TIGER

Journal Articles: 65 results
Six Pillars of Organic Chemistry  Joseph J. Mullins
This article focuses on a core set of conceptselectronegativity, polar covalent bonding, inductive and steric effects, resonance, and aromaticitythe proper application of which can explain and predict a wide variety of chemical, physical, and biological properties of molecules and conceptually unite important features of general, organic, and biochemistry.
Mullins, Joseph J. J. Chem. Educ. 2008, 85, 83.
Bioorganic Chemistry |
Covalent Bonding |
Hydrogen Bonding |
Mechanisms of Reactions |
Periodicity / Periodic Table |
Reactive Intermediates |
Resonance Theory
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts  Gerard Parkin
The purpose of this article is to clarify the terms valence, oxidation number, coordination number, formal charge, and number of bonds and illustrate how the valence of an atom in a molecule provides a much more meaningful criterion for establishing the chemical reasonableness of a molecule than does the oxidation number.
Parkin, Gerard. J. Chem. Educ. 2006, 83, 791.
Coordination Compounds |
Covalent Bonding |
Lewis Structures |
Oxidation State |
Nomenclature / Units / Symbols
Effects of Exchange Energy and Spin-Orbit Coupling on Bond Energies  Derek W. Smith
It is shown that the ground states of atoms having pn configurations are stabilized by exchange energy (n = 2, 3, or 4) and/or spinorbit coupling (n = 1, 2, 4, or 5).
Smith, Derek W. J. Chem. Educ. 2004, 81, 886.
Atomic Properties / Structure |
Main-Group Elements |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Descriptive Chemistry |
Ionic Bonding |
Covalent Bonding |
Metallic Bonding
The Noble Gas Configuration—Not the Driving Force but the Rule of the Game in Chemistry  Roland Schmid
Explains the covalent and ionic bonding behavior of main-group elements in terms of electromagnetic forces rather than the supposed "stability" of noble-gas configurations.
Schmid, Roland. J. Chem. Educ. 2003, 80, 931.
Molecular Modeling |
Periodicity / Periodic Table |
Main-Group Elements |
Atomic Properties / Structure |
Reactions |
Covalent Bonding |
Ionic Bonding
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
Structure and Bonding (by Jack Barrett)  Michael Laing
Tutorial chemistry text.
Laing, Michael. J. Chem. Educ. 2001, 78, 1600.
Molecular Properties / Structure |
MO Theory |
Atomic Properties / Structure |
Group Theory / Symmetry |
Covalent Bonding |
VSEPR Theory
The Role of Lewis Structures in Teaching Covalent Bonding  S. R. Logan
Difficulties with the Lewis theory of covalent bonding and upgrading it to the Molecular Orbital theory.
Logan, S. R. J. Chem. Educ. 2001, 78, 1457.
Covalent Bonding |
MO Theory |
Nonmajor Courses |
Learning Theories |
Lewis Structures |
Molecular Properties / Structure
An Investigation of the Value of Using Concept Maps in General Chemistry  Gayle Nicoll, Joseph S. Francisco, and Mary B. Nakhleh
Study of the degree to which students in introductory chemistry classes linked related concepts; comparisons of a class in which concept mapping was used and another in which it was not.
Nicoll, Gayle; Francisco, Joseph S.; Nakhleh, Mary B. J. Chem. Educ. 2001, 78, 1111.
Covalent Bonding |
Learning Theories
Lewis Structures in General Chemistry: Agreement between Electron Density Calculations and Lewis Structures  Gordon H. Purser
The internuclear electron densities of a series of X-O bonds (where X = P, S, or Cl) are calculated using quantum mechanics and compared to Lewis structures for which the formal charges have been minimized; a direct relationship is found between the internuclear electron density and the bond order predicted from Lewis structures in which formal charges are minimized.
Purser, Gordon H. J. Chem. Educ. 2001, 78, 981.
Covalent Bonding |
Computational Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Quantum Chemistry
Organizing Organic Reactions: The Importance of Antibonding Orbitals  David E. Lewis
It is proposed that unoccupied molecular orbitals arbitrate much organic reactivity, and that they provide the basis for a reactivity-based system for organizing organic reactions. Such a system is proposed for organizing organic reactions according to principles of reactivity, and the system is discussed with examples of the frontier orbitals involved.
