TIGER

Journal Articles: 43 results
The Comparative Nucleophilicity of Naphthoxide Derivatives in Reactions with a Fast-Red TR Dye  Cheryl M. Mascarenhas
In this experiment, organic chemistry students perform reactions between three naphthyl acetate derivatives and the diazonium salt Fast-Red TR. Students discover under what conditions the hydrolysis and electrophilic aromatic substitution is fastest and slowest, allowing them to conclude that latter, rather than the former, is rate-limiting.
Mascarenhas, Cheryl M. J. Chem. Educ. 2008, 85, 1271.
Alcohols |
Aromatic Compounds |
Dyes / Pigments |
Esters |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis |
Thin Layer Chromatography |
UV-Vis Spectroscopy
Synthesis and Characterization of 9-Hydroxyphenalenone Using 2D NMR Techniques  Benjamin Caes and Dell Jensen Jr.
The synthesis of 9-Hydroxyphenalenone produces a planar multicyclic beta-ketoenol, the tautomerization of which results in C2v symmetry on the NMR time scale, thus simplifying the spectra and providing a unique structure for teaching 2D NMR spectroscopy.
Caes, Benjamin; Jensen, Dell, Jr. J. Chem. Educ. 2008, 85, 413.
Alcohols |
Aldehydes / Ketones |
Aromatic Compounds |
IR Spectroscopy |
NMR Spectroscopy |
Synthesis
Regioselectivity in Organic Synthesis: Preparation of the Bromohydrin of α-Methylstyrene  Brad Andersh, Kathryn N. Kilby, Meghan E. Turnis, and Drew L. Murphy
In the described experiment, the regiochemical outcome of the addition of "HOBr" to a-methylstyrene is investigated. Although both "classic" qualitative analysis and instrumental techniques are described, the emphasis of this experiment is on the utilization 13C and DEPT-135 NMR spectroscopy to determine the regiochemical outcome of the addition.
Andersh, Brad; Kilby, Kathryn N.; Turnis, Meghan E.; Murphy, Drew L. J. Chem. Educ. 2008, 85, 102.
Addition Reactions |
Alcohols |
Alkenes |
Constitutional Isomers |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Synthesis
Determination of the Rotational Barrier for Kinetically Stable Conformational Isomers via NMR and 2D TLC  Gregory T. Rushton, William G. Burns, Judi M. Lavin, Yong S. Chong, Perry Pellechia, and Ken D. Shimizu
After the synthesis of a N,N'-diaryl naphthalene diimide, students estimate the rotational barrier about a CarylNimidesingle bond by studying the reequilibration of the two resulting isomers using two-dimensional thin-layer chromatography, followed by a more accurate determination through a 1H NMR time study.
Rushton, Gregory T.; Burns, William G.; Lavin, Judi M.; Chong, Yong S.; Pellechia, Perry; Shimizu, Ken D. J. Chem. Educ. 2007, 84, 1499.
Alcohols |
Chromatography |
Conformational Analysis |
Equilibrium |
Kinetics |
NMR Spectroscopy |
Physical Properties |
Rate Law |
Thin Layer Chromatography
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Developing Critical Thinking Skills: The "Sabotaged" Synthesis of Methyl p-Bromobenzoate  Eric J. Mahan and Mary Alice Nading
Before beginning an experiment, students are told that someone might have sabotaged their experiment to produce other-than-expected results. The objective is to perform the experiment, determine if any sabotage has occurred, and, if so, identify the changes that were made to the reagents as well as the person responsible.
Mahan, Eric J.; Nading, Mary Alice. J. Chem. Educ. 2006, 83, 1652.
Alcohols |
Carboxylic Acids |
Esters |
IR Spectroscopy |
NMR Spectroscopy |
Mass Spectrometry |
Synthesis
Analytical Spectroscopy Using Modular Systems  Brian M. Patterson, Neil D. Danielson, Gary A. Lorigan, and André J. Sommer
This article describes the development of three analytical spectroscopy experiments that compare the determination of salicylic acid (SA) content in aspirin tablets. The experiments are based on UVvis, fluorescence, and Raman spectroscopies and utilize modular spectroscopic components. Students assemble their own instruments, optimize them with respect to signal-to-noise, generate calibration curves, determine the SA content in retail aspirin tablets, and assign features in the respective spectra to functional groups within the active material.
