TIGER

Journal Articles: 28 results
The Aromaticity of Pericyclic Reaction Transition States  Henry S. Rzepa
Presents an approach that combines two fundamental concepts in organic chemistry, chirality and aromaticity, into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Hckel-aromatic and chiral Mbius-aromatic transition states.
Rzepa, Henry S. J. Chem. Educ. 2007, 84, 1535.
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
Mechanisms of Reactions |
Stereochemistry
Sudoku Puzzles for First-Year Organic Chemistry Students  Alice L. Perez and G. Lamoureux
Sudoku puzzles are used to help the students learn the correspondence between the names of amino acids, their abbreviations, and codes; and the correspondence between the names of functional groups, their structures, and abbreviations.
Perez, Alice L.; Lamoureux, G. J. Chem. Educ. 2007, 84, 614.
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkylation |
Amines / Ammonium Compounds |
Amino Acids |
MO Theory |
Nomenclature / Units / Symbols |
Student-Centered Learning |
Alkynes |
Amides
An Exploration of a Photochemical Pericyclic Reaction Using NMR Data  Sara M. Hein
This inexpensive, small-scale experiment for advanced organic students describes the unambiguous identification of a photochemical dimerization product from eleven possible candidates.
Hein, Sara M. J. Chem. Educ. 2006, 83, 940.
Addition Reactions |
Alkanes / Cycloalkanes |
Alkenes |
Carboxylic Acids |
Conformational Analysis |
NMR Spectroscopy |
Photochemistry |
Synthesis
Octachem Model: Organic Chemistry Nomenclature Companion  Joaquin Palacios
The Octachem model is an educational physical model designed to guide students in the identification, classification, and naming of the chemical structures of organic compounds. In this article the basic concepts of Octachem model are presented, and the physical model and contents are described.
Palacios, Joaquin. J. Chem. Educ. 2006, 83, 890.
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amines / Ammonium Compounds |
Esters |
Ethers |
Nomenclature / Units / Symbols
A Template-Controlled Solid-State Reaction for the Organic Chemistry Laboratory  Tomislav Friscic, Tamara D. Hamilton, Giannis S. Papaefstathiou, and Leonard R. MacGillivray
Describes a laboratory experiment that employs linear hydrogen-bond templates to direct [2 + 2] photodimerization in the solid state. The experiment introduces undergraduates to supramolecular and solid-state chemistry, as well as aspects of green chemistry.
Friscic, Tomislav; Hamilton, Tamara D.; Papaefstathiou, Giannis S.; MacGillivray, Leonard R. J. Chem. Educ. 2005, 82, 1679.
Green Chemistry |
Solid State Chemistry |
Crystals / Crystallography |
Alkenes |
Alkanes / Cycloalkanes |
Hydrogen Bonding |
Materials Science |
NMR Spectroscopy
Organic Functional Group Playing Card Deck  Michael J. Welsh
Organic functional group playing card deck used for review of the name and structure of organic functional groups that can be used to play any game that a normal deck of cards is used for.
Welsh, Michael J. J. Chem. Educ. 2003, 80, 426.
Nomenclature / Units / Symbols |
Nonmajor Courses |
Enrichment / Review Materials |
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amides |
Amines / Ammonium Compounds |
Aromatic Compounds |
Carboxylic Acids |
Esters |
Ethers |
Mechanisms of Reactions |
Synthesis
Fractional Distillation and GC Analysis of Hydrocarbon Mixtures  Craig J. Donahue
Separating and identifying the components of a three-hydrocarbon mixture through fractional distillation and gas chromatography.
Donahue, Craig J. J. Chem. Educ. 2002, 79, 721.
Chromatography |
Gas Chromatography |
Separation Science |
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
IR Spectroscopy |
NMR Spectroscopy |
Qualitative Analysis
The Hydrogenation of Cyclododecene by Lithium Naphthalenide and Nickel Chloride Dihydrate  Francisco Alonso and Miguel Yus
Transformation of cyclododecene into cyclododecane in the absence of external hydrogen as an alternative to the normal method of catalytic hydrogenation.
Alonso, Francisco; Yus, Miguel. J. Chem. Educ. 2001, 78, 1517.
Synthesis |
Alkanes / Cycloalkanes |
Alkenes |
Metals
S. M. Tanatar and His Contribution to the Field of Thermal Rearrangements  Ludmila Birladeanu
Thermal rearrangements constitute an important chapter in organic chemistry. Surprisingly, the name of its discoverer remains unknown. The present article is meant to remedy this situation by describing some of the work of the 19th century Russian chemist S. M. Tanatar (1849 - 1917) who, based on the thermochemical data provided by Berthelot, envisaged the possibility of transforming cyclopropane into propene under the influence of heat alone.
