TIGER

Journal Articles: 44 results
Study of Molecular-Shape Selectivity of Zeolites by Gas Chromatography  Pei-Yu Chao, Yao-Yuan Chuang, Grace Hsiuying Ho, Shiow-Huey Chuang, Tseng-Chang Tsai, Chi-Young Lee, Shang-Tien Tsai, and Jun-Fu Huang
This analytical or physical chemistry sorption experiment uses hexane isomers as probe molecules to demonstrate the "molecular-shape selectivity" behavior of zeolites. Students can also modify the sorption protocol to build their own experiments.
Chao, Pei-Yu; Chuang, Yao-Yuan; Ho, Grace Hsiuying; Chuang, Shiow-Huey; Tsai, Tseng-Chang; Lee, Chi-Young; Tsai, Shang-Tien; Huang, Jun-Fu. J. Chem. Educ. 2008, 85, 1558.
Alkanes / Cycloalkanes |
Constitutional Isomers |
Gas Chromatography |
Molecular Properties / Structure |
Physical Properties |
Separation Science |
Solid State Chemistry |
Molecular Recognition
The Aromaticity of Pericyclic Reaction Transition States  Henry S. Rzepa
Presents an approach that combines two fundamental concepts in organic chemistry, chirality and aromaticity, into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Hckel-aromatic and chiral Mbius-aromatic transition states.
Rzepa, Henry S. J. Chem. Educ. 2007, 84, 1535.
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
Mechanisms of Reactions |
Stereochemistry
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Colorful Chemical Demonstrations on the Extraction of Anionic Species from Water into Ether Mediated by Tricaprylylmethylammonium Chloride (Aliquat 336), a Liquid–Liquid Phase-Transfer Agent  Anil Joseph Pezhathinal, Kerensa Rocke, Louis Susanto, Derek Handke, Roch Chan-Yu-King, and Patrick Gordon
Provides a list of safe and easy experiments to demonstrate the extraction of colorful, water-soluble reagents by Aliquat 336 into ether. The demonstrations simulate the preliminary extractive step of an ionic species in liquidliquid phase transfer-catalyzed reactions and introduce various undergraduate chemistry concepts and principles to students.
Pezhathinal, Anil Joseph; Rocke, Kerensa; Susanto, Louis; Handke, Derek; Chan-Yu-King, Roch; Gordon, Patrick. J. Chem. Educ. 2006, 83, 1161.
Alkanes / Cycloalkanes |
Amines / Ammonium Compounds |
Catalysis |
Dyes / Pigments |
Reactions |
Mechanisms of Reactions
Semiempirical and DFT Investigations of the Dissociation of Alkyl Halides  Jack R. Waas
Enthalpy changes corresponding to the gas phase heats of dissociation of 12 organic halides were calculated using two semiempirical methods, the HartreeFock method, and two DFT methods. All five methods agreed generally with the expected empirically known trends in the dissociation of alkyl halides.
Waas, Jack R. J. Chem. Educ. 2006, 83, 1017.
Alkanes / Cycloalkanes |
Computational Chemistry |
Mechanisms of Reactions |
Molecular Modeling |
Reactions |
Reactive Intermediates |
Thermodynamics |
Elimination Reactions |
Nucleophilic Substitution
Using Hydrocarbon Acidities To Demonstrate Principles of Organic Structure and Bonding  Andrew P. Dicks
This article demonstrates the utility of hydrocarbon acidity as a teaching tool within the undergraduate classroom. Acidities of compounds containing only hydrogen and carbon vary by at least 50 orders of magnitude. Differences in acidities are rationalized by invoking principles of hybridization, resonance, induction, and aromaticity.
Dicks, Andrew P. J. Chem. Educ. 2003, 80, 1322.
Acids / Bases |
Aromatic Compounds |
Alkanes / Cycloalkanes
Organic Functional Group Playing Card Deck  Michael J. Welsh
Organic functional group playing card deck used for review of the name and structure of organic functional groups that can be used to play any game that a normal deck of cards is used for.
