TIGER

Journal Articles: 41 results
A Dramatic Classroom Demonstration of Limiting Reagent Using the Vinegar and Sodium Hydrogen Carbonate Reaction  Romklao Artdej and Tienthong Thongpanchang
This demonstration, appropriate for high school chemistry level and recommended for a large classroom presentation, is designed to illustrate the concept of limiting reagent via a series of experiments in which increasing amounts of sodium bicarbonate are added to a fixed amount of vinegar is fixed until the volume of carbon dioxide generated remains constant.
Artdej, Romklao; Thongpanchang, Tienthong. J. Chem. Educ. 2008, 85, 1382.
Acids / Bases |
Food Science |
Gases |
Stoichiometry
A Simple Penny Analysis  Nicholas C. Thomas and Stephen Faulk
Describes a simple procedure for determining the zinc composition of U.S. pennies in which the penny zinc core is dissolved in acid and the evolved hydrogen gas is collected by water displacement.
Thomas, Nicholas C.; Faulk, Stephen. J. Chem. Educ. 2008, 85, 817.
Acids / Bases |
Gases |
Gravimetric Analysis |
Metals |
Stoichiometry
Concept Maps for General Chemistry   Boyd L. Earl
Two concept maps have been developed to represent the organization of the material in a first-semester general chemistry course. By providing these maps to students and referring to them in class, it is hoped that the instructor can assist students in maintaining a grasp of the "big picture" during the progress of the course.
Earl, Boyd L. J. Chem. Educ. 2007, 84, 1788.
Atomic Properties / Structure |
Gases |
Molecular Properties / Structure |
Stoichiometry |
Periodicity / Periodic Table
Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content  Susan L. Boyd
Presents ten puzzles to make chemistry more interesting while reinforcing important concepts.
Boyd, Susan L. J. Chem. Educ. 2007, 84, 619.
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Calorimetry / Thermochemistry |
Gases |
Molecular Properties / Structure |
Periodicity / Periodic Table |
Stoichiometry |
VSEPR Theory |
Atomic Properties / Structure
Job's Analysis of the Range of the "Dalton Syringe Rocket"  Natalie Barto, Brandon Henrie, and Ed Vitz
An apparatus for safely igniting fuel gas/oxygen mixtures in a syringe and measuring the distance that the syringe is propelled is presented. The distance (range) is analyzed by the method of continuous variation (Job's Method) to determine the stoichiometry of the reaction.
Barto, Natalie; Henrie, Brandon; Vitz, Ed. J. Chem. Educ. 2006, 83, 1505.
Gases |
Oxidation / Reduction |
Thermodynamics |
Stoichiometry
The Decomposition of Zinc Carbonate: Using Stoichiometry To Choose between Chemical Formulas  Stephen DeMeo
To determine which formula corresponds to a bottle labeled "zinc carbonate", students perform qualitative tests on three of zinc carbonate's decomposition products: zinc oxide, carbon dioxide, and water. Next students make quantitative measurements to find molar ratios and compare them with the coefficients of the balanced chemical equations. This allows the correct formula of zinc carbonate to be deduced.
DeMeo, Stephen. J. Chem. Educ. 2004, 81, 119.
Gases |
Stoichiometry |
Quantitative Analysis
Stoichiometry of the Reaction of Magnesium with Hydrochloric Acid  Venkat Chebolu and Barbara C. Storandt
Using a pressure sensor to measure the production of hydrogen by a reaction between magnesium and hydrochloric acid.
Chebolu, Venkat; Storandt, Barbara C. J. Chem. Educ. 2003, 80, 305.
Stoichiometry |
Gases |
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing |
Reactions
Paradoxes, Puzzles, and Pitfalls of Incomplete Combustion Demonstrations  Ed Vitz
Paper is burned in a closed container containing sufficient oxygen to consume all the paper. Paradoxically, the flame expires while half of the paper remains. This demonstrates that thermodynamics or stoichiometry is insufficient to explain everyday chemical processes, and that kinetics is often necessary. The gases in the container are analyzed by GC before and after combustion, and the results are examined in detail.
Vitz, Ed. J. Chem. Educ. 2000, 77, 1011.
Gases |
Kinetics |
Stoichiometry
Pressure and Stoichiometry  Charles E. Roser and Catherine L. McCluskey
This experiment determines the stoichiometry of the reaction of a carbonate or hydrogen carbonate and HCl by measuring the pressure of the CO2 produced using a Vernier pressure sensor, TI CBL interface, and a TI-82/83 graphing calculator. Various amounts of the carbonate are reacted with a constant amount of HCl.
Roser, Charles E.; McCluskey, Catherine L. J. Chem. Educ. 1999, 76, 638.