Birladeanu, Ludmila. J. Chem. Educ. 1998, 75, 603.
Gases |
Thermodynamics |
Synthesis |
Alkanes / Cycloalkanes |
Alkenes
On the Disproportionations of Cyclohexene and Related Compounds  Alex Bunjes, Ingo Eilks, Manfred Pahlke, and Bernd Ralle*
The catalytic hydrogenation of liquid hydrocarbons is easy to realize in a simple laboratory experiment using a palladium catalyst. In the case of hydrogenation cyclohexen or cyclohexadiene in addition to the expected finding of cyclohexane among the hydrogenation products, the formation of benzene can be observed. In absence of hydrogen, the disproportionation of both starting materials to cyclohexane and benzene takes place.
Bunjes, Alex; Eilks, Ingo; Pahlke, Manfred; Ralle, Bernd. J. Chem. Educ. 1997, 74, 1323.
Alkanes / Cycloalkanes |
Aromatic Compounds |
Alkenes |
Synthesis
Hydrochlorination of (R)-Carvone  Miles, William H.; Nutaitis, Charles F.; Berreth, Christina L.
This paper describes the hydrochlorination of (R)-carvone that illustrates the concepts of regioselectivity and chemoselectivity.
Miles, William H.; Nutaitis, Charles F.; Berreth, Christina L. J. Chem. Educ. 1994, 71, 1097.
Laboratory Management |
Alkenes |
Alkanes / Cycloalkanes
A Simple and Safe Catalytic Hydrogenation of 4-Vinylbenzoic Acid  De, Shantanu; Gambhir, Geetu; Krishnamurty, H. G.
An alternative procedure to catalytic hydrogenation is catalytic transfer hydrogenation. In this technique, the reduction of an organic compound is achieved with the aid of a donor substance in the presence of a catalyst.
De, Shantanu; Gambhir, Geetu; Krishnamurty, H. G. J. Chem. Educ. 1994, 71, 992.
Catalysis |
Oxidation / Reduction |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes
GC/MS experiments for the organic chemistry laboratory: I. E2 elimination of 2-bromo-2-methyloctane   Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott
Two capillary GC/MS experiments that were designed for and tested in a sophomore organic laboratory course.
Novak, Michael; Heinrich, Julie; Martin, Kristy A.; Green, John; Lytle, Scott J. Chem. Educ. 1993, 70, A103.
Gas Chromatography |
Alkenes |
Alkanes / Cycloalkanes |
Alcohols |
Elimination Reactions |
Synthesis
A source of isomer-drawing assignments  Kjonaas, Richard A.
A comprehensive source from which instructors can choose a wide variety of good isomer drawing examples to use as homework assignments and exam questions.
Kjonaas, Richard A. J. Chem. Educ. 1992, 69, 452.
Stereochemistry |
Alcohols |
Alkanes / Cycloalkanes |
Alkenes |
Aldehydes / Ketones |
Ethers |
Esters |
Alkynes
Addition of IBr to fatty acids on the overhead projector   Solomon, Sally; Fulep-Poszmik, Annamaria; Kulp, Gary; Yu, Heung
The interhalogen compound IBr dissolved in CCl4 is added to petroleum ether solutions of fatty acids to test for unsaturation.
Solomon, Sally; Fulep-Poszmik, Annamaria; Kulp, Gary; Yu, Heung J. Chem. Educ. 1992, 69, 66.
Alkanes / Cycloalkanes |
Alkenes
An internal comparison of the intermolecular forces of common organic functional groups: A thin-layer chromatography experiment  Beauvais, Robert; Holman, R. W.
Due to the latest trends in organic chemistry textbook content sequences, it has become desirable to develop an experiment that is rapid, simple, and general, that would compare and contrast the various functional group classes of organic molecules in terms of their relative polarities, dipole moments, and intermolecular forces of attraction.
Beauvais, Robert; Holman, R. W. J. Chem. Educ. 1991, 68, 428.
Alkanes / Cycloalkanes |
Alkenes |
Alcohols |
Carboxylic Acids |
Aldehydes / Ketones |
Esters |
Qualitative Analysis |
Thin Layer Chromatography |
Noncovalent Interactions |
Molecular Properties / Structure
Synthesis of a bicyclo[2.2.1]heptene Diels-Alder adduct: An organic chemistry experiment utilizing NMR spectroscopy to assign endo stereochemistry  Harrison, Ernest A., Jr.
An organic chemistry experiment utilizing NMR spectroscopy to assign endo stereochemistry via synthesis of a bicyclo[2.2.1]heptene Diels-Alder adduct.
Harrison, Ernest A., Jr. J. Chem. Educ. 1991, 68, 426.