Welsh, Michael J. J. Chem. Educ. 2003, 80, 426.
Nomenclature / Units / Symbols |
Nonmajor Courses |
Enrichment / Review Materials |
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amides |
Amines / Ammonium Compounds |
Aromatic Compounds |
Carboxylic Acids |
Esters |
Ethers |
Mechanisms of Reactions |
Synthesis
C–H and C–D Bonds: An Experimental Approach to the Identity of C–H Bonds by Their Conversion to C–D Bonds  Alex T. Rowland
Three experiments that allow students to determine the relative reactivity of C-H bonds that are aliphatic, alpha, benzylic, or aromatic by the ease of substitution of deuterium for oxygen.
Rowland, Alex T. J. Chem. Educ. 2003, 80, 311.
Acids / Bases |
IR Spectroscopy |
Isotopes |
NMR Spectroscopy |
Undergraduate Research |
Alkanes / Cycloalkanes |
Aromatic Compounds |
Carboxylic Acids
Further Information on the Hazards of n-Hexane (re J. Chem. Educ. 2001, 78, 587)  J. C. Jones
Consideration of a flammable liquid above its flash point.
Jones, J. C. J. Chem. Educ. 2001, 78, 1593.
Alkanes / Cycloalkanes |
Laboratory Management
S. M. Tanatar and His Contribution to the Field of Thermal Rearrangements  Ludmila Birladeanu
Thermal rearrangements constitute an important chapter in organic chemistry. Surprisingly, the name of its discoverer remains unknown. The present article is meant to remedy this situation by describing some of the work of the 19th century Russian chemist S. M. Tanatar (1849 - 1917) who, based on the thermochemical data provided by Berthelot, envisaged the possibility of transforming cyclopropane into propene under the influence of heat alone.
Birladeanu, Ludmila. J. Chem. Educ. 1998, 75, 603.
Gases |
Thermodynamics |
Synthesis |
Alkanes / Cycloalkanes |
Alkenes
On the Disproportionations of Cyclohexene and Related Compounds  Alex Bunjes, Ingo Eilks, Manfred Pahlke, and Bernd Ralle*
The catalytic hydrogenation of liquid hydrocarbons is easy to realize in a simple laboratory experiment using a palladium catalyst. In the case of hydrogenation cyclohexen or cyclohexadiene in addition to the expected finding of cyclohexane among the hydrogenation products, the formation of benzene can be observed. In absence of hydrogen, the disproportionation of both starting materials to cyclohexane and benzene takes place.
Bunjes, Alex; Eilks, Ingo; Pahlke, Manfred; Ralle, Bernd. J. Chem. Educ. 1997, 74, 1323.
Alkanes / Cycloalkanes |
Aromatic Compounds |
Alkenes |
Synthesis
The Conformational Behavior of n-Pentane: A Molecular Mechanics and Molecular Dynamics Experiment  Mencarelli, Paolo
174. Use of HyperChem to investigate the conformational behavior of n-pentane.
Mencarelli, Paolo J. Chem. Educ. 1995, 72, 511.
MO Theory |
Chirality / Optical Activity |
Molecular Properties / Structure |
Conformational Analysis |
Alkanes / Cycloalkanes |
Molecular Mechanics / Dynamics |
Molecular Modeling
Hydrochlorination of (R)-Carvone  Miles, William H.; Nutaitis, Charles F.; Berreth, Christina L.
This paper describes the hydrochlorination of (R)-carvone that illustrates the concepts of regioselectivity and chemoselectivity.
Miles, William H.; Nutaitis, Charles F.; Berreth, Christina L. J. Chem. Educ. 1994, 71, 1097.
Laboratory Management |
Alkenes |
Alkanes / Cycloalkanes
GC/MS experiments for the organic chemistry laboratory: I. E2 elimination of 2-bromo-2-methyloctane   Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott
Two capillary GC/MS experiments that were designed for and tested in a sophomore organic laboratory course.
Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott J. Chem. Educ. 1993, 70, A103.