Lewis, David E. J. Chem. Educ. 1999, 76, 1718.
Covalent Bonding |
Mechanisms of Reactions |
MO Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
Hydrogen Bonds Involving Transition Metal Centers Acting As Proton Acceptors  Antonio Martín
A short review of the most remarkable results which have recently reported M----H-X hydrogen bonds, along with a systematization of their structural and spectroscopic properties, is provided in this paper. These M----H interactions are substantially different from the "agostic" M----H ones, and their differences are commented on, setting up criteria that permit their clear differentiation in order to avoid some of the misidentifications that occurred in the past.
Tello, Antonio Martín. J. Chem. Educ. 1999, 76, 578.
Coordination Compounds |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions |
Metals |
Organometallics |
Hydrogen Bonding
A Way To Predict the Relative Stabilities of Structural Isomers  John M. Lyon
This paper discusses a method to evaluate the relative stabilities of structural isomers of inorganic and organic compounds. The method uses a simple set of rules that can be applied with only a knowledge of the electron configuration of the atoms and the periodic trends in atomic size.
Lyon, John M. J. Chem. Educ. 1999, 76, 364.
Covalent Bonding |
Diastereomers |
Molecular Properties / Structure
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
The Role of Electrostatic Effects in Organic Chemistry  Kenneth B. Wiberg
Electrostatic effects on the properties of organic compounds are reviewed to demonstrate the importance of electronegativity differences between the atoms forming a bond. Bond dissociation energies are generally found to increase as the electronegativity difference increases, and the bonds have increased ionic character.
Wiberg, Kenneth B. J. Chem. Educ. 1996, 73, 1089.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding
Lewis Structures of Oxygen Compounds of 3p-5p Nonmetals  Darel K. Straub
Procedure for writing Lewis structures of oxygen compounds of 3p-5p nonmetals.
Straub, Darel K. J. Chem. Educ. 1995, 72, 889.
Lewis Structures |
Molecular Properties / Structure |
Covalent Bonding |
Main-Group Elements
Lewis Structures of Boron Compounds Involving Multiple Bonding  Straub, Darel K.
Considers evidence for multiple bonding in boron compounds and supposed exceptions to the octet rule.
Straub, Darel K. J. Chem. Educ. 1995, 72, 494.
Lewis Structures |
Covalent Bonding
Bond Energy Data Summarized  Kildahl, Nicholas K.
A periodic table that summarizes a variety of bond energy information.
Kildahl, Nicholas K. J. Chem. Educ. 1995, 72, 423.
Periodicity / Periodic Table |
Covalent Bonding |
Ionic Bonding
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Superoxide dismutase and the Briggs-Rauscher reaction  Franz, David A.
Oxygen-derived species provide chemistry teachers with excellent examples for discussion of molecular-orbital theory, bond order and reactivity, redox potentials, radical reactivity, disproportionation, and enzyme activity.
Franz, David A. J. Chem. Educ. 1991, 68, 57.
Enzymes |
Biophysical Chemistry |
MO Theory |
Oxidation / Reduction |
Covalent Bonding
The significance of the bond angle in sulfur dioxide  Purser, Gordon H.
Discussion of the bonding in and structure of SO2.
Purser, Gordon H. J. Chem. Educ. 1989, 66, 710.
Molecular Properties / Structure |
Covalent Bonding
Stereoelectronic effects, tau bonds, and Cram's rule  Wintner, Claude E.
Review of stereoelectronic effects and outline of the suggestion that the "bent bond" (tau bond) be used as a model for the double bond.
Wintner, Claude E. J. Chem. Educ. 1987, 64, 587.
Molecular Properties / Structure |
Covalent Bonding
No rabbit ears on water. The structure of the water molecule: What should we tell the students?  Laing, Michael
Analysis of the bonding found in water and how it results in the observed geometry of the water molecule.
Laing, Michael J. Chem. Educ. 1987, 64, 124.
Molecular Properties / Structure |
MO Theory |
Covalent Bonding
The Pauling 3-electron bond: A recommendation for the use of the Linnett structure  Harcourt, Richard D.
