TIGER

Journal Articles: 67 results
Illustrating the Concepts of Isotopes and Mass Spectrometry in Introductory Courses: A MALDI-TOF Mass Spectrometry Laboratory Experiment  Nancy Carter Dopke and Timothy Neal Lovett
This article describes a matrix-assisted laser desorption/ionization (MALDI) mass spectrometry experiment in which students prepare peptide samples for mass analysis and then collect and analyze mass spectral data. The lab provides hands-on experience with research instrumentation and reinforces the concepts of isotopes, molecular masses, and molecular formulas.
Dopke, Nancy Carter; Lovett, Timothy Neal. J. Chem. Educ. 2007, 84, 1968.
Isotopes |
Mass Spectrometry |
Proteins / Peptides
Understanding Isotopic Distributions in Mass Spectrometry  Juris Meija
Offers a simple graphical tool for obtaining complex isotopic distributions.
Meija, Juris. J. Chem. Educ. 2006, 83, 1761.
Mass Spectrometry |
Isotopes |
Chemometrics
The History of Element 43—Technetium  Roberto Zingales
The author is grateful for additional information that allowed him to correct an earlier mistake.
Zingales, Roberto. J. Chem. Educ. 2006, 83, 213.
Isotopes |
Nuclear / Radiochemistry |
Periodicity / Periodic Table
The History of Element 43—Technetium  Fathi Habashi
The article From Masurium to Trinacrium: The Troubled Story of Element 43 is the best story so far published about the history of technetium. There is, however, one paragraph on the right column of page 226 that is questionable.
Habashi, Fathi. J. Chem. Educ. 2006, 83, 213.
Isotopes |
Nuclear / Radiochemistry |
Periodicity / Periodic Table
The History of Element 43—Technetium  Fathi Habashi
The article From Masurium to Trinacrium: The Troubled Story of Element 43 is the best story so far published about the history of technetium. There is, however, one paragraph on the right column of page 226 that is questionable.
Habashi, Fathi. J. Chem. Educ. 2006, 83, 213.
Isotopes |
Nuclear / Radiochemistry |
Periodicity / Periodic Table
Measurement of the Isotopic Ratio of 10B/11B in NaBH4 by 1H NMR  Murray Zanger and Guillermo Moyna
A simple and remarkably accurate method for estimating the isotopic ratio between 10B and 11B through the use of 1H nuclear magnetic resonance (NMR) spectroscopy is presented. The experiment relies on the splitting caused by 10B (I = 3) and 11B (I = 3/2) on the 1H signal of a proton directly bound to boron, a phenomenon readily observed on an aqueous sample of NaBH4. In combination with a brief lecture or prelaboratory presentation, this laboratory can serve to introduce students to magnetic properties as well as theoretical and experimental aspects of NMR spectroscopy as early as the freshman-level chemistry.
Zanger, Murray; Moyna, Guillermo. J. Chem. Educ. 2005, 82, 1390.
Instrumental Methods |
Magnetic Properties |
NMR Spectroscopy |
Atomic Properties / Structure |
Isotopes
Some Footnotes on the History of Masurium  H. J. Wagner
Some additional comments on a recent article by R. Zingales about the history of element 43.
Wagner, H. J. J. Chem. Educ. 2005, 82, 1309.
Isotopes |
Nuclear / Radiochemistry |
Periodicity / Periodic Table
How Radioactive Is Your Banana?  David W. Ball
This exercise uses a banana to illustrate the level of radioactivity (in this case, from K-40) in an everyday object.
Ball, David W. J. Chem. Educ. 2004, 81, 1440.
Food Science |
Nuclear / Radiochemistry |
Isotopes
A Strategy for Incorporating Hands-On GC-MS into the General Chemistry Lecture and Laboratory Courses  Perry C. Reeves and Kim L. Pamplin
Students use the GC-MS to obtain spectra of the various halobenzenes. This vividly illustrates the differences in isotopic distributions of the halogens and the complications these differences present in calculating molar masses of compounds. The isotopic distribution of iron is then obtained from the mass spectrum of Fe(CO)5, and the students calculate the atomic mass of iron from this data.
Reeves, Perry C.; Pamplin, Kim L. J. Chem. Educ. 2001, 78, 368.
