TIGER

Journal Articles: 53 results
Förster Resonance Energy Transfer and Conformational Stability of Proteins  Katheryn M. Sanchez, Diana E. Schlamadinger, Jonathan E. Gable, and Judy E. Kim
Describes the integration of absorption spectroscopy, fluorescence spectroscopy, and Frster resonance energy transfer (FRET) measurements to probe important topics in protein folding. Comparison of conformational stabilities of cytochrome c measured via two chemical denaturants illustrates important concepts in protein folding and intermolecular interactions.
Sanchez, Katheryn M.; Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E. J. Chem. Educ. 2008, 85, 1253.
Biophysical Chemistry |
Fluorescence Spectroscopy |
Proteins / Peptides |
Quantum Chemistry |
Resonance Theory |
Spectroscopy |
Thermodynamics |
UV-Vis Spectroscopy
Acid-Catalyzed Enolization of β-Tetralone  Brahmadeo Dewprashad, Anthony Nesturi, and Joel Urena
This experiment allows students to use 1H NMR to compare the rates of substitution of benzylic and non-benzylic a hydrogens of -tetralone and correlate their findings with predictions made by resonance theory.
Dewprashad, Brahmadeo; Nesturi, Anthony; Urena, Joel. J. Chem. Educ. 2008, 85, 829.
Aldehydes / Ketones |
Isotopes |
Mechanisms of Reactions |
NMR Spectroscopy |
Reactive Intermediates |
Resonance Theory |
Synthesis
Six Pillars of Organic Chemistry  Joseph J. Mullins
This article focuses on a core set of conceptselectronegativity, polar covalent bonding, inductive and steric effects, resonance, and aromaticitythe proper application of which can explain and predict a wide variety of chemical, physical, and biological properties of molecules and conceptually unite important features of general, organic, and biochemistry.
Mullins, Joseph J. J. Chem. Educ. 2008, 85, 83.
Bioorganic Chemistry |
Covalent Bonding |
Hydrogen Bonding |
Mechanisms of Reactions |
Periodicity / Periodic Table |
Reactive Intermediates |
Resonance Theory
Getting the Weights of Lewis Structures out of Hückel Theory: Hückel–Lewis Configuration Interaction (HL-CI)  Stéphane Humbel
A method to obtain the weights of Lewis structures from Hckel calculations is presented and tested against established ab initio methods.
Humbel, Stéphane. J. Chem. Educ. 2007, 84, 1056.
Computational Chemistry |
Lewis Structures |
Theoretical Chemistry |
Quantum Chemistry |
Resonance Theory |
Valence Bond Theory
Aromatic Bagels: An Edible Resonance Analogy  Shirley Lin
Describes a classroom demonstration involving the use of a bagel and cream cheese as an analogy for benzene that emphasizes the deficiencies of using a single Lewis structure to describe this structure.
Lin, Shirley. J. Chem. Educ. 2007, 84, 779.
Aromatic Compounds |
Lewis Structures |
Resonance Theory |
Molecular Properties / Structure
More on the Nature of Resonance  Robert C. Kerber
The author continues to find the use of delocalization preferable to resonance.
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 1291.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Resonance Theory |
Nomenclature / Units / Symbols
More on the Nature of Resonance  William B. Jensen
Supplements a recent article on the interpretation of resonance theory with three additional observationsone historical and two conceptual.
Jensen, William B. J. Chem. Educ. 2006, 83, 1290.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
If It's Resonance, What Is Resonating?  Robert C. Kerber
This article reviews the origin of the terminology associated with the use of more than one Lewis-type structure to describe delocalized bonding in molecules and how the original usage has evolved to reduce confusion
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 223.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Comments on Purser's Article: "Lewis Structures are Models for Predicting Molecular Structure, Not Electronic Structure"   Gordon H. Purser
Weinhold makes four major criticisms of my article. I shall address each of these criticisms.
Purser, Gordon H. J. Chem. Educ. 2005, 82, 528.
