Reactions
Grignard Synthesis of Various Tertiary Alcohols  T. Stephen Everett
A general Grignard procedure is presented for the synthesis of aliphatic, tertiary alcohols containing six to nine carbons. Without revealing the specific starting materials, students are challenged to identify their unknown products from physical (boiling points, refractive indices) and spectral (infrared O-H, C-H and fingerprint regions) data.
Everett, T. Stephen. J. Chem. Educ. 1998, 75, 86.
IR Spectroscopy |
Alcohols |
Mechanisms of Reactions |
Synthesis
A Grignard-like Organic Reaction in Water  Gary W. Breton and Christine A. Hughey
A known Grignard-like reaction between allyl bromide and benzaldehyde mediated by zinc metal in aqueous media. The procedure retains the desirable features of the traditional Grignard reaction, while eliminating some of the commonly encountered difficulties.
Breton, Gary W.; Hughey, Christine A. J. Chem. Educ. 1998, 75, 85.
Microscale Lab |
Aromatic Compounds |
Aldehydes / Ketones |
Alcohols |
Synthesis |
Mechanisms of Reactions
Catalytic Transfer Hydogenation Reactions for Undergraduate Practical Programs  R. W. Hanson
A brief review of catalytic transfer hydrogenation (CTH) reactions is given. Attention is drawn, particularly, to the utility of ammonium formate as the hydrogen donor in this type of reaction.
Hanson, R. W. J. Chem. Educ. 1997, 74, 430.
Catalysis |
Aldehydes / Ketones |
Alcohols |
Amines / Ammonium Compounds |
Mechanisms of Reactions
Following Microscale Organic Reactions Using FT-IR  Janice Ems-Wilson
This article describes an experiment that encourages discussion of carbohydrate chemistry in terms of reaction mechanisms, conformational analysis, and spectroscopy. The specific experiment involves the preparation of the bis(acetonide) of D-(+)-mannose.
Ems-Wilson, Janice. J. Chem. Educ. 1996, 73, A170.
Microscale Lab |
Carbohydrates |
Mechanisms of Reactions |
Conformational Analysis |
Spectroscopy |
Synthesis |
Aldehydes / Ketones |
Alcohols
The Dehydration of 2-Methylcyclohexanol Revisited: The Evelyn Effect  Todd, David
Modification to an earlier procedure that allows students to observe the results of a hydride shift mechanism.
Todd, David J. Chem. Educ. 1994, 71, 440.
Alcohols |
Mechanisms of Reactions |
Gas Chromatography |
Alkenes |
Elimination Reactions
GC/MS experiments for the organic chemistry laboratory: I. E2 elimination of 2-bromo-2-methyloctane   Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott
Two capillary GC/MS experiments that were designed for and tested in a sophomore organic laboratory course.
Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott J. Chem. Educ. 1993, 70, A103.
Gas Chromatography |
Alkenes |
Alkanes / Cycloalkanes |
Alcohols |
Elimination Reactions |
Synthesis
Kinetics of the reaction of p-nitrobenzyl chloride with cyanide ion: An undergraduate organic chemistry experiment  Hurst, Michael O.; Hill, John W.
The title reaction is used to develop an undergraduate organic kinetics experiment in which the student determines the order and rate constant of the reaction, as well as the effect of solvent upon the rate of the reaction.
Hurst, Michael O.; Hill, John W. J. Chem. Educ. 1993, 70, 429.
Reactions |
Rate Law |
Kinetics |
Aromatic Compounds |
Alcohols |
Solutions / Solvents |
Organosulfur Compounds
Microscale elimination reactions: Experiments for organic chemistry using the small scale approach  Gilow, Helmuth M.
Procedure illustrating E1 and E2 reactions.
Gilow, Helmuth M. J. Chem. Educ. 1992, 69, A265.
Microscale Lab |
Reactions |
Elimination Reactions |
Alcohols |
Alkenes |
Catalysis
Pinacol rearrangement of cyclopentylcyclohexane-1,1'-diol revisited.  Sands, Richard D.
Two cyclic diols are treated with ice-cold boron trifluoride etherate to make rearrangement instead of diene formation the major product.
Sands, Richard D. J. Chem. Educ. 1992, 69, 667.
Mechanisms of Reactions |
Alcohols |
Aldehydes / Ketones
An operationally simple hydroboration-oxidation experiment  Kabalka, George W.; Wadgaonkar, Prakash P.; Chatla, Narayana
The reactions involve the use of in situ generated diborane as the hydroborating reagent and sodium perborate as the oxidizing agent to convert cyclopentene to cyclopentanol.
Kabalka, George W.; Wadgaonkar, Prakash P.; Chatla, Narayana J. Chem. Educ. 1990, 67, 975.