Chromatography |
Isotopes |
Mass Spectrometry |
Gas Chromatography |
Aromatic Compounds
No, the Molecular Mass of Bromobenzene Is Not 157 amu: An Exercise in Mass Spectrometry and Isotopes for Early General Chemistry  Steven M. Schildcrout
Even with no background in bonding and structure, students can successfully interpret the output of a modern research instrument. They learn to identify an isotope pattern, assign chemical formulas to ions giving mass spectral peaks, calculate an average atomic weight (for bromine) from measured isotopic abundances, and write balanced equations for ion fragmentation reactions.
Schildcrout, Steven M. J. Chem. Educ. 2000, 77, 1433.
Isotopes |
Mass Spectrometry |
Atomic Properties / Structure |
Molecular Properties / Structure
A Different Approach to a 3-D Periodic System Including Stable Isotopes  Alexandru T. Balaban
On a Periodic System with the two dimensions represented by Periods and Columns, one may stack each stable nuclide of an element along the third dimension. This "Downtown Area" representation is helpful for interconnecting concepts of: element, isotope or nuclide (stable vs. radioactive), atomic weight, atomic number, mass number.
Balaban, Alexandru T. J. Chem. Educ. 1999, 76, 359.
Periodicity / Periodic Table |
Isotopes |
Nuclear / Radiochemistry
Nucleogenesis! A Game with Natural Rules for Teaching Nuclear Synthesis and Decay  Donald J. Olbris and Judith Herzfeld
Nucleogenesis! is a simple and engaging game designed to introduce undergraduate physics or chemistry students to nuclear synthesis and decay by simulation of these processes. By playing the game, students become more familiar with nuclear reactions and the "geography" of the table of isotopes.
Olbris, Donald J.; Herzfeld, Judith. J. Chem. Educ. 1999, 76, 349.
Isotopes |
Nuclear / Radiochemistry |
Nonmajor Courses
Chemistry of the Heaviest Elements-One Atom at a Time  Darleane C. Hoffman and Diana M. Lee
A 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years.
Hoffman, Darleane C.; Lee, Diana M. J. Chem. Educ. 1999, 76, 331.
Chromatography |
Instrumental Methods |
Isotopes |
Nuclear / Radiochemistry |
Separation Science |
Descriptive Chemistry |
Enrichment / Review Materials |
Atomic Properties / Structure
Radioactivity in Everyday Life  S. G. Hutchison, F. I. Hutchison
This paper discusses the terminology appropriate to radiation exposure and dose, the three sources of natural background radiation (cosmic radiation, cosmogenic radiation, and terrestrial radiation), and several radioactive isotopes that are significant contributors to the radiation exposure received by individuals.
Hutchison, S. G.; Hutchison, F. I. J. Chem. Educ. 1997, 74, 501.
Learning Theories |
Nuclear / Radiochemistry |
Isotopes |
Consumer Chemistry
From the Research Laboratory to the Classroom: A Partners-in-Science Experience  Robert Zafran
This article describes the usage of two diametrically different, spherically shaped polymer balls known to science educators as Happy/Unhappy Balls. The unique property of the polynorbornene (Norsorex), "Unhappy" ball, its reluctance to bounce, is paired with the normally bouncing polychloroprene (neoprene) "Happy" ball to teach students observational skills necessary for the effective application of scientific reasoning processes needed for investigative analysis.
Zafran, Robert. J. Chem. Educ. 1996, 73, 78.
Isotopes
A Tale of Two Isotopes  Thomas, Nicolas C.
A clever tale describing the difference between oxygen and an oxygen isotope.
Thomas, Nicolas C. J. Chem. Educ. 1994, 71, 1013.
Isotopes
Not So Late Night Chemistry with USD  Koppang, Miles D.; Webb, Karl M.; Srinivasan, Rekha R.
Through the program, college students enhance their knowledge and expertise on a chemical topic and gain experience in scientific presentations. They also serve as role models to the high school students who can relate to college students more easily than the chemistry faculty members and their high school students.
Koppang, Miles D.; Webb, Karl M.; Srinivasan, Rekha R. J. Chem. Educ. 1994, 71, 929.
Forensic Chemistry |
Polymerization |
Electrochemistry |
Isotopes |
Acids / Bases
Argon-potassium atomic weight inversion in the periodic table.  Arnikar, H. J.
An explanation for the Ar-K inversion in terms of the nuclear characteristics of the naturally occurring isotopes of these elements.