Patterson, Brian M.; Danielson, Neil D.; Lorigan, Gary A.; Sommer, André J. J. Chem. Educ. 2003, 80, 1460.
Fluorescence Spectroscopy |
Laboratory Equipment / Apparatus |
Quantitative Analysis |
Raman Spectroscopy |
UV-Vis Spectroscopy |
Aromatic Compounds |
Esters |
Carboxylic Acids |
Alcohols
Ethanol Metabolism and the Transition from Organic Chemistry to Biochemistry  Richard D. Feinman
Introducing alcohol dehydrogenase and aldehyde dehydrogenase reactions in organic chemistry to ease transition to biochemistry.
Feinman, Richard D. J. Chem. Educ. 2001, 78, 1215.
Metabolism |
Oxidation / Reduction |
Reactions |
Mechanisms of Reactions |
Alcohols |
Carbohydrates
Computational Investigations for Undergraduate Organic Chemistry: Modeling Markovnikov and anti-Markovnikov Reactions for the Formation of Alkyl Halides and Alcohols  Rita K. Hessley
This paper describes how the early introduction of molecular modeling for the study of reaction mechanisms leading to alcohols from alkenes can increase students' involvement in their own learning and can effectively challenge their misapprehension about memorization.
Hessley, Rita K. J. Chem. Educ. 2000, 77, 794.
Computational Chemistry |
Alcohols |
Molecular Modeling |
Mechanisms of Reactions
The Oxidation of Primary Alcohols to Esters: Three Related Investigative Experiments  Chriss E. McDonald

McDonald, Chriss E. J. Chem. Educ. 2000, 77, 750.
Oxidation / Reduction |
Alcohols |
Esters |
Synthesis |
Mechanisms of Reactions
Reduction of 2,6-Dimethylcyclohexanone with Sodium Borohydride Revisited: A Correction on the Structural Assignments of the Products, and the Discovery of a Solvent Effect  Bruce A. Hathaway
Changing the solvent from methanol to ethanol produced a different ratio of cis-cis to trans-trans than was reported in the original work. Therefore, a short series of solvents was investigated to determine if there was a solvent effect. The results indicate that as the size and bulk of the solvent increase, the proportion of the trans alcohol product increases.
Hathaway, Bruce A. J. Chem. Educ. 1998, 75, 1623.
Stereochemistry |
NMR Spectroscopy |
Aldehydes / Ketones |
Alcohols
How To Learn and Have Fun with Poly(Vinyl Alcohol) and White Glue  V. de Zea Bermudez, P. Passos de Almeida, and J. Féria Seita
The general behavior of Newtonian, shear-thinning, shear-thickening, thixotropic, negative thixotropic, and viscoelastic fluids is characterized and briefly discussed in terms of existing theoretical models. Whenever possible, examples of these types of fluids taken from everyday life are given for better understanding.
de Zea Bermudez, Verónica; de Almeida, P. Passos; Seita, J. Féria. J. Chem. Educ. 1998, 75, 1410.
Alcohols |
Liquids
Demonstration Explosion  Lee, Charles "Skip"
A glass carboy containing methanol explodes.
Lee, Charles "Skip" J. Chem. Educ. 1998, 75, 543.
Alcohols
Demonstration Explosion  Charles "Skip" Lee
A glass carboy containing methanol explodes.
Lee, Charles "Skip". J. Chem. Educ. 1998, 75, 543.
Alcohols
Grignard Synthesis of Various Tertiary Alcohols  T. Stephen Everett
A general Grignard procedure is presented for the synthesis of aliphatic, tertiary alcohols containing six to nine carbons. Without revealing the specific starting materials, students are challenged to identify their unknown products from physical (boiling points, refractive indices) and spectral (infrared O-H, C-H and fingerprint regions) data.
Everett, T. Stephen. J. Chem. Educ. 1998, 75, 86.
IR Spectroscopy |
Alcohols |
Mechanisms of Reactions |
Synthesis
The Diels-Alder Reaction of 2,4-Hexadien-1-ol with Maleic Anhydride: A Novel Preparation for the Undergraduate Organic Chemistry Laboratory Course  Keith F. McDaniel and R. Matthew Weekly
The reaction of 2,4-hexadien-1-ol with maleic anhydride provides an excellent exercise for undergraduate laboratory courses. In addition to the expected Diels-Alder reaction, which takes place readily in refluxing toluene, subsequent intramolecular cleavage of the resulting bicyclic anhydride by the pendant hydroxy group generates a lactone. Thus, two important organic reactions can be carried out in a single laboratory session.
