TIGER

Journal Articles: 22 results
Lanthanum (La) and Actinium (Ac) Should Remain in the d-block  Laurence Lavelle
This paper discusses the reasons and implications of placing lanthanum and actinium in the f-block and lutetium and lawrencium in the d-block.
Lavelle, Laurence. J. Chem. Educ. 2008, 85, 1482.
Atomic Properties / Structure |
Inner Transition Elements |
Periodicity / Periodic Table |
Transition Elements
Forecasting Periodic Trends: A Semester-Long Team Exercise for Nonscience Majors  John Tierney
Teams of students in a course for nonscience majors identify trends among the properties of elements in the periodic table, use Excel to plot and produce best-fit equations to describe relationships among those properties, and apply the resulting formulas to predict and justify the properties of missing elements.
Tierney, John. J. Chem. Educ. 2008, 85, 1215.
Atomic Properties / Structure |
Computational Chemistry |
Main-Group Elements |
Nonmetals |
Periodicity / Periodic Table |
Metals |
Student-Centered Learning
News from the Periodic Table: An Introduction to "Periodicity Symbols, Tables, and Models for Higher-Order Valency and Donor–Acceptor Kinships"  Henry A. Bent and Frank Weinhold
Proposes that alternative display topologies such as a 2D "left-step" or "step-pyramid" table or 3D "periodic towers" can supplement or supplant the standard periodic table by better emphasizing higher-order patterns of chemical association and reactivity, rather than the physical resemblances of standard-state elemental substances.
Bent, Henry A.; Weinhold, Frank. J. Chem. Educ. 2007, 84, 1145.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Spectroscopy
Probing the Orbital Energy of an Electron in an Atom  James L. Bills
This article answers an appeal for simple theoretical interpretations of atomic properties. A theoretical snapshot of an atom, showing the screened nuclear charge and the electron to be ionized at its radius of zero kinetic energy, enables anyone to approximate its ionization energy.
Bills, James L. J. Chem. Educ. 2006, 83, 473.
Atomic Properties / Structure |
Main-Group Elements |
Periodicity / Periodic Table |
Physical Properties |
Quantum Chemistry |
Theoretical Chemistry
Trends in Ionization Energy of Transition-Metal Elements  Paul S. Matsumoto
Examines why, as the number of protons increase along a row in the periodic table, the first ionization energies of the transition-metal elements are relatively steady, but that for the main-group elements increases.
Matsumoto, Paul S. J. Chem. Educ. 2005, 82, 1660.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Transition Elements
The Place of Zinc, Cadmium, and Mercury in the Periodic Table  William B. Jensen
Explanation for why the zinc group belongs with the main group elements; includes several versions of periodic tables.
Jensen, William B. J. Chem. Educ. 2003, 80, 952.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Descriptive Chemistry |
Atomic Properties / Structure
Periodic Table Live! 3rd Edition: Abstract of Special Issue 17  Nicholas B. Adelman, Jon L. Holmes, Jerrold J. Jacobsen, John W. Moore, Paul F. Schatz, Jaclyn Tweedale, Alton J. Banks, John C. Kotz, William R. Robinson, and Susan Young
CD-ROM containing an interactive journey through the periodic table; includes information about each element, biographies of discoverers, videos of reactions, sources and uses, macro and atomic properties, and crystalline structures.
Adelman, Nicholas B.; Holmes, Jon L.; Jacobsen, Jerrold J.; Moore, John W.; Schatz, Paul F.; Tweedale, Jaclyn; Banks, Alton J.; Kotz, John C.; Robinson, William R.; Young, Susan. J. Chem. Educ. 2002, 79, 1487.
Descriptive Chemistry |
Periodicity / Periodic Table |
Solid State Chemistry |
Atomic Properties / Structure |
Physical Properties |
Reactions |
Crystals / Crystallography
Semimetallicity?  Stephen J. Hawkes
Analysis of whether semimetals are semiconductors and distinctions between metals, semimetals, and nonmetals.
Hawkes, Stephen J. J. Chem. Educ. 2001, 78, 1686.
Atomic Properties / Structure |
Metals |
Periodicity / Periodic Table |
Nonmetals |
Physical Properties |
Solid State Chemistry |
Conductivity
Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends  Kimberley A. Waldron, Erin M. Fehringer, Amy E. Streeb, Jennifer E. Trosky, and Joshua J. Pearson
Using charge shielding to identify and explain trends within the periodic table.
Waldron, Kimberley A.; Fehringer, Erin M.; Streeb, Amy E.; Trosky, Jennifer E.; Pearson, Joshua J. J. Chem. Educ. 2001, 78, 635.