Arnikar, H. J. J. Chem. Educ. 1992, 69, 687.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Geochemistry |
Isotopes
Dramatizing isotopes: Deuterated ice cubes sink   Ellis, Arthur B.; Adler, Edward A.; Juergens, Frederick H.
The authors describe a safe, striking demonstration of the effect of isotopic substitution.
Ellis, Arthur B.; Adler, Edward A.; Juergens, Frederick H. J. Chem. Educ. 1990, 67, 159.
Water / Water Chemistry |
Isotopes
A student experiment to demonstrate the energy loss and straggling of electrons in matter  de Bruin, M.; Huijgen, F. W. J.
The experiment described has been applied routinely for several years in introductory courses in the application of radiation and isotopes. The results obtained give direct insight into the characteristics of the phenomena associated with the absorption of energetic electrons in matter.
de Bruin, M.; Huijgen, F. W. J. J. Chem. Educ. 1990, 67, 86.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Isotopes
Predicting nuclear stability using the periodic table  Blanck, Harvey F.
Develops several empirical rules to use with the periodic table as an aid to recalling those nuclides that are stable.
Blanck, Harvey F. J. Chem. Educ. 1989, 66, 757.
Nuclear / Radiochemistry |
Periodicity / Periodic Table |
Isotopes
What is an element?  Roundy, Willard H., Jr.
Problems with using outdated definitions of what constitutes an element.
Roundy, Willard H., Jr. J. Chem. Educ. 1989, 66, 729.
Isotopes |
Atomic Properties / Structure
Radioactive dating: A method for geochronology  Rowe, M. W.
The discovery of radioactivity, radioactive dating, and various dating methods.
Rowe, M. W. J. Chem. Educ. 1985, 62, 580.
Geochemistry |
Nuclear / Radiochemistry |
Isotopes |
Mass Spectrometry
Nuclear synthesis and identification of new elements  Seaborg, Glenn T.
Review of descriptive terms, nuclear reactions, radioactive decay modes, and experimental methods in nuclear chemistry.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 392.
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
A method for the determination of half-lives of long lived radioisotopes  Muse, Lowell A.; Safter, Warren J.
It is possible to obtain a rather accurate estimate of the half-life of long-lived radioisotopes by absolute counting of a sample of known mass.
Muse, Lowell A.; Safter, Warren J. J. Chem. Educ. 1982, 59, 431.
Isotopes |
Nuclear / Radiochemistry |
Laboratory Management
"Holey" crystals!   Feinstein, H. I.
Nonstoichiometric compounds have a range of composition, often exhibit unusual color, luster, fluorescence, and semi-conductance. This makes them fascinating compounds for student study.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 638.
Stoichiometry |
Semiconductors |
Crystals / Crystallography |
Physical Properties |
Isotopes
It's beanium!!   Miller, Gregory C.
Pinto, navy, and blackeye beans can be used to help students develop a macroscopic understanding of how isotopes are calculated.
Miller, Gregory C. J. Chem. Educ. 1981, 58, 507.
Isotopes
California earthquakes: Predicting the next big one using radiocarbon dating  DeLorenzo, Ron
Using real data to predict California earthquakes using radiocarbon dating. [Debut]
DeLorenzo, Ron J. Chem. Educ. 1980, 57, 601.
Applications of Chemistry |
Geochemistry |
Nuclear / Radiochemistry |
Isotopes
The case of the isotopic artist  O'Connor, Rod
A problem regarding the decay of isotopes in pigments used to determine an art forgery.
O'Connor, Rod J. Chem. Educ. 1980, 57, 271.
Isotopes |
Nuclear / Radiochemistry |
Applications of Chemistry |
Dyes / Pigments
Molar volumes: Microscopic insight from macroscopic data  Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan
The molar volumes of the alkali metal halides; molar volumes of binary hydrogen compounds; molar volumes of the first transition series; molar volumes of the lanthanoids and actinoids; molar volumes of the carbon family; molar volumes of isotopically related species; aquated ions and ions in aqueous solution.
Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan J. Chem. Educ. 1978, 55, 93.
Inner Transition Elements |
Metals |
Periodicity / Periodic Table |
Stoichiometry |
Gases |
Transition Elements |
Aqueous Solution Chemistry |
Isotopes
Elemental evolution and isotopic composition  Rydberg, J.; Choppin, G. R.
Reviews elemental abundances and the processes of elemental creation.
Rydberg, J.; Choppin, G. R. J. Chem. Educ. 1977, 54, 742.