Gas Chromatography |
Alkenes |
Alkanes / Cycloalkanes |
Alcohols |
Elimination Reactions |
Synthesis
Understanding the fate of petroleum hydrocarbons in the subsurface environment  Chen, Chien T.
This article reviews our current understanding and then specifies the requirements for research that will improve our ability to detect hydrocarbons and predict their fate in the subsurface environment.
Chen, Chien T. J. Chem. Educ. 1992, 69, 357.
Alkanes / Cycloalkanes |
Phases / Phase Transitions / Diagrams
A visual presentation of the relationships between the enthalpies of a reaction and the nature of the transition states  Nyquist, H. LeRoy
An apparatus that illustrates the potential energy diagram for the chlorination of alkanes and another for the bromination of alkanes.
Nyquist, H. LeRoy J. Chem. Educ. 1991, 68, 731.
Thermodynamics |
Alkanes / Cycloalkanes
Synthesis of a bicyclo[2.2.1]heptene Diels-Alder adduct: An organic chemistry experiment utilizing NMR spectroscopy to assign endo stereochemistry  Harrison, Ernest A., Jr.
An organic chemistry experiment utilizing NMR spectroscopy to assign endo stereochemistry via synthesis of a bicyclo[2.2.1]heptene Diels-Alder adduct.
Harrison, Ernest A., Jr. J. Chem. Educ. 1991, 68, 426.
Alkanes / Cycloalkanes |
Synthesis |
Alkenes |
Aromatic Compounds |
NMR Spectroscopy |
Thin Layer Chromatography
Reaction of bromine with hydrocarbons on the overhead, real or simulated  Solomon, Sally; Gregory, Michael; Padmanabhan, Sandeep; Smith, Kurt
A simulation that looks like the addition of bromine to hydrocarbons but is not (the bromine is simulated using a mixture of food colorings).
Solomon, Sally; Gregory, Michael; Padmanabhan, Sandeep; Smith, Kurt J. Chem. Educ. 1990, 67, 961.
Alkanes / Cycloalkanes |
Aromatic Compounds |
Addition Reactions
A classroom demonstration of aliphatic substitution   Perina, Ivo; Mihanovic, Branka
Substitution of an alkane by a halogen can be demonstrated effectively on the stage of an overhead projector using a compartmentalized Petri dish or a transparent Conway dish covered by a glass plate
Perina, Ivo; Mihanovic, Branka J. Chem. Educ. 1989, 66, 257.
Reactions |
Alkanes / Cycloalkanes
The preparation of 4-hydroxy-2,3,4,5-tetraphenyl-2-cyclopenten-1-one and its base catalyzed conversion into 2,3,4,5-tetraphenycyclopentadienone: An organic laboratory experiment   Harrison, Ernest A., Jr.
An organic laboratory experiment that permits direct observation of a pedagogically interesting transformation.
Harrison, Ernest A., Jr. J. Chem. Educ. 1988, 65, 828.
Aldehydes / Ketones |
Phenols |
Alkanes / Cycloalkanes |
IR Spectroscopy |
Synthesis
Chemical applications of graph theory. Part II. Isomer enumeration  Hansen, Peter J.; Jurs, Peter C.
An in-depth look at the study of isomer enumeration.
Hansen, Peter J.; Jurs, Peter C. J. Chem. Educ. 1988, 65, 661.
Chemometrics |
Constitutional Isomers |
Alkanes / Cycloalkanes
Molecular structure: Property relationships  Seybold, Paul G.; May, Michael; Bagal, Ujjvala A.
How molecular structure can be represented mathematically and how this can lead to a better understanding of the connection between molecular structures and properties.
Seybold, Paul G.; May, Michael; Bagal, Ujjvala A. J. Chem. Educ. 1987, 64, 575.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alcohols
Use of polar maps in conformational analysis  Ounsworth, James P.; Weller, Larry
A relatively simple procedure to identify different or similar conformations of large ring structures (generating polar maps of torsional angles).