McDaniel, Keith F.; Weekley, R. Matthew. J. Chem. Educ. 1997, 74, 1465.
Synthesis |
NMR Spectroscopy |
Molecular Properties / Structure |
Alcohols
Old MacDonald Named a Compound: Branched Enynenynols  Dennis Ryan
An imaginary teacher of organic chemistry thinks up some whimsical compounds for his students to name using IUPAC nomenclature rules.
Ryan, Dennis. J. Chem. Educ. 1997, 74, 782.
Learning Theories |
Nomenclature / Units / Symbols |
Alcohols |
Alkenes |
Alkynes |
Molecular Properties / Structure
Identification of Primary, Secondary, and Tertiary Alcohols: An Experiment in Spectrophotometry, Organic Chemistry, and Analytical Chemistry  I. A. Leenson
A simple method is presented that enables students to distinguish in a few minutes between primary, secondary and tertiary alkyl alcohols. This method is based on peculiarities of absorption spectra in the near-UV region of alkyl nitrites, the products of alcohol nitrosation.
Leenson, I. A. J. Chem. Educ. 1997, 74, 424.
Alcohols |
Molecular Properties / Structure |
Spectroscopy |
UV-Vis Spectroscopy
An Organoleptic Laboratory Experiment  John M. Risley
Compounds in ten different classes of organic molecules that are used in the fragrance and food industry are provided to students. Students whiff the vapors of each compound and describe the organoleptic properties using a set of terms utilized in the fragrance and food industry. A set of questions guides students to an understanding of the relationship between structure of molecules and smell.
Risley, John M. J. Chem. Educ. 1996, 73, 1181.
Molecular Properties / Structure |
Consumer Chemistry |
Physical Properties |
Nonmajor Courses |
Alcohols |
Aldehydes / Ketones |
Amines / Ammonium Compounds |
Carboxylic Acids |
Esters |
Ethers |
Phenols
Chemical Magic: Polymers from a Nonexistent Monomer  Seymour, Raymond B.; Kauffman, George B.
Synthesis, properties, and applications of polyvinyl alcohol and related polymers.
Seymour, Raymond B.; Kauffman, George B. J. Chem. Educ. 1994, 71, 582.
Polymerization |
Alcohols
GC/MS experiments for the organic chemistry laboratory: I. E2 elimination of 2-bromo-2-methyloctane   Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott
Two capillary GC/MS experiments that were designed for and tested in a sophomore organic laboratory course.
Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott J. Chem. Educ. 1993, 70, A103.
Gas Chromatography |
Alkenes |
Alkanes / Cycloalkanes |
Alcohols |
Elimination Reactions |
Synthesis
Enhancing interest in organic chemistry. Part I. Relating redolence in organic chemistry class.  Smith, Terrill D.
The author supplies a list of compounds that can be passed around in class for students to guess their origin from an odor.
Smith, Terrill D. J. Chem. Educ. 1992, 69, 233.
Esters |
Aldehydes / Ketones |
Alcohols |
Phenols
Synthetic applications of aromatic metabolites  Armstead, D. E. F.
A sequel lab to clove oil extraction.
Armstead, D. E. F. J. Chem. Educ. 1991, 68, 698.
Aromatic Compounds |
Alcohols |
Natural Products |
Synthesis
Hydroboration-oxidation of (1R)-(+)-alpha-pinene to isopinocampheol: A microscale experiment that displays regio- and stereochemistry using NMR spectroscopy and molecular mechanics calculations  Blankespoor, Ronald L.; Piers, Kenneth
The hydroboration-oxidation of alkenes is an important route to alcohols and therefore receives considerable treatment in standard organic textbooks. These authors present their findings of an example (an alkene that undergoes the hydroboration oxidation process) that displays both regiochemistry and stereochemistry.
Blankespoor, Ronald L.; Piers, Kenneth J. Chem. Educ. 1991, 68, 693.