Astrochemistry |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Isotopes |
Nuclear / Radiochemistry |
Geochemistry
What is an element?  Kolb, Doris
Reviews the history of the discovery, naming, and representation of the elements; the development of the spectroscope and the periodic table; radioactive elements and isotopes; allotropes; and the synthesis of future elements.
Kolb, Doris J. Chem. Educ. 1977, 54, 696.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Questions [and] Answers  Campbell, J. A.
193-197. Five biochemical questions and their answers.
Campbell, J. A. J. Chem. Educ. 1975, 52, 457.
Enrichment / Review Materials |
pH |
Isotopes |
Water / Water Chemistry
Radiometric analysis of ammonia in water  Mehra, M. C.
In this experiment, the silver concentration in aqueous solution is determined radiometrically using silver-110 as the radiotracer.
Mehra, M. C. J. Chem. Educ. 1972, 49, 837.
Water / Water Chemistry |
Nuclear / Radiochemistry |
Isotopes |
Aqueous Solution Chemistry |
Quantitative Analysis
Chemistry in art. Radiochemistry and forgery  Rogers, F. E.
It wasn't until a radiochemical analysis in 1968 that a 1937 forgery of a 17th century Dutch master was confirmed as a fake.
Rogers, F. E. J. Chem. Educ. 1972, 49, 418.
Applications of Chemistry |
Nuclear / Radiochemistry |
Isotopes
Questions [and] Answers  Campbell, J. A.
Five questions requiring an application of basic chemical principles.
Campbell, J. A. J. Chem. Educ. 1972, 49, 328.
Enrichment / Review Materials |
Applications of Chemistry |
Nuclear / Radiochemistry |
Thermodynamics |
Mass Spectrometry |
Isotopes
Using alligation alternate to solve composition problems  Mancott, Anatol
Problems involving the composition of mixtures may be solved by using the relatively obscure method of "alligation alternate" in lieu of the standard algebraic procedure with no loss in accuracy; includes five examples.
Mancott, Anatol J. Chem. Educ. 1972, 49, 57.
Chemometrics |
Solutions / Solvents |
Isotopes
Isotopy. A general chemistry experiment  Ehlert, Thomas C.
The author describes an inexpensive paper-and-pencil experiment which has been used successfully as the first experiment in an introductory course for nonmajors.
Ehlert, Thomas C. J. Chem. Educ. 1971, 48, 273.
Nonmajor Courses |
Isotopes
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Parris, Michael
(1) Explains how free radicals differ from species such as NO3- and NH4+. (2) Explains why HI is a stronger acid than HF in aqueous solution. - answer by Parris. (3) Explains that it is possible to alter the half-life of a some radioactive processes through chemical means.
Young, J. A.; Malik, J. G.; Parris, Michael J. Chem. Educ. 1970, 47, 697.
Free Radicals |
Acids / Bases |
Aqueous Solution Chemistry |
Nuclear / Radiochemistry |
Isotopes
An introduction to nuclear power in a freshman chemistry course  Teeter, Charles E.
Describes how one instructor has included an introduction to nuclear power in his freshman chemistry course.
Teeter, Charles E. J. Chem. Educ. 1970, 47, 208.
Nuclear / Radiochemistry |
Applications of Chemistry |
Isotopes
Nuclear experiments in the chemistry curriculum  Clark, Herbert M.
Outlines types of nuclear teaching experiments, suggests where they might be placed in the undergraduate chemistry curriculum, and considers the costs of needed instruments and materials.
Clark, Herbert M. J. Chem. Educ. 1970, 47, 203.
Nuclear / Radiochemistry |
Isotopes
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P.
(1) Is there more to nuclear stability than only the neutron to proton ration? - answer by Choppin. (2) What are the products generated by the electrolysis of molten potassium nitrate with stainless steel electrodes? - answer by Young.
Young, J. A.; Malik, J. G.; Choppin, Gregory R.; Young, J. P. J. Chem. Educ. 1970, 47, 73.
Nuclear / Radiochemistry |
Isotopes |
Atomic Properties / Structure |
Electrochemistry
Stable isotopes of the atmosphere  Eck, C. F.
This article briefly presents the composition of air, the discovery of isotopes, their concentration in air, and reviews their current enrichment status.
Eck, C. F. J. Chem. Educ. 1969, 46, 706.