Molecular Properties / Structure |
Lewis Structures |
Resonance Theory |
MO Theory
Comments on Purser's Article: "Lewis Structures are Models for Predicting Molecular Structure, Not Electronic Structure"  Frank Weinhold
Some time ago in this Journal, Purser expressed strong views on the proper teaching of Lewis structures, as summarized in the quoted title. Because his criticisms are based on substantial factual misrepresentations and errors, it seemed desirable to call attention to a few of the conspicuous misstatements in order that readers may judge the opinions and conclusions from a more informed perspective.
Weinhold, Frank. J. Chem. Educ. 2005, 82, 527.
Molecular Properties / Structure |
Lewis Structures |
Resonance Theory |
MO Theory
Writing Electron Dot Structures   Kenneth R. Magnell
Drill with feedback for students learning to write electron dot structures.
Magnell, Kenneth R. J. Chem. Educ. 2003, 80, 711.
Covalent Bonding |
Lewis Structures |
Resonance Theory |
Enrichment / Review Materials
The Anomalous Reactivity of Fluorobenzene in Electrophilic Aromatic Substitution and Related Phenomena  Joel Rosenthal and David I. Schuster
Extensive analysis of the reactivity of fluorobenzene (electrophilic substitution); includes resonance and other inductive effects, acidities of fluorinated aromatic compounds, and properties of other organofluorine compounds.
Rosenthal, Joel; Schuster, David I. J. Chem. Educ. 2003, 80, 679.
Aromatic Compounds |
Mechanisms of Reactions |
Synthesis |
Electrophilic Substitution |
Enrichment / Review Materials |
Resonance Theory
Keto-Enol Tautomers in a Carbonyl Phosphonium Salt  David E. Berry and G. W. Patenaude
Observations of keto-enol tautomers of a phosphonium ion.
Berry, David E.; Patenaude, G. W. J. Chem. Educ. 2002, 79, 498.
Synthesis |
NMR Spectroscopy |
Organometallics |
Resonance Theory
The Mechanism of Aqueous Hydrolysis of Nitro Derivatives of Phenyl Phenylmethanesulfonate. An Organic Laboratory Experiment  S. D. Mulder, B. E. Hoogenboom, and A. G. Splittgerber
Synthesis, purification, and characterization of three esters.
Mulder, S. D.; Hoogenboom, B. E.; Splittgerber, A. G. J. Chem. Educ. 2002, 79, 218.
Mechanisms of Reactions |
Molecular Properties / Structure |
Resonance Theory |
Reactive Intermediates |
Equilibrium |
Esters |
Aromatic Compounds |
Brønsted-Lowry Acids / Bases
The "Big Dog-Puppy Dog" Analogy for Resonance  Todd P. Silverstein
In this analogy, puppy dogs are restricted to a specific dog run; they represent s-bond electron pairs. Big dogs are allowed to roam freely over several consecutive dog runs; they represent delocalized p-bond electron pairs. By adding a bunny rabbit who is chased by the big dog, the analogy can be expanded to account for delocalized formal charge in a resonance hybrid.
Silverstein, Todd P. J. Chem. Educ. 1999, 76, 206.
Covalent Bonding |
Learning Theories |
Resonance Theory |
Molecular Properties / Structure
Making Organic Concepts Visible  Robert S. H. Liu and Alfred E. Asato
Graphic illustrations, with a Hawaiian flavor, have been introduced to clarify the following concepts encountered in introductory organic chemistry: functional groups, resonance structures, polarizability, ionization in mass spectroscopy and difference in reactivities between alkyl and vinyl halides
Liu, Robert S. H.; Asato, Alfred E. J. Chem. Educ. 1997, 74, 783.
Mechanisms of Reactions |
Resonance Theory
A New Approach To Teaching Organic Chemical Mechanisms  Wentland, Stephen H.
Describing the mechanisms of organic reactions using five simple steps or operations.
Wentland, Stephen H. J. Chem. Educ. 1994, 71, 3.
Mechanisms of Reactions |
Addition Reactions |
Nucleophilic Substitution |
Electrophilic Substitution |
Elimination Reactions |
Resonance Theory |
Molecular Properties / Structure
Do our students really understand the Hammett equation?   Schwan, Adrian L.
In this author's experience, many students can proceed through text questions dealing with the Hammett equation without having a full understanding of the Hammett analysis. He offers a question that enables students to gain a better appreciation of this concept.
Schwan, Adrian L. J. Chem. Educ. 1993, 70, 1001.