Recommends the Linnett structure IV for future use when a valence-bond structure for a Pauling 3-electron bond is required.
Harcourt, Richard D. J. Chem. Educ. 1985, 62, 99.
Covalent Bonding
The bonds of conformity: W. A. Noyes and the initial failure of the Lewis theory in America  Saltzman, Martin D.
Though their theoretical framework proved to be faulty, W. A. Noyes and several of his American contemporaries were among the first chemists to utilize the electron to explain organic structure and reactions.
Saltzman, Martin D. J. Chem. Educ. 1984, 61, 119.
Molecular Properties / Structure |
Covalent Bonding
The valence bond interpretation of molecular geometry  Smith, Derek W.
Shows that the valence bond theory not only provides an attractive means of describing the bonding in a molecule but can also explain its geometry.
Smith, Derek W. J. Chem. Educ. 1980, 57, 106.
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
Electrons, bonding, orbitals, and light: A unified approach to the teaching of structure and bonding in organic chemistry courses  Lenox, Ronald S.
A suggested list of topics and methods for teaching introductory organic students bonding concepts.
Lenox, Ronald S. J. Chem. Educ. 1979, 56, 298.
Atomic Properties / Structure |
Lewis Structures |
Spectroscopy |
Covalent Bonding
Assigning oxidation states to some metal dioxygen complexes of biological interest  Summerville, David A.; Jones, Robert D.; Hoffman, Brian M.; Basolo, Fred
Considers the bonding of dioxygen in metal-dioxygen complexes, paying particular attention to the problems encountered in assigning conventional oxidation numbers to both the metal center and coordinated dioxygen.
Summerville, David A.; Jones, Robert D.; Hoffman, Brian M.; Basolo, Fred J. Chem. Educ. 1979, 56, 157.
Oxidation State |
Metals |
Covalent Bonding |
MO Theory
The LMO description of multiple bonding and multiple lone pairs  England, Walter
Examines localized molecular orbitals and the description of multiple bonds and lone pairs.
England, Walter J. Chem. Educ. 1975, 52, 427.
Covalent Bonding |
MO Theory
A simple demonstration of O2 paramagnetism. A macroscopically observable difference between VB and MO approaches to bonding theory  Saban, G. H.; Moran, T. F.
A simple apparatus to demonstrate the paramagnetic behavior of oxygen.
Saban, G. H.; Moran, T. F. J. Chem. Educ. 1973, 50, 217.
Molecular Properties / Structure |
Magnetic Properties |
MO Theory |
Covalent Bonding
Hard and soft acids and bases, HSAB, part II: Underlying theories  Pearson, Ralph G.
Explores possible explanations for and presents applications of the principles of hard and soft acids and bases.
Pearson, Ralph G. J. Chem. Educ. 1968, 45, 643.
Acids / Bases |
Lewis Acids / Bases |
Aqueous Solution Chemistry |
Solutions / Solvents |
Ionic Bonding |
Covalent Bonding
A bonding parameter and its application to chemistry  Elson, Jesse
In this study, single bond dissociation energies are combined with the associated bond distances to yield additional information about chemical bonding.
Elson, Jesse J. Chem. Educ. 1968, 45, 564.
Covalent Bonding |
Physical Properties
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
The electron repulsion theory of the chemical bond. II. An alternative to resonance hybrids  Luder, W. F.
The author proposes the electron repulsion theory of the chemical bond as an alternative to resonance hybrids.
Luder, W. F. J. Chem. Educ. 1967, 44, 269.
Covalent Bonding |
Resonance Theory
The electron repulsion theory of the chemical bond. I. New models of atomic structure  Luder, W. F.
Describes the electron repulsion theory of electron configuration and applies it to representative elements.
Luder, W. F. J. Chem. Educ. 1967, 44, 206.
Atomic Properties / Structure |
Covalent Bonding |
Metals
Teaching aromatic substitution: A molecular orbital approach  Meislich, Herbert
This paper presents a way of teaching aromatic substitution using the concepts of alternate polarity and electron delocalization through extended pi-bonding.
Meislich, Herbert J. Chem. Educ. 1967, 44, 153.