Atmospheric Chemistry |
Isotopes |
Nuclear / Radiochemistry
General chemistry demonstrations based on nuclear and radiochemical phenomena  Herber, Rolfe H.
This paper is intended to provide a brief survey of lecture demonstrations, suitable for a general chemistry course, that incorporate some of the ideas, concepts, techniques, and instrumentation of the field of nuclear and radiochemistry.
Herber, Rolfe H. J. Chem. Educ. 1969, 46, 665.
Nuclear / Radiochemistry |
Isotopes
Radioisotope generators for introductory laboratory use  Crater, H. L.; Macchione, J. B.; Gemmill, W. J.; Kramer, H. H.
Describes the use of simple radioisotope generators in 23 different experiments involving nuclear theory.
Crater, H. L.; Macchione, J. B.; Gemmill, W. J.; Kramer, H. H. J. Chem. Educ. 1969, 46, 287.
Nuclear / Radiochemistry |
Isotopes |
Laboratory Equipment / Apparatus
Laboratory design considerationsPart II  Steere, Norman V.
Considers ventilation, illumination, radioisotopes, egress, water supply, and miscellaneous laboratory design features.
Steere, Norman V. J. Chem. Educ. 1965, 42, A665.
Laboratory Management |
Laboratory Equipment / Apparatus |
Nuclear / Radiochemistry |
Isotopes
Solubility in mixed solvents: A radiochemistry experiment  Lochmuller, C.; Cefola, M.
This experiment illustrates the use of radioisotopes in a solubility measurement and demonstrates the effect of solvent dielectric on solubility.
Lochmuller, C.; Cefola, M. J. Chem. Educ. 1964, 41, 604.
Nuclear / Radiochemistry |
Isotopes |
Precipitation / Solubility
Demonstration of a parent-daughter radioactive equilibrium using 137Cs-137mBa  Choppin, Gregory R.; Nealy, Carson L.
Demonstrates the relationship between radioactive half life and both the rate of decay and growth of a radioactive daughter.
Choppin, Gregory R.; Nealy, Carson L. J. Chem. Educ. 1964, 41, 598.
Isotopes |
Nuclear / Radiochemistry |
Equilibrium |
Rate Law
A kinetics experiment for first year chemistry  Shaefer, William P.
The exchange of iodine atoms between organic and inorganic iodides serves as a kinetics experiment for first year chemistry.
Shaefer, William P. J. Chem. Educ. 1964, 41, 558.
Kinetics |
Isotopes |
Rate Law
Dating of uranium minerals by the specific radioactivity of lead  Fairhall, A. W.
This paper discusses a method for estimating the age of a uranium mineral without recourse to elaborate mass-spectrometric techniques and presents an experimental procedure for doing so.
Fairhall, A. W. J. Chem. Educ. 1963, 40, 626.
Nuclear / Radiochemistry |
Isotopes |
Geochemistry
Radioisotope demonstration of common ion effect on solubility  Roig, E.; Rieckehoff, I. C.; Russo, G. S.; Curet, J. D.
This paper reports a direct demonstration of the effect of common ion concentration on the solubility of a uni-univalent salt, thallium(I) chloride.
Roig, E.; Rieckehoff, I. C.; Russo, G. S.; Curet, J. D. J. Chem. Educ. 1961, 38, 350.
Aqueous Solution Chemistry |
Precipitation / Solubility |
Nuclear / Radiochemistry |
Isotopes
Incorporating radioisotope techniques into the chemistry curriculum  Radin, Norman S.
Presents a list of radioisotope experiments suitable for a wide range of different domains and levels in chemistry.
Radin, Norman S. J. Chem. Educ. 1961, 38, 344.
Nuclear / Radiochemistry |
Isotopes
Nuclear and radiochemistry in the curriculum in general chemistry  Garrett, A. B.
The author summarizes how he integrates nuclear and radiochemistry into the general chemistry curriculum.
Garrett, A. B. J. Chem. Educ. 1960, 37, 384.
Nuclear / Radiochemistry |
Isotopes
Acceleration of biochemical research by recent analytical developments  Anthony, David S.
The development of several kinds of chromatography and the wide spread availability of isotopes as well as associated counting equipment permitted experimentation in areas that could not previously be explored.
Anthony, David S. J. Chem. Educ. 1959, 36, 540.
