TIGER

Journal Articles: 35 results
Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory  Kristen L. Cacciatore, Jose Amado, Jason J. Evans, and Hannah Sevian
Presents a novel first-year chemistry experiment that asks students to replicate procedures described in sample lab reports that lack essential information. This structure is designed to promote students' experimental design and data analysis skills as well as their understanding of the importance and essential qualities of written and verbal communication between scientists.
Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah. J. Chem. Educ. 2008, 85, 251.
Equilibrium |
Green Chemistry |
Periodicity / Periodic Table |
Solutions / Solvents |
Stoichiometry |
Titration / Volumetric Analysis
The Different Periodic Tables of Dmitrii Mendeleev  Michael Laing
Between 1869 and 1905 the Russian chemist Dmitrii Mendeleev published several tables with different arrangements of the chemical elements. Four of these are compared with periodic tables by Russian scientists from 1934 and 1969.
Laing, Michael. J. Chem. Educ. 2008, 85, 63.
Descriptive Chemistry |
Enrichment / Review Materials |
Periodicity / Periodic Table
Mendeleev on the Periodic Law: Selected Writings, 1869–1905 (William B. Jensen, ed.)  Theodor Benfey
The periodic properties of the elements is the chemists central organizing principle. Here are 13 of Mendeleevs complete or partial publications that illuminate his developing ideas on periodicity.
Benfey, Theodor. J. Chem. Educ. 2007, 84, 1279.
Descriptive Chemistry |
Periodicity / Periodic Table |
Theoretical Chemistry
News from the Periodic Table: An Introduction to "Periodicity Symbols, Tables, and Models for Higher-Order Valency and Donor–Acceptor Kinships"  Henry A. Bent and Frank Weinhold
Proposes that alternative display topologies such as a 2D "left-step" or "step-pyramid" table or 3D "periodic towers" can supplement or supplant the standard periodic table by better emphasizing higher-order patterns of chemical association and reactivity, rather than the physical resemblances of standard-state elemental substances.
Bent, Henry A.; Weinhold, Frank. J. Chem. Educ. 2007, 84, 1145.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Spectroscopy
Mistake of Having Students Be Mendeleev for Just a Day  Brett Criswell
This article discusses several conceptual features underlying a genuine understanding of the periodic table and describes a set of activities focused on promoting such awareness in students using the FERA (focus, explore, reflect, and apply) learning cycle model.
Criswell, Brett. J. Chem. Educ. 2007, 84, 1140.
Periodicity / Periodic Table
Predicting the Atomic Weights of the Trans-Lawrencium Elements: A Novel Application of Dobereiner's Triads  Sami A. Ibrahim
Dobereiner's concept of triads remain useful for predicting the properties of the super-heavy elements (113118) and for providing reasonable estimates of the atomic weights of all 16 trans-lawrencium elements.
Ibrahim, Sami A. J. Chem. Educ. 2005, 82, 1658.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Main-Group Elements |
Transition Elements
Discovery Videos: A Safe, Tested, Time-Efficient Way To Incorporate Discovery-Laboratory Experiments into the Classroom  Lyubov Hoffman Laroche, Gary Wulfsberg, and Barbara Young
Using videos to bring discovery-laboratory experiments to classrooms with poor or no lab facilities or equipment, or activities that involve potentially hazardous materials.
Laroche, Lyubov Hoffman; Wulfsberg, Gary; Young, Barbara. J. Chem. Educ. 2003, 80, 962.
Periodicity / Periodic Table |
Enrichment / Review Materials
The Proper Place for Hydrogen in the Periodic Table  Marshall W. Cronyn
Case for hydrogen to be placed above carbon in the periodic table.
Cronyn, Marshall W. J. Chem. Educ. 2003, 80, 947.
Main-Group Elements |
Periodicity / Periodic Table
The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond  Paul J. Karol
Extending the periodic table to very large atomic numbers and its implications for the organization of the periodic table, consideration of relativistic effects, and the relative stability of massive and supermassive atomic nuclei.