Aromatic Compounds |
MO Theory |
Nucleophilic Substitution |
Covalent Bonding |
Molecular Properties / Structure
Models illustrating d orbitals involved in multiple bonding  Barrett, Edward J.
Describes the use of Framework Molecular Orbital Models to illustrate the d orbitals involved in multiple bonding
Barrett, Edward J. J. Chem. Educ. 1967, 44, 146.
Atomic Properties / Structure |
Molecular Modeling |
Covalent Bonding
The chemistry of tetrasulfur tetranitride  Allen, Christopher W.
The chemistry of sulfur-nitrogen compounds has several features of interest and importance: stability of the sulfur-nitrogen bond, tendency to form six- and eight-membered rings, ring contraction, polymerization, and negative ion formation.
Allen, Christopher W. J. Chem. Educ. 1967, 44, 38.
Covalent Bonding |
Polymerization
IV - Isoelectronic systems  Bent, Henry A.
A detailed consideration of the principles of isoelectric systems.
Bent, Henry A. J. Chem. Educ. 1966, 43, 170.
Gases |
Nonmetals |
Covalent Bonding
Models for the double bond  Walters, Edward A.
Examines several models for the double bond, including the Baeyer model and bent-bond method.
Walters, Edward A. J. Chem. Educ. 1966, 43, 134.
Covalent Bonding
III - Bond energies  Benson, Sidney W.
Examines bond dissociation energies , methods for measuring such energies, some representative values of such energies, structural aspects of bond dissociation energies, and bond energies in ionized species.
Benson, Sidney W. J. Chem. Educ. 1965, 42, 502.
Covalent Bonding
Experiments on metal amine salts  Haight, G. P., Jr.
Tetrammine monaquo copper(II) sulfate is prepared and studied qualitatively and quantitatively.
Haight, G. P., Jr. J. Chem. Educ. 1965, 42, 468.
Metals |
Covalent Bonding |
Hydrogen Bonding |
Qualitative Analysis |
Quantitative Analysis
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Pi-bonding in tetrahedral molecules  Urch, D. S.
Examines the nature of bonding, especially pi-bonding, in groups exhibiting E, T2, and T1 symmetry.
Urch, D. S. J. Chem. Educ. 1964, 41, 502.
Group Theory / Symmetry |
Covalent Bonding
Rotational and pseudorotational barriers in simple molecules  Miller, Sidney I.
This papers outlines the scope and variety of rotational barriers found in simple molecules.
Miller, Sidney I. J. Chem. Educ. 1964, 41, 421.
Molecular Properties / Structure |
Covalent Bonding
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Tangent-sphere models of molecules. II. Uses in Teaching  Bent, Henry A.
Tangent-sphere models can be used to represent highly strained bonds and multicentered bonds, atoms with expanded and contracted octets, inter- and intramolecular interactions, and the effects of electronegative groups, lone pairs, and multiple bonds on molecular geometry, bond properties, and chemical reactivity.
Bent, Henry A. J. Chem. Educ. 1963, 40, 523.
Molecular Properties / Structure |
Covalent Bonding
Chemical bonding and the geometry of molecules (Ryschkewitsch, George E.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1963, 40, 441.
Molecular Properties / Structure |
Covalent Bonding
Relationship of exothermicities of compounds to chemical bonding  Siegel, Bernard
The sign and magnitude of the standard heat of formation of a chemical compound is often used incorrectly to characterize its relative stability compared to other compounds.
Siegel, Bernard J. Chem. Educ. 1963, 40, 308.
Calorimetry / Thermochemistry |
Covalent Bonding
Stable gaseous species at high temperatures  Siegel, Bernard
Presents a systematic correlation of the bonding in the gaseous elements with the strengths of their respective bonds.
Siegel, Bernard J. Chem. Educ. 1963, 40, 304.
Gases |
Carbocations |
Covalent Bonding
Chemistry of diphosphorus compounds  Huheey, James E.
Examines diphosphorus chemistry, including tri- and tetra- covalent diphosphorus compounds; optical activity in diphosphines; unsaturated diphosphorus compounds, cyclic compounds, and higher phosphines; reactions producing and destroying P-P bonds; and diphosphorus compounds as ligands.