Chromatography |
Ion Exchange |
Gas Chromatography |
Isotopes |
Nuclear / Radiochemistry
A half-life experiment for general chemistry students  Smith, W. T.; Wood, J. H.
This paper describes the authors' experiences with the measurement of the half-life of bismuth-210.
Smith, W. T.; Wood, J. H. J. Chem. Educ. 1959, 36, 492.
Nuclear / Radiochemistry |
Isotopes
Separation of Ce144 from Pr144: A radiochemistry demonstration  Bradley, Arthur; Adamowicz, Michael
This demonstration/experiment involves the separation of two radioisotopes through filtration of an insoluble precipitate.
Bradley, Arthur; Adamowicz, Michael J. Chem. Educ. 1959, 36, 136.
Isotopes |
Separation Science
Use of radioisotopes in the college chemistry laboratory  Phillips, David; Maybury, Robert H.
Provides experiments and experiences working with constructed Geiger counters and radioisotopes.
Phillips, David; Maybury, Robert H. J. Chem. Educ. 1959, 36, 133.
Nuclear / Radiochemistry |
Isotopes |
Instrumental Methods |
Qualitative Analysis |
Kinetics
Radioisotopes on your rooftop  Lockhart, Luther, B., Jr.
The collection, recovery, and measurement of radioactive materials from atomic testing can be done through the use of relatively simple procedures and is a good exercise in tracer chemistry.
Lockhart, Luther, B., Jr. J. Chem. Educ. 1957, 34, 602.
Nuclear / Radiochemistry |
Atmospheric Chemistry |
Isotopes
Demonstration of dynamic nature of ions using I131  Blake, Richard F.
This demonstration presents visual evidence of the ionic nature of solid salts and the dynamic equilibrium existing between dissolved and undissolved ions.
Blake, Richard F. J. Chem. Educ. 1956, 33, 354.
Isotopes |
Aqueous Solution Chemistry |
Solids |
Precipitation / Solubility |
Equilibrium
Atomic-weight variations in nature  Boggs, James E.
Atoms of the same element may have different masses (due to isotopic differences) depending on their source.
Boggs, James E. J. Chem. Educ. 1955, 32, 400.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Isotopes
The elementary composition of the earth's crust  Asimov, Isaac
Identifies the elementary composition of the earth's crust in terms of atom number, weight, and nuclides.
Asimov, Isaac J. Chem. Educ. 1954, 31, 70.
Geochemistry |
Isotopes
The relative contributions of various elements to the earth's radioactivity  Asimov, Isaac
Describes relative contributions of various elements to the earth's radioactivity.
Asimov, Isaac J. Chem. Educ. 1954, 31, 24.
Nuclear / Radiochemistry |
Geochemistry |
Isotopes
Dating with carbon 14  Kulp, J. Laurence
Examines the principles, technique, results of and problems with radioactive dating using carbon-14.
Kulp, J. Laurence J. Chem. Educ. 1953, 30, 432.
Nuclear / Radiochemistry |
Isotopes
Naturally occurring radioisotopes  Asimov, Isaac
Examines half-life calculations, long-lived radioactive isotopes, and the formation of short-lived radioactive isotopes.
Asimov, Isaac J. Chem. Educ. 1953, 30, 398.
Nuclear / Radiochemistry |
Isotopes |
Geochemistry
Recent history of the notion of a chemical species  Bulloff, Jack J.
Quantum and nuclear chemistry have challenged the doctrine that chemical elements are homogeneous entities while studies of the structure and stoichiometry of solids invite a change in our ideas of definite proportions in chemical combinations.
Bulloff, Jack J. J. Chem. Educ. 1953, 30, 78.
Nuclear / Radiochemistry |
Isotopes |
Stoichiometry |
Solids
Radiations from radioactive materials  Orban, Edward
Lists many radioactive minerals and ores and their sources and describes some simple demonstrations of radioactivity.
Orban, Edward J. Chem. Educ. 1952, 29, 289.
Nuclear / Radiochemistry |
Isotopes
Experiments on radioactivity in the first course in college chemistry  Brown, Charles A.; Rochow, E. G.
Experiments described include the detection and measurement of radioactivity; comparing the penetrative power of beta and gamma radiation; separating thorium from uranium; and determining the half-life of iodine 128.
Brown, Charles A.; Rochow, E. G. J. Chem. Educ. 1951, 28, 521.
Nuclear / Radiochemistry |
Isotopes |
Separation Science