Synthesis |
Mechanisms of Reactions |
Alkenes |
Alcohols
Steric course of lactonization in the deamination of glutamic acid: An organic mechanism experiment  Markgraf, J. Hodge; Davis, Howard A.
The stereochemical consequences of a reaction at a chiral center offer a unique way to distinguish among mechanistic hypothesis.
Markgraf, J. Hodge; Davis, Howard A. J. Chem. Educ. 1990, 67, 173.
Mechanisms of Reactions |
Stereochemistry |
Alcohols
Oxidation of cyclohexanol - An amoebalike reaction  Kolb, Kenneth E.; Kolb, Doris
Cyclohexanol is oxidized to cyclohexanone.
Kolb, Kenneth E.; Kolb, Doris J. Chem. Educ. 1989, 66, 955.
Oxidation / Reduction |
Alcohols |
Reactions
A series of synthetic organic experiments demonstrating physical organic principles  Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H.
The sequence of reactions described here incorporates several common synthetic organic transformations involving alkenes, alcohols, alkyl halides, and ketones that demonstrate some important principles of physical organic chemistry.
Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H. J. Chem. Educ. 1989, 66, 174.
Synthesis |
Alkenes |
Alcohols |
Aldehydes / Ketones |
Reactions
Michael addition and aldol condensation: A simple teaching model for organic laboratory  Garcia-Raso, A.; Garcia-Raso, J.; Sinisterra, J. V.; Mestres, R.
Three experiments are presented in this paper: Michael addition; Michael addition followed by aldol addition; and Michael addition followed by aldol condensation.
Garcia-Raso, A.; Garcia-Raso, J.; Sinisterra, J. V.; Mestres, R. J. Chem. Educ. 1986, 63, 443.
Addition Reactions |
Aldehydes / Ketones |
Alcohols
The design of laboratory experiments in the 1980's: A case study on the oxidation of alcohols with household bleach  Mohrig, Jerry R.; Nienhuis, David M.; Linck, Catherine F.; Van Zoeren, Carol; Fox, Brian G.; Mahaffy, Peter G.
Improved safety by replacing chromium(VI) with bleach in the oxidation of an alcohol.
Mohrig, Jerry R.; Nienhuis, David M.; Linck, Catherine F.; Van Zoeren, Carol; Fox, Brian G.; Mahaffy, Peter G. J. Chem. Educ. 1985, 62, 519.
Oxidation / Reduction |
Alcohols |
Mechanisms of Reactions
Student preparation of alkanols from alkenes  McKee, J. R.; Kauffman, J. M.
The hydration of 1-hexene to form 2-hexanol demonstrates Markovnikov addition, produces a higher yield of alcohol, and starts with a less expensive alkene than cyclohexene hydrations.
McKee, J. R.; Kauffman, J. M. J. Chem. Educ. 1982, 59, 695.
Alcohols |
Alkenes |
Mechanisms of Reactions |
Addition Reactions
Oxidation of primary alcohols to aldehydes with pyridinium chlorochromate. An organic chemistry experiment  Glaros, George
This organic chemistry experiment addresses a common misconception about aldehyde reactions.
Glaros, George J. Chem. Educ. 1978, 55, 410.
Alcohols |
Aldehydes / Ketones |
Reactions
Synthesis of 4-methyl-3-heptanol and 4-methyl-3-heptanone. Two easily synthesized insect pheromones  Einterz, Robert M.; Ponder, Jay W.; Lenox, Ronald S.
A two step reaction sequence involving the Grignard synthesis of an alcohol followed by oxidation of this alcohol to the corresponding ketone.
Einterz, Robert M.; Ponder, Jay W.; Lenox, Ronald S. J. Chem. Educ. 1977, 54, 382.
Natural Products |
Synthesis |
Applications of Chemistry |
Grignard Reagents |
Mechanisms of Reactions |
Stereochemistry |
Alcohols |
Aldehydes / Ketones
Conversion of a primary alcohol to an alkyl halide via a tosylate intermediate  Wiseman, Park A.; Betras, Steve; Lindley, Barry
The experiment in this article was designed primarily for and has been performed successfully by sophomore chemistry majors.
Wiseman, Park A.; Betras, Steve; Lindley, Barry J. Chem. Educ. 1974, 51, 348.
Alcohols |
Alkylation |
Reactions |
Aromatic Compounds |
NMR Spectroscopy
Periodate cleavage of glycols: A quantitative organic analysis experiment  Schenk, George H.
This reaction is much used by organic chemists and uses the familiar standard solutions of iodine and sodium arsenite, common buffers, and stable organic glycols, such as ethylene glycol and pinacol.
Schenk, George H. J. Chem. Educ. 1962, 39, 32.
Quantitative Analysis |
Alcohols |
Reactions