Chemometrics |
Resonance Theory |
Constitutional Isomers
Davidsoniana Jones and the cult of the curved arrow  Brisbois, Ronald G.
Puzzles to help students understand valence bond theory, resonance, and tautomerism.
Brisbois, Ronald G. J. Chem. Educ. 1992, 69, 971.
Resonance Theory
Spontaneous detonation of a mixture of two odd electron gases   Briggs, Thomas S.
Instructions for safe detonation of ClO2 and NO (the fastest known reaction between two stable molecules at room temperature).
Briggs, Thomas S. J. Chem. Educ. 1991, 68, 938.
Reactions |
Resonance Theory
Explaining resonance - a colorful approach  Abel, Kenton B.; Hemmerlin, William M.
An analogy using color to help students understand that a resonance molecule does not shift back and forth between Lewis Structures, but is in fact a hybrid of the two structures.
Abel, Kenton B.; Hemmerlin, William M. J. Chem. Educ. 1991, 68, 834.
Resonance Theory |
Lewis Structures |
Molecular Properties / Structure
A new approach to the generation of sigma complex structures  Young, Joseph G.
An alternative to the electron pushing approach for determining intermediate resonance structures for electrophilic aromatic substitutions.
Young, Joseph G. J. Chem. Educ. 1990, 67, 550.
Aromatic Compounds |
Electrophilic Substitution |
Resonance Theory |
Mechanisms of Reactions
A visual aid for teaching the resonance concept  Delvigne, Francis
Using "dot clouds" to represent electron densities and resonance in structures such as benzene.
Delvigne, Francis J. Chem. Educ. 1989, 66, 461.
Resonance Theory |
Aromatic Compounds
Teaching the concept of resonance with transparent overlays  Richardson, W. S.
The overlap method can be useful in the development of the concept of a partial charge on the atoms of an ion.
Richardson, W. S. J. Chem. Educ. 1986, 63, 518.
Resonance Theory |
Molecular Properties / Structure
The arithmetic of aromaticity  Glidewell, Christopher; Lloyd, Douglas
In this article, the authors explore an aspect of conjugated systems that have received little attention, namely polycyclic hydrocarbons.
Glidewell, Christopher; Lloyd, Douglas J. Chem. Educ. 1986, 63, 306.
Alkanes / Cycloalkanes |
Resonance Theory |
Aromatic Compounds
The synthesis of 4,6,8-trimethylazulene: an organic laboratory experiment  Garst, Michael E.; Hochlowski, Jill; Douglass, III, James G.; Sasse, Scott
A procedure for a two-step synthesis of 4,6,8-trimethylazulene.
Garst, Michael E.; Hochlowski, Jill; Douglass, III, James G.; Sasse, Scott J. Chem. Educ. 1983, 60, 510.
Synthesis |
Heterocycles |
Aromatic Compounds |
Resonance Theory |
Chromatography
Structure-resonance theory for pericyclic transition states  Herndon, William C.
The purpose of this article is to show that structure-resonance theory can be used to understand the effects of structure or substituents on the rates of thermal pericyclic reactions.
Herndon, William C. J. Chem. Educ. 1981, 58, 371.
Aromatic Compounds |
Resonance Theory |
Molecular Properties / Structure
The aromatic ring  Kolb, Doris
Historic analysis and attempts to explain the structure of benzene, the concept of resonance, Huckel's rule, polycyclic aromatic compounds, non-classical aromatic compounds, and a definition for aromaticity.
Kolb, Doris J. Chem. Educ. 1979, 56, 334.
Aromatic Compounds |
Molecular Properties / Structure |
Resonance Theory
A direct calorimetric demonstration of resonance energy in the benzene nucleus  van Vugt, W. H.; Mosselman, C.
This calorimetric experiment is intended as a first contact in chemical education with the aromaticity concept.
van Vugt, W. H.; Mosselman, C. J. Chem. Educ. 1975, 52, 746.
Calorimetry / Thermochemistry |
Resonance Theory
An alternative procedure to writing Lewis structures  Imkampe, Karl
Using simple molecular orbital pictures to represent all the resonance structures of larger organic molecules.
Imkampe, Karl J. Chem. Educ. 1975, 52, 429.