Karol, Paul J. J. Chem. Educ. 2002, 79, 60.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Astrochemistry
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
Using History to Teach Scientific Method: The Role of Errors  Carmen J. Giunta
This paper lists five kinds of error with examples of each from the development of chemistry in the 18th and 19th centuries: erroneous theories (phlogiston), seeing a new phenomenon everywhere one seeks it (Lavoisier and the decomposition of water), theories erroneous in detail but nonetheless fruitful (Dalton's atomic theory), rejection of correct theories (Avogadro's hypothesis), and incoherent insights (J. A. R. Newlands' classification of the elements).
Giunta, Carmen J. J. Chem. Educ. 2001, 78, 623.
Nonmajor Courses |
Periodicity / Periodic Table |
Kinetic-Molecular Theory |
Stoichiometry
Ionization Energies, Parallel Spins, and the Stability of Half-Filled Shells  Peter Cann
Three methods for explaining the decrease in first ionization energies between group V and group VI elements are described and commented upon. The quantum mechanical origin of the unhelpful concept of half-shell stability is explained in terms of exchange energy, for which the alternative term parallel spin avoidance factor is suggested. It is recommended that for pre-university students the simplest explanation, in terms of Coulombic repulsion between two electrons occupying the same orbital, is adopted: it involves fewer difficult concepts than the other explanations and its predictions are no less accurate.
Cann, Peter. J. Chem. Educ. 2000, 77, 1056.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Quantum Chemistry |
Theoretical Chemistry
The Periodic Table of Atoms: Arranging the Elements by a Different Set of Rules  Treptow, Richard S.
The periodic table found in this paper is based on the properties of free gaseous atoms rather than atoms in a chemical environment.
Treptow, Richard S. J. Chem. Educ. 1994, 71, 1007.
Periodicity / Periodic Table |
Atomic Properties / Structure
"Qual": From a different viewpoint  Laing, Michael
Author contends that traditional teaching techniques in inorganic chemistry need to be reconsidered.
Laing, Michael J. Chem. Educ. 1993, 70, 666.
Periodicity / Periodic Table |
Metals |
Qualitative Analysis |
Coordination Compounds
The preparation of halogen waters   Diemente, Damon
Aqueous solutions of halogens can provide important demonstrations regarding periodicity, however many instructors are understandably hesitant to handle halogens. This author discusses the safe handling of halogens.
Diemente, Damon J. Chem. Educ. 1991, 68, 932.
Periodicity / Periodic Table |
Aqueous Solution Chemistry
Applying KC?DISCOVERER in the introductory chemistry laboratory  Furstenau, Ronald P.; Amend, John R.
115. Bits and pieces, 44. KC?DISCOVERER contains a wide variety of physical and chemical properties of the elements.
Furstenau, Ronald P.; Amend, John R. J. Chem. Educ. 1990, 67, 500.
Periodicity / Periodic Table
The periodicity of electron affinity  Myers, R. Thomas
In general, the values of electron affinity for the elements can be understood in terms of their ground state electron configuration, and the screening (effective nuclear charge) exerted on the added electron by the electrons already present in the neutral atom.
Myers, R. Thomas J. Chem. Educ. 1990, 67, 307.
Atomic Properties / Structure |
Periodicity / Periodic Table
Periodic law (Curry,E.; Chandler, J.; Mackay, L.)  Lechner, Joseph H.; Gardlund, Sharon L.
Two reviews of a software program which serves as a data base for 20 items of information on the first 103 elements.
Lechner, Joseph H.; Gardlund, Sharon L. J. Chem. Educ. 1988, 65, A333.
Periodicity / Periodic Table |
Descriptive Chemistry
Principles of electronegativity Part I. General nature  Sanderson, R. T.
The concept of electronegativity has been modified, expanded, and debated. The concept can be used to help students gain valuable insights and understanding of the cause-and-effect relationship between atomic structure and compound properties. This is the first in a series of articles that explores the important concept of electronegativity.
Sanderson, R. T. J. Chem. Educ. 1988, 65, 112.
Electrochemistry |
Periodicity / Periodic Table |
Noncovalent Interactions |
Atomic Properties / Structure |
Physical Properties |
Enrichment / Review Materials
Periodic contractions among the elements: Or, on being the right size  Mason, Joan
Contraction across the row, irregularities in the build up of the periodic table, the second row anomaly relativistic contraction and expansion among the heavier elements, post-transition anomaly, periodicities of physicochemical properties.