Ounsworth, James P.; Weller, Larry J. Chem. Educ. 1987, 64, 568.
Conformational Analysis |
Molecular Properties / Structure |
Alkanes / Cycloalkanes
Chemical properties of commonly available hydrocarbons  Perina, Ivo
Studying the properties of saturated hydrocarbons using natural gas.
Perina, Ivo J. Chem. Educ. 1985, 62, 864.
Alkanes / Cycloalkanes
An introduction to conformational analysis of ethane and butane  Flash, Patrick J.
60. Bits and pieces, 23. Introduces students to some conventions for drawing molecules and provides a brief tutorial and extensive drill work on the conformations of ethane and butane.
Flash, Patrick J. J. Chem. Educ. 1985, 62, 412.
Conformational Analysis |
Alkanes / Cycloalkanes |
Enrichment / Review Materials
Preparation of 2-bromopentane  Howell, B. A.; Kohrman, R. E.
The conversion of 2-pentanol to 2-bromopentane offers a good illustration of the problems associated with substitution in secondary systems.
Howell, B. A.; Kohrman, R. E. J. Chem. Educ. 1984, 61, 932.
Synthesis |
Alkanes / Cycloalkanes
The evaluation of strain and stabilization in molecules using isodesmic reactions  Fuchs, Richard
The stabilities of cyclic hydrocarbons are analyzed using isodesmic and metathetical isodesmic reactions.
Fuchs, Richard J. Chem. Educ. 1984, 61, 133.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds
Oil shale - Heir to the petroleum kingdom   Schachter, Y.
A discussion of oil shale provides students with real-world problems that require chemical literacy.
Schachter, Y. J. Chem. Educ. 1983, 60, 750.
Applications of Chemistry |
Alkenes |
Alkanes / Cycloalkanes |
Green Chemistry
Free radical chlorination of methane: A demonstration  Conklin, Alfred R.; Kramme, Alan
Free radical reactions are very important and often discussed in chemistry. One of the first such reactions encountered by students of organic chemistry is the free radical chlorination of methane. This reaction serves to introduce the student to free radical reactions and chain reaction. In spite of its common occurrence, demonstrations of this reaction are uncommon.
Conklin, Alfred R.; Kramme, Alan J. Chem. Educ. 1983, 60, 597.
Alkanes / Cycloalkanes |
Free Radicals
The separation and identification of straight chain hydrocarbons: An experiment using gas-liquid chromatography  Benson, G. A.
Gas liquid chromatography used to separate and identify a mixture of C5 to C10 straight chain hydrocarbons.
Benson, G. A. J. Chem. Educ. 1982, 59, 344.
Separation Science |
Qualitative Analysis |
Alkanes / Cycloalkanes |
Chromatography
Optical illusions in drawings of cyclohexane derivatives  Feldman, Martin R.
An optical illusion in the representation of chair cyclohexanes.
Feldman, Martin R. J. Chem. Educ. 1979, 56, 659.
Molecular Properties / Structure |
Stereochemistry |
Enantiomers |
Diastereomers |
Alkanes / Cycloalkanes
The perturbational MO method for saturated systems  Herndon, William C.
Outlines a molecular orbital approach to the problem of predicting and correlating bond dissociation energies in saturated hydrocarbons.
Herndon, William C. J. Chem. Educ. 1979, 56, 448.
MO Theory |
Alkanes / Cycloalkanes |
Free Radicals |
Mechanisms of Reactions
Conformations of substituted ethanes  Kingsbury, Charles A.
Provides a state-of-the-art view of conformational analysis, with an emphasis on sp3 hybridized acyclic molecules.
Kingsbury, Charles A. J. Chem. Educ. 1979, 56, 431.
Molecular Properties / Structure |
Conformational Analysis |
Alkanes / Cycloalkanes |
Diastereomers
A Dramatic and relevant demonstration of ring strain  Kelly, T. Ross
Addition of the cyclobutane alpha-pinene to crystalline iodine results in an exceptionally exothermic reaction.