Periodicity / Periodic Table |
Theoretical Chemistry |
Atomic Properties / Structure
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
Ionization Energies, Parallel Spins, and the Stability of Half-Filled Shells  Peter Cann
Three methods for explaining the decrease in first ionization energies between group V and group VI elements are described and commented upon. The quantum mechanical origin of the unhelpful concept of half-shell stability is explained in terms of exchange energy, for which the alternative term parallel spin avoidance factor is suggested. It is recommended that for pre-university students the simplest explanation, in terms of Coulombic repulsion between two electrons occupying the same orbital, is adopted: it involves fewer difficult concepts than the other explanations and its predictions are no less accurate.
Cann, Peter. J. Chem. Educ. 2000, 77, 1056.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry |
Theoretical Chemistry
On Using Incomplete Theories as Cataloging Schemes: Aufbau, Abbau, and VSEPR  Tykodi, R. J.
How to restructure as cataloging schemes the aufbau and abbau procedures for obtaining the ground-state electronic structures of atoms and monatomic ions.
Tykodi, R. J. J. Chem. Educ. 1994, 71, 273.
VSEPR Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Properties / Structure
The best Aufbau mnemonic: The periodic table  Ludwig, Oliver G.
Using the periodic table exclusively to rationalize electron assignments has the advantage of emphasizing the experimental aspect of the science and avoids giving the impression that chemistry is nothing but a set of mysterious rules.
Ludwig, Oliver G. J. Chem. Educ. 1992, 69, 430.
Atomic Properties / Structure |
Periodicity / Periodic Table
The periodicity of electron affinity  Myers, R. Thomas
In general, the values of electron affinity for the elements can be understood in terms of their ground state electron configuration, and the screening (effective nuclear charge) exerted on the added electron by the electrons already present in the neutral atom.
Myers, R. Thomas J. Chem. Educ. 1990, 67, 307.
Atomic Properties / Structure |
Periodicity / Periodic Table
Periodic table message question  Wieder, Milton J.
This question presents an interesting technique for testing students' grasp of trends in periodicity.
Wieder, Milton J. J. Chem. Educ. 1987, 64, 320.
Periodicity / Periodic Table |
Atomic Properties / Structure
Why teach the electron configuration of the elements are we do?  Millikan, Roger C.
Out of 106 elements in the table of electron configurations, there are 29 special cases - rules that only work 73% of the time seem hardly worth teaching.
Millikan, Roger C. J. Chem. Educ. 1982, 59, 757.
Atomic Properties / Structure |
Periodicity / Periodic Table
A unified approach to the study of chemical reactions in freshman chemistry  Cassen, T.; DuBois, Thomas D.
An approach that aims to provide students with the background that will enable them to make reasonable predictions as to the likely products of a chemical reaction.
Cassen, T.; DuBois, Thomas D. J. Chem. Educ. 1982, 59, 377.
Reactions |
Atomic Properties / Structure |
Oxidation State |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Periodicity / Periodic Table
Exchange stabilization and the variation of ionization energy in the pn and dn series  Blake, Antony B.
This article is concerned with two types of ionizations that are of special importance to chemists. The author's main purpose is to clarify current textbook interpretations of the peculiar decrease in ionization energy following completion of a half-filled p or d shell.
Blake, Antony B. J. Chem. Educ. 1981, 58, 393.
MO Theory |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry
Regularities and relations among ionization potentials of nontransition elements  Liebman, Joel F.
Provides several semiempirical procedures for investigating ionization potentials.
Liebman, Joel F. J. Chem. Educ. 1973, 50, 831.
Atomic Properties / Structure |
Periodicity / Periodic Table
A schematic representation of valence  Sanderson, R. T.
This paper describes a new chart representing the valence structure of atoms; by studying this chart, with the help of a few simple rules, students of elementary chemistry can acquire a useful understanding of chemical combination.
Sanderson, R. T. J. Chem. Educ. 1958, 35, 541.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Enrichment / Review Materials |
Transition Elements |
Metals |
Nonmetals
A new periodic table based on the energy sequence of atomic orbitals  Walker, W. R.; Curthoys, G. C.
Since the theory of atomic and molecular orbitals has proven to be of such value in interpreting the data of inorganic chemistry, it is hoped that a new periodic table based on the energy sequence of atomic orbitals will be an aid to the further systematizing of chemical knowledge.
Walker, W. R.; Curthoys, G. C. J. Chem. Educ. 1956, 33, 69.
Periodicity / Periodic Table |
Atomic Properties / Structure
Regularities among the representative elements: The "paired electron rule"  Condon, F. E.
If the oxidation states characteristic of various groups are correlated in terms of electron subshells, they become reasonable and logical rather than mere facts to be memorized.
Condon, F. E. J. Chem. Educ. 1954, 31, 651.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Oxidation State