Mason, Joan J. Chem. Educ. 1988, 65, 17.
Descriptive Chemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure
Periodic table message question  Wieder, Milton J.
This question presents an interesting technique for testing students' grasp of trends in periodicity.
Wieder, Milton J. J. Chem. Educ. 1987, 64, 320.
Periodicity / Periodic Table |
Atomic Properties / Structure
An upward view of the periodic table: Getting to the bottom of it  Guenther, William B.
Develops the 18-group basis of the periodic table; shows that, while the 1-18 designations can give unambiguous information to students, no printed designations are needed for teaching; and shows how to obtain unique, physical group definitions that avoid the problems of conflicting and changeable chemical interpretations.
Guenther, William B. J. Chem. Educ. 1987, 64, 9.
Periodicity / Periodic Table |
Atomic Properties / Structure
The periodic table as a data base  Goth, George W.
76. Bits and pieces, 31. A software program helps students better understand periodicity.
Goth, George W. J. Chem. Educ. 1986, 63, 836.
Periodicity / Periodic Table
An element a day keeps theory at bay  Potts, Richard A.
Incorporating a brief discussion of the chemistry of a different element into each day's lecture.
Potts, Richard A. J. Chem. Educ. 1980, 57, 290.
Periodicity / Periodic Table |
Descriptive Chemistry
The science of chemistry: periodic properties and chemical behavior (Howald, Reed A.; Manch, Walter A.)  Leonard, Jack E.

Leonard, Jack E. J. Chem. Educ. 1972, 49, A698.
Periodicity / Periodic Table
An octagonal prismatic periodic table  Kow, Tang Wah
Presents an octagonal, prismatic periodic table
Kow, Tang Wah J. Chem. Educ. 1972, 49, 59.
Periodicity / Periodic Table
The periodic system of chemical elements: A history of the first hundred years (van Spronsen, J. W.)  Oesper, Ralph. E.

Oesper, Ralph. E. J. Chem. Educ. 1970, 47, A856.
Periodicity / Periodic Table
Mendeleev's law: A demonstration  Emerson, Kenneth
This demonstration simulates Mendeleev's efforts to organize the elements into a periodic table.
Emerson, Kenneth J. Chem. Educ. 1970, 47, A67.
Periodicity / Periodic Table
Periodicity and the lanthanides and actinides  Moeller, Therald
Examines periodic trends among the elements and particularly within the lanthanide and actinide series.
Moeller, Therald J. Chem. Educ. 1970, 47, 417.
Periodicity / Periodic Table |
Oxidation State
The periodic systems of D. I. Mendeleev and problems of nuclear chemistry  Gol'danskii, V. I.; translated by Avakian, Peter
Examines the acquisition and identification of new chemical elements and the structure of the eighth period of the periodic table.
Gol'danskii, V. I.; translated by Avakian, Peter J. Chem. Educ. 1970, 47, 406.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Metals
Letters  Zuckerman, J. J.
Comments on the controversy concerning which element is top - carbon or hydrogen.
Zuckerman, J. J. J. Chem. Educ. 1965, 42, 457.
Periodicity / Periodic Table
Models for demonstrating electronegativity and "partial charge"  Sanderson, R. T.
Describes a three-dimensional set of atomic models arranged periodically to illustrate trend in electronegativity and the use of molecular models to illustrate important concepts in general chemistry.
Sanderson, R. T. J. Chem. Educ. 1959, 36, 507.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Modeling |
Molecular Properties / Structure |
Crystals / Crystallography |
Nonmetals
The atomic form periodic table  Strong, Frederick C.
Presents an "atomic form" of the periodic table, which offers some advantages to the standard organization.
Strong, Frederick C. J. Chem. Educ. 1959, 36, 344.
Periodicity / Periodic Table
A periodic table and new periodic functions  Szabo, Z. G.; Lakatos, B.
A theoretically correct yet simple periodic system may be obtained by rearranging the long periodic table in such a way that the inert gases are situated in the middle.
Szabo, Z. G.; Lakatos, B. J. Chem. Educ. 1957, 34, 429.
Periodicity / Periodic Table
One more periodic table  Sanderson, R. T.
This periodic table is constructed to highlight electronic differences.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 481.
Periodicity / Periodic Table |
Atomic Properties / Structure