Alkenes |
Oxidation / Reduction |
NMR Spectroscopy |
Alcohols
A series of synthetic organic experiments demonstrating physical organic principles  Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H.
The sequence of reactions described here incorporates several common synthetic organic transformations involving alkenes, alcohols, alkyl halides, and ketones that demonstrate some important principles of physical organic chemistry.
Sayed, Yousry; Ahlmark, Chris A.; Martin, Ned H. J. Chem. Educ. 1989, 66, 174.
Synthesis |
Alkenes |
Alcohols |
Aldehydes / Ketones |
Reactions
The SHOP process: An example of industrial creativity  Reuben, Bryan; Wittcoff, Harold
The Shell Higher Olefins Process is probably the most remarkable industrial chemical process to have been developed in the past decade; this article highlights the process.
Reuben, Bryan; Wittcoff, Harold J. Chem. Educ. 1988, 65, 605.
Industrial Chemistry |
Surface Science |
Alcohols |
Polymerization |
Applications of Chemistry |
Fatty Acids
Organic lecture demonstrations  Silversmith, Ernest F.
Organic chemistry may not be known for its spectacular, attention getting chemical reactions. Nevertheless, this author describes a few organic chemistry reactions that put points across and generate interest. This article provides a convenient sources of demonstrations and urges others to add to the collection. Demonstrations concerning: carbohydrates, spectroscopy, proteins, amines, carbohydrates, carboxylic acids, and much more.
Silversmith, Ernest F. J. Chem. Educ. 1988, 65, 70.
Molecular Properties / Structure |
Nucleophilic Substitution |
Acids / Bases |
Physical Properties |
Alkenes |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity |
Aldehydes / Ketones |
Alcohols
Molecular structure: Property relationships  Seybold, Paul G.; May, Michael; Bagal, Ujjvala A.
How molecular structure can be represented mathematically and how this can lead to a better understanding of the connection between molecular structures and properties.
Seybold, Paul G.; May, Michael; Bagal, Ujjvala A. J. Chem. Educ. 1987, 64, 575.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alcohols
Acetylation of an unknown alcohol: An introductory 1H-NMR experiment  Branz, Stephen E.
Students use NMR analysis to identify the acetylation product of an unknown alcohol.
Branz, Stephen E. J. Chem. Educ. 1985, 62, 899.
Alcohols |
NMR Spectroscopy
Explosive isopropanol  Bonafede, Julio Dante
Relates an explosion due to the formation of peroxides.
Bonafede, Julio Dante J. Chem. Educ. 1984, 61, 652.
Alcohols
The determination of the stereochemistry of erythro-1,2-diphenyl-1,2-ethanediol: an undergraduate organic experiment  Rowland, Alex T.
The author describes a successful experiment that has been conducted by first-year organic chemistry students which illustrates the power of H NMR spectroscopy in a configuration determination.
Rowland, Alex T. J. Chem. Educ. 1983, 60, 1084.
Phenols |
Alcohols |
NMR Spectroscopy |
Stereochemistry |
Chirality / Optical Activity |
Enantiomers
The determination of 1-octanol/water partition ratios: an organic chemistry laboratory experiment  Umland, Jean B.
An organic chemistry laboratory experiment in the determination of 1-octanol/water partition ratios.
Umland, Jean B. J. Chem. Educ. 1983, 60, 1081.
Alcohols
An undergraduate laboratory program project involving photocyclizations in independent syntheses of novel chrysenes and phenanthrenes  Letcher, R. M.
This experiment attempts to fulfill such objectives as providing meaningful and viable preparative reactions, providing an opportunity for independent laboratory work within a project framework and under conditions of nearly equal opportunity and experience.
Letcher, R. M. J. Chem. Educ. 1981, 58, 1020.
Undergraduate Research |
Synthesis |
Aromatic Compounds |
Photochemistry |
Diastereomers |
NMR Spectroscopy |
Alcohols |
Thin Layer Chromatography
Allyl alcohol plant stream analysis: Relating industrial chemistry to the undergraduate laboratory  Bard, James R.; Sandoval, Antonio A.
Exercise that seeks to familiarize students with an industrial chemical process using a reaction not normally found in undergraduate textbooks and to broaden appreciation of NMR spectroscopy to include its analytical capabilities and limitations by showing how NMR could be used for analysis of a typical plant stream.