Lewis Structures |
Molecular Properties / Structure |
Resonance Theory
Resonance theory and the enumeration of Kekule structures  Herndon, William C.
The formulation of resonance theory as it is practiced today is explicated in the well-known books by Pauling and Wheland. Study of these texts show that resonance theory are so drastic that many theoreticians are loathe to ascribe validity to the less rigorous method.
Herndon, William C. J. Chem. Educ. 1974, 51, 10.
Resonance Theory |
Theoretical Chemistry |
Aromatic Compounds |
Molecular Properties / Structure
The determination of the resonance energy of benzene. A physical chemistry laboratory experiment  Stevenson, Gerald R.
This procedure relies on calorimetry to measure the resonance energy of benzene, a useful way to relate the concepts of aromaticity and resonance energy to experimental thermodynamics.
Stevenson, Gerald R. J. Chem. Educ. 1972, 49, 781.
Aromatic Compounds |
Resonance Theory |
Molecular Properties / Structure |
Calorimetry / Thermochemistry |
Thermodynamics
Selective reduction of dinitrobenzenes. An organic laboratory experiment  Idoux, John P.; Plain, Wendell
Different students are assigned different reducing agents and asked to explain why their particular selective reduction occurs as their results indicate.
Idoux, John P.; Plain, Wendell J. Chem. Educ. 1972, 49, 133.
Aromatic Compounds |
Resonance Theory |
Oxidation / Reduction
Guanidine, trimethylenemethane, and "Y-delocalization." Can acyclic compounds have "aromatic" stability?  Gund, Peter
It appears that the Y-shaped configuration of 6 pi electrons as found in guanidine derivatives is an exceptionally stable one.
Gund, Peter J. Chem. Educ. 1972, 49, 100.
Aromatic Compounds |
Molecular Properties / Structure |
Resonance Theory |
MO Theory
Evidence of d pi-acceptor resonance in halogen substituents  Abdulla, Riaz F.
The association of various structural and dynamic phenomena through the postulate of d pi resonance has potential additional predictive value.
Abdulla, Riaz F. J. Chem. Educ. 1972, 49, 64.
Resonance Theory |
Mechanisms of Reactions
Dewar resonance energy  Baird, N. C.
In the present paper, some of the general properties of the Dewar Resonance Energy definition are developed. In particular, the DRE value for a compound is shown to be independent of the numerical values used to bond energies, and the use of DRE in judging the aromaticity of organic molecules is illustrated.
Baird, N. C. J. Chem. Educ. 1971, 48, 509.
Resonance Theory |
Aromatic Compounds |
Molecular Properties / Structure
Cross conjugation  Phelan, Nelson F.; Orchin, Milton
Although qualitative conclusions may be obtained by judicious use of simple resonance theory, even in simple systems the electron distribution and extent of conjugation between the nonconjugated centers in cross conjugation is most effectively illustrated by molecular orbital descriptions.
Phelan, Nelson F.; Orchin, Milton J. Chem. Educ. 1968, 45, 633.
Valence Bond Theory |
MO Theory |
Resonance Theory
The electron repulsion theory of the chemical bond. II. An alternative to resonance hybrids  Luder, W. F.
The author proposes the electron repulsion theory of the chemical bond as an alternative to resonance hybrids.
Luder, W. F. J. Chem. Educ. 1967, 44, 269.
Covalent Bonding |
Resonance Theory
Electronic interactions between nonconjugated groups  Ferguson, Lloyd N.; Nnadi, John C.
The purpose of this paper is to discuss some of the different molecular systems in which electronic interactions between classically nonconjugated groups are explicable in terms of molecular orbital theory as well as nonclassical resonance theory.
Ferguson, Lloyd N.; Nnadi, John C. J. Chem. Educ. 1965, 42, 529.
MO Theory |
Resonance Theory |
Molecular Properties / Structure
Rules for molecular orbital structures  Meislich, Herbert
In view of the fact that molecular orbital theory makes more correct predictions and avoids the misconceptions that arise in the minds of novice students when they are exposed to resonance theory, it would be better to use M.O. theory as much as possible in teaching organic chemistry.
Meislich, Herbert J. Chem. Educ. 1963, 40, 401.