Huheey, James E. J. Chem. Educ. 1963, 40, 153.
Molecular Properties / Structure |
Reactions |
Covalent Bonding |
Coordination Compounds
Letters to the editor  Cockburn, B. L.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Cockburn, B. L. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Letters to the editor  Snatzke, G.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Snatzke, G. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Inorganic infrared spectroscopy  Ferraro, John R.
Focuses on the use of infrared spectroscopy in solving various problems in inorganic chemistry.
Ferraro, John R. J. Chem. Educ. 1961, 38, 201.
Spectroscopy |
IR Spectroscopy |
Coordination Compounds |
Molecular Properties / Structure |
Organometallics |
Ionic Bonding |
Covalent Bonding
Distribution of atomic s character in molecules and its chemical implications  Bent, Henry A.
Explains the shape of simple molecules using the distribution of atomic s character.
Bent, Henry A. J. Chem. Educ. 1960, 37, 616.
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding
Near infrared spectra: A neglected field of spectral study  Wheeler, Owen H.
Examines several issues related to infrared spectroscopy, including challenges in instrumentation, spectral interpretation, and analytical applications.
Wheeler, Owen H. J. Chem. Educ. 1960, 37, 234.
Spectroscopy |
IR Spectroscopy |
Covalent Bonding
The contributions of Fritz Arndt to resonance theory  Campaigne, E.
Examines the contribution of Fritz Arndt to resonance theory and his work regarding the nature of bonds in pyrone ring systems.
Campaigne, E. J. Chem. Educ. 1959, 36, 336.
Resonance Theory |
Aromatic Compounds |
Covalent Bonding
The experimental basis of Kekule's valence theory  Hiebert, Erwin N.
It is the object of this paper to discuss the experimental basis of Kekule's valence theory of 1858 as seen in the progressive stages of his own experimental career prior to that time.
Hiebert, Erwin N. J. Chem. Educ. 1959, 36, 320.
Molecular Properties / Structure |
Covalent Bonding
Comparative organic chemistry: Carbon and silicon  Wilk, I. J.
Contrasts silicone chemistry with that of regular organic compounds.
Wilk, I. J. J. Chem. Educ. 1957, 34, 463.
Covalent Bonding |
Ionic Bonding |
Mechanisms of Reactions |
Stereochemistry
The coordinate bond and the nature of complex inorganic compounds. I. The formation of single covalent bonds  Busch, Daryle H.
The factors determining the stabilities of complex inorganic compounds are considered in terms of thermochemical cycle; it is pointed out that the stabilities of complexes increase as the percent covalent character in their bonds increases, and weak covalent bonds will occur in any given instance.
Busch, Daryle H. J. Chem. Educ. 1956, 33, 376.
Coordination Compounds |
Covalent Bonding |
Metals |
Atomic Properties / Structure
The evolution of valence theory and bond symbolism  Mackle, Henry
Traces the historic evolution of valence theory and bond symbolism, including numerical aspects of chemical bonding, the mechanism of chemical bonding and its origins, chemical bonding in organic compounds, stereochemical aspects of chemical bonding, residual valence of unsaturated compounds, and electronic theories of valence.
Mackle, Henry J. Chem. Educ. 1954, 31, 618.
Covalent Bonding
Electronegativities in inorganic chemistry. III  Sanderson, R. T.
The purpose of this paper is to illustrate some of the practical applications of electronegativities and charge distribution.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 238.
Atomic Properties / Structure |
Covalent Bonding |
Acids / Bases
Nature of adhesion  Reinhart, Frank W.
Examines the theory of adhesion and the variety of attractive forces involved.
Reinhart, Frank W. J. Chem. Educ. 1954, 31, 128.
Surface Science |
Covalent Bonding |
Metallic Bonding |
Noncovalent Interactions
Valence and formulas taught with playing cards  Lionetti, Fabian
Describes the use of playing cards and a game called "Valence" to help students in organic chemistry understand valence, bonding, and molecular structure.
Lionetti, Fabian J. Chem. Educ. 1951, 28, 599.
Covalent Bonding |
Molecular Properties / Structure