Kelly, T. Ross J. Chem. Educ. 1977, 54, 228.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Reactions
Hydrocarbons in ambient air: A laboratory experiment  DiNardi, Salvatore R.; Briggs, Elaine S.
Students calibrate and the n use a gas chromatograph to analyze ambient air for hydrocarbons.
DiNardi, Salvatore R.; Briggs, Elaine S. J. Chem. Educ. 1975, 52, 811.
Alkanes / Cycloalkanes |
Quantitative Analysis |
Atmospheric Chemistry |
Gas Chromatography
Inductive effects in the chlorination of 1-chlorobutane. An organic laboratory experiment  Reeves, Perry C.
The present paper describes the quantitative study of the directive effect of chlorine already present in the molecule on the orientation of incoming chlorine in the free radical halogenation of 1-chlorobutane.
Reeves, Perry C. J. Chem. Educ. 1971, 48, 636.
Alkanes / Cycloalkanes |
Molecular Properties / Structure
Conversions from cyclohexanol. An undergraduate laboratory project  Hanna, Samir B.; Wrobleski, James T.; Bohanon, Joseph T.; Peace, Bab W.
A procedure for a laboratory in conversions from cyclohexanol.
Hanna, Samir B.; Wrobleski, James T.; Bohanon, Joseph T.; Peace, Bab W. J. Chem. Educ. 1971, 48, 556.
Alkanes / Cycloalkanes |
Alcohols
Chlorination of 2,3-dimethylbutane: A quantitative organic chemistry experiment  Markgraf, J. Hodge
This paper describes the quantitative study of a free radical chlorination in which the student determines the relative reactivity of selected hydrogens.
Markgraf, J. Hodge J. Chem. Educ. 1969, 46, 610.
Quantitative Analysis |
Alkylation |
Alkanes / Cycloalkanes |
Free Radicals
A unified theory of bonding for cyclopropanes  Bernett, William A.
Examines various models for bonding in cyclopropanes.
Bernett, William A. J. Chem. Educ. 1967, 44, 17.
Covalent Bonding |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
MO Theory |
Molecular Modeling
The Hofmann Rule  Freedman, Leon D.
The statement that the decomposition of tert-butyldimethyltethylammonium hydroxide yields predominantly ethylene is mistaken.
Freedman, Leon D. J. Chem. Educ. 1966, 43, 662.
Alkanes / Cycloalkanes
Cyclobutane chemistry. 1. Structure and strain energy  Wilson, Armin; Goldhamer, David
Examines the various conformations that have been proposed for particular four-membered rings.
Wilson, Armin; Goldhamer, David J. Chem. Educ. 1963, 40, 504.
Alkanes / Cycloalkanes |
Molecular Properties / Structure
The decarboxylation of organic acid  March, Jerry
Simple aliphatic acids (except for acetic) do not give good yields of the corresponding alkanes through decarboxylation, although many organic chemistry textbooks cite this as a general method for the preparation of alkanes.
March, Jerry J. Chem. Educ. 1963, 40, 212.
Acids / Bases |
Reactions |
Synthesis |
Alkanes / Cycloalkanes |
Carboxylic Acids
The organization of subject matter in elementary organic chemistry  MacKenzie, Charles A.
Describes a curricular approach in which aliphatic and aromatic compounds are treated simultaneously rather than separately.
MacKenzie, Charles A. J. Chem. Educ. 1953, 30, 243.
Aromatic Compounds |
Alkanes / Cycloalkanes
The mechanisms of the reactions of aliphatic hydrocarbons  Schmerling, Louis
Examines the formation of carbonium ions and free radicals, the polymerization of olefins, hydrogen-halogen exchange, the condensation of haloalkanes with alkenes, the alkylation of paraffins, the condensation of paraffins with chloroolefins, the cracking of paraffins and olefins, and the isomerization of paraffins.
Schmerling, Louis J. Chem. Educ. 1951, 28, 562.
Mechanisms of Reactions |
Alkanes / Cycloalkanes |
Free Radicals |
Polymerization