Alkanes / Cycloalkanes |
Synthesis |
Alkenes |
Aromatic Compounds |
NMR Spectroscopy |
Thin Layer Chromatography
Organic Nomenclature (Lampman, Gary)  Damey, Richard F.
An interactive tutorial / drill for naming organic compounds.
Damey, Richard F. J. Chem. Educ. 1990, 67, A220.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Ethers |
Alcohols |
Amines / Ammonium Compounds |
Phenols
Arylation of carbon carbon double bonds catalyzed by palladium salts  Lauron, Helene; Mallet, Jean-Maurice; Mestdagh, Helene; Ville, Guy
A more advanced synthetic project that incorporates reactions and materials with real-world significance.
Lauron, Helene; Mallet, Jean-Maurice; Mestdagh, Helene; Ville, Guy J. Chem. Educ. 1988, 65, 632.
Applications of Chemistry |
Synthesis |
Alkenes |
Alkanes / Cycloalkanes |
Catalysis
The effect of a catalyst on the thermodynamic properties and partition functions of a group of isomers  Alberty, Robert A.
The authors' analysis of the effect of a catalyst on the thermodynamic properties and partition functions of a group of isomers.
Alberty, Robert A. J. Chem. Educ. 1988, 65, 409.
Thermodynamics |
Equilibrium |
Alkenes |
Alkanes / Cycloalkanes |
Constitutional Isomers
A very brief, rapid, simple, and unified method for estimating carbon-13 NMR chemical shifts: The BS method  Shoulders, Hen; Welch, Steven C.
The "BS" method is so brief and simple that students can memorize and use it to interpret 13C NMR spectra with ease.
Shoulders, Hen; Welch, Steven C. J. Chem. Educ. 1987, 64, 915.
NMR Spectroscopy |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Instrumental Methods
Comparison of chemical oxidation of alkanes, alkenes, and alcohols on the overhead projector  Kolb, Kenneth E.
This overhead projector demonstration utilizes two classical oxidants, permanganates and dichromate, to distinguish between alkanes, alkenes, and primary, secondary, and tertiary alcohols.
Kolb, Kenneth E. J. Chem. Educ. 1986, 63, 977.
Alcohols |
Alkanes / Cycloalkanes |
Alkenes |
Oxidation / Reduction |
Qualitative Analysis
A short set of 13C-NMR correlation tables  Brown, D. W.
The object of these tables is to enable a student to calculate rapidly approximate d values for 13C nuclei in as wide a variety of compounds as possible.
Brown, D. W. J. Chem. Educ. 1985, 62, 209.
NMR Spectroscopy |
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Aromatic Compounds |
Amides |
Carboxylic Acids |
Esters
The evaluation of strain and stabilization in molecules using isodesmic reactions  Fuchs, Richard
The stabilities of cyclic hydrocarbons are analyzed using isodesmic and metathetical isodesmic reactions.
Fuchs, Richard J. Chem. Educ. 1984, 61, 133.
Molecular Properties / Structure |
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds
Oil shale - Heir to the petroleum kingdom   Schachter, Y.
A discussion of oil shale provides students with real-world problems that require chemical literacy.
Schachter, Y. J. Chem. Educ. 1983, 60, 750.
Applications of Chemistry |
Alkenes |
Alkanes / Cycloalkanes |
Green Chemistry
2,2-Dichlorobicyclo[4.1.0]heptane from cyclohexene and dichlorocarbene by phase transfer catalysis  Ault, Addison; Wright, Bradley
The authors have developed a procedure for the addition of dichlorocarbene to cyclohexane to give dichloronorcarane.
Ault, Addison; Wright, Bradley J. Chem. Educ. 1976, 53, 489.
Aromatic Compounds |
Alkenes |
Alkanes / Cycloalkanes |
Catalysis
Bromination of alkanes: Experiment illustrating relative reactivities and synthetic utility  Warkentin, J.
The radical halogenation of alkanes lend themselves well to the teaching of basic material such as bond dissociation energies, potential energy profiles, enthalpy of reaction, activation energy, and reaction rate.
Warkentin, J. J. Chem. Educ. 1966, 43, 331.
Electrochemistry |
Alkanes / Cycloalkanes |
Rate Law |
Kinetics |
Synthesis |
Alkenes |
Mechanisms of Reactions |
Free Radicals
Determining activity coefficients by gas chromatography: A physical chemistry experiment  Kenworthy, Susan; Miller, James; Martire, D. E.
A simple, gas-liquid chromatographic experiment is outlined for the determination of the activity coefficients of benzene, cyclohexane, and cyclohexene in dinonylphthalate.
Kenworthy, Susan; Miller, James; Martire, D. E. J. Chem. Educ. 1963, 40, 541.
Gas Chromatography |
Alkanes / Cycloalkanes |
Alkenes