MO Theory |
Resonance Theory
The electronic structures and stereochemistry of NO2+, NO2, and NO2-  Panckhurst, M. H.
A comparison of the electronic structures and stereochemistry of NO2+, NO2, and NO2-.
Panckhurst, M. H. J. Chem. Educ. 1962, 39, 270.
Stereochemistry |
Molecular Properties / Structure |
Resonance Theory
The contributions of Fritz Arndt to resonance theory  Campaigne, E.
Examines the contribution of Fritz Arndt to resonance theory and his work regarding the nature of bonds in pyrone ring systems.
Campaigne, E. J. Chem. Educ. 1959, 36, 336.
Resonance Theory |
Aromatic Compounds |
Covalent Bonding
Theoretical chemistry in Russia  Hunsberger, I. Moyer
Examines contributions to organic structural theory and Russian criticisms of resonance theory.
Hunsberger, I. Moyer J. Chem. Educ. 1954, 31, 504.
Resonance Theory
Kekule's theory of aromaticity  Gero, Alexander
Examines what Kekule really wrote in his famous paper on the structure of benzene.
Gero, Alexander J. Chem. Educ. 1954, 31, 201.
Aromatic Compounds |
Molecular Properties / Structure |
Resonance Theory
Predicting reactions of a resonance hybrid from minor canonical structures  Gero, Alexander
Little effort seems to have been made to set up any general rules on the relative contributions of the several structural formulas (canonical structures) used to represent a resonance hybrid to the reactions of the hybrid.
Gero, Alexander J. Chem. Educ. 1954, 31, 136.
Resonance Theory |
Mechanisms of Reactions
Letters  Bent, Richard L.
Addresses issues raised regarding an earlier paper on isomerism and mesomerism.
Bent, Richard L. J. Chem. Educ. 1953, 30, 648.
Molecular Properties / Structure |
Resonance Theory |
Covalent Bonding
Letters  Ferreira, Ricardo Carvalho
Identifies some inconsistencies in an earlier paper on isomerism and mesomerism.
Ferreira, Ricardo Carvalho J. Chem. Educ. 1953, 30, 647.
Molecular Properties / Structure |
Resonance Theory |
Covalent Bonding
Letters  Wolfrom, Melville L.
The author encourages American chemists to familiarize themselves with the conventions of representing configurational formulas.
Wolfrom, Melville L. J. Chem. Educ. 1953, 30, 479.
Molecular Modeling |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Aspects of isomerism and mesomerism. I. (a) Formulas and their meaning (b) Mesomerism  Bent, Richard L.
Examines molecular, empirical, structural, configurational, and projection formulas, as well as mesomerism (electronic isomers) and various types of resonance.
Bent, Richard L. J. Chem. Educ. 1953, 30, 220.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Letters  Brescia, Frank
The author calls for someone to invent another term for the word resonance as applied to the field of molecular structure.
Brescia, Frank J. Chem. Educ. 1952, 29, 261.
Resonance Theory |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
The concept of resonance energy in elementary organic chemistry  Gero, Alexander
The author describes an empirically-based presentation of resonance energy that is perfectly within reach of introductory organic students.
Gero, Alexander J. Chem. Educ. 1952, 29, 82.
Resonance Theory
About a machistic theory in chemistry and its propagandists  Tatevskii, V. M.; Shakhparanov, M. I.
Russian scientists attack the resonance theory and the use of resonance structures.
Tatevskii, V. M.; Shakhparanov, M. I. J. Chem. Educ. 1952, 29, 13.
Molecular Properties / Structure |
Resonance Theory
The present state of the chemical structural theory  Kursanov, D. N.; Gonikberg, M. G.; Dubinin, B. M.; Kabachnik, M. I.; Kaverzneva, E. D.; Prilezhaeva, E. N.; Sokolov, N. D.; Freidlina, R. Kh.
Several members of the Russian Academy of Sciences attack the resonance theory and resonance structures.
Kursanov, D. N.; Gonikberg, M. G.; Dubinin, B. M.; Kabachnik, M. I.; Kaverzneva, E. D.; Prilezhaeva, E. N.; Sokolov, N. D.; Freidlina, R. Kh. J. Chem. Educ. 1952, 29, 2.
Molecular Properties / Structure |
Resonance Theory