Bard, James R.; Sandoval, Antonio A. J. Chem. Educ. 1980, 57, 218.
Alcohols |
Industrial Chemistry |
Applications of Chemistry |
NMR Spectroscopy
Chemical toxicology. Part I. Organic compounds  Carter, D. E.; Fernando, Quintus
General principles of toxicology, and particular consideration of aliphatics, aromatic, and halogenated hydrocarbons; alcohols, aldehydes, esters, ethers, and ketones; sulfides, mercaptans, and carbon disulfide; nitrogen-containing compounds; and carcinogens.
Carter, D. E.; Fernando, Quintus J. Chem. Educ. 1979, 56, 284.
Toxicology |
Alcohols |
Aldehydes / Ketones |
Esters |
Ethers |
Aromatic Compounds |
Amines / Ammonium Compounds |
Lipids
Syntheses and rearrangements of cage molecules related to cubane  Jefford, Charles W.
This article looks at the synthesis of cubane, basketene, miscellaneous homocubane chemistry, snoutene, triqunacene, hypostrophene, tris-homocubane, and catalysis by transition metals.
Jefford, Charles W. J. Chem. Educ. 1976, 53, 477.
Catalysis |
Transition Elements |
Alkenes |
Synthesis |
Aromatic Compounds |
Heterocycles |
Alcohols
Conversion of a primary alcohol to an alkyl halide via a tosylate intermediate  Wiseman, Park A.; Betras, Steve; Lindley, Barry
The experiment in this article was designed primarily for and has been performed successfully by sophomore chemistry majors.
Wiseman, Park A.; Betras, Steve; Lindley, Barry J. Chem. Educ. 1974, 51, 348.
Alcohols |
Alkylation |
Reactions |
Aromatic Compounds |
NMR Spectroscopy
Organic nomenclature, I  Liotta, Charles
It is the purpose of this article to call attention to errors and misconceptions in the application of IUPAC Rules of Organic Nomenclature.
Liotta, Charles J. Chem. Educ. 1970, 47, 471.
Nomenclature / Units / Symbols |
Alkanes / Cycloalkanes |
Alcohols |
Heterocycles
Indene reactions: An organic chemistry laboratory problem  Garrison, James A.
Students are given a problem in which they are to determine which of two published accounts of reaction products involving derivatives of idene is correct.
Garrison, James A. J. Chem. Educ. 1970, 47, 300.
Alkenes |
Alcohols
Chromic acid oxidation of alcohols: A simple experiment on reaction rates  Lanes, Rose M.; Lee, Donald G.
In this experiment, students determine the relative rates of oxidation by adding quantities of several different alcohols to a solution of chromium(VI) in dilute sulfuric acid and visually monitoring the course of the reaction.
Lanes, Rose M.; Lee, Donald G. J. Chem. Educ. 1968, 45, 269.
Rate Law |
Kinetics |
Acids / Bases |
Alcohols
Alcohols to alkyl halides: A kinetics experiment for elementary chemistry courses  Cooley, J. H.; McCown, J. D.; Shill, R. M.
The rate measurement in this procedure is accomplished by direct observation of the change in length or volume of the insoluble layer of an alkyl bromide that is formed from a mixture of alcohol, hydrobromic acid, and sulfuric acid.
Cooley, J. H.; McCown, J. D.; Shill, R. M. J. Chem. Educ. 1967, 44, 280.
Alcohols |
Synthesis |
Kinetics |
Rate Law
Effect of liquid NH3 on wood: A demonstration of the alcohol structure of cellulose  Hirsch, Phillis R.
A lecture demonstration of the plasticization of wood with liquid ammonia can be a very effective tool for teaching the alcohol structure of cellulose to any class studying basic organic chemistry.
Hirsch, Phillis R. J. Chem. Educ. 1964, 41, 605.
Carbohydrates |
Alcohols |
Molecular Properties / Structure
A rapid test to distinguish tertiary from primary or secondary alcohols  Bordwell, Frederick C.; Wellman, Keith M.
Describes a protocol for distinguishing tertiary from primary or secondary alcohols and its application to a specific problem.
Bordwell, Frederick C.; Wellman, Keith M. J. Chem. Educ. 1962, 39, 308.
Alcohols |
Qualitative Analysis