Stoichiometry |
Gases |
Laboratory Computing / Interfacing
The Ammonia Smoke Fountain: An Interesting Thermodynamic Adventure  M. Dale Alexander
The ammonia smoke fountain demonstration utilizes a modification of the apparatus used in the standard ammonia fountain. The modification allows for the introduction of hydrogen chloride gas into a flask of ammonia rather than water. The flow rate of hydrogen chloride gas into the flask in the smoke fountain is not constant, but periodic; that is, the smoke puffs from the end of the tube. This unexpected behavior elicits an interesting thermodynamic explanation.
Alexander, M. Dale. J. Chem. Educ. 1999, 76, 210.
Acids / Bases |
Gases |
Thermodynamics |
Reactions |
Stoichiometry |
Precipitation / Solubility
The Best of Chem 13 News  Kathy Thorsen
A variety of suggestions for instructional activities in introductory chemistry from Chem 13 News.
Thorsen, Kathy. J. Chem. Educ. 1998, 75, 1368.
Microscale Lab |
Gases |
Stoichiometry
Formation and Dimerization of NO2 A General Chemistry Experiment  April D. Hennis, C. Scott Highberger, and Serge Schreiner*
A general chemistry experiment which illustrates Gay-Lussac's law of combining volumes. Students are able to determine the partial pressures and equilibrium constant for the formation and dimerization of NO2. The experiment readily provides students with data that can be manipulated with a common spreadsheet.
Hennis, April D.; Highberger, C. Scott; Schreiner, Serge. J. Chem. Educ. 1997, 74, 1340.
Gases |
Equilibrium |
Quantitative Analysis |
Stoichiometry
The Chemistry behind the Air Bag: High Tech in First-Year Chemistry  Andreas Madlung
The chemical process of air bag deployment provides practical applications of gas laws and stoichiometric equations appropriate for use in first-year chemistry.
Madlung, Andreas. J. Chem. Educ. 1996, 73, 347.
Applications of Chemistry |
Gases |
Stoichiometry
Small-Scale Experiments Involving Gas Evolution  Brouwer, H.
Apparatus for measuring very small volume changes of gases and several experimental procedures involving the evolution of gases.
Brouwer, H. J. Chem. Educ. 1995, 72, A100.
Gases |
Laboratory Equipment / Apparatus |
Stoichiometry |
Acids / Bases |
Reactions |
Mechanisms of Reactions |
Microscale Lab
Demonstrating the conservation of matter: A trilogy of experiments   Martin, David; Russell, Randy D.; Thomas, Nicholas C.
Three related demonstrations involving calcium carbonate and hydrochloric acid explore the conservation of matter.
Martin, David; Russell, Randy D.; Thomas, Nicholas C. J. Chem. Educ. 1992, 69, 925.
Physical Properties |
Acids / Bases |
Stoichiometry |
Gases
Gas chamber stoichiometry   Hunter, Norman W.; Wilkins, Curtis C.; Pearson, Earl F.
Most students know that HCN is used in gas chambers, they may not know however that HCN is produced in the burning of carpets, draperies, clothing and other textiles made of polyacrylonitrile.
Hunter, Norman W.; Wilkins, Curtis C.; Pearson, Earl F. J. Chem. Educ. 1992, 69, 389.
Stoichiometry |
Gases |
Applications of Chemistry
Further studies on concept learning versus problem solving  Pickering, Miles
Are there two kinds of students, some who possess an ability to do conceptual problems and some who can do mathematical problems without molecular understanding?
Pickering, Miles J. Chem. Educ. 1990, 67, 254.
Learning Theories |
Stoichiometry |
Gases
Concept learning versus problem solving: Revisited  Sawrey, Barbara A.
A student's ability to solve a numerical problem does not guarantee conceptual understanding of the molecular basis of the problem.
Sawrey, Barbara A. J. Chem. Educ. 1990, 67, 253.
Learning Theories |
Stoichiometry |
Gases
Questions from a can of Pepsi  Mitchell, Tony
A can of Pepsi can be the starting point of countless chemistry questions that students can relate to. The author encourages other instructors to think about helping students understand chemistry as it relates to contemporary society.
Mitchell, Tony J. Chem. Educ. 1988, 65, 1070.
Consumer Chemistry |
Applications of Chemistry |
Stoichiometry |
Physical Properties |
Food Science |
Nutrition |
Gases |
Acids / Bases |
Metals
Determination of the universal gas constant  Lebman, Thomas A.; Harms, Gwen
An experiment for the calculation of R using R-PV/nT.
Lebman, Thomas A.; Harms, Gwen J. Chem. Educ. 1988, 65, 811.
Gases |
Stoichiometry
Stoichiometry to the rescue (a calculation challenge)   Ramette, Richard W.
Presentation of a question that would be suitable for a take-home exam or a problem set in a general or analytical chemistry course.
Ramette, Richard W. J. Chem. Educ. 1988, 65, 800.
Amines / Ammonium Compounds |
Gases |
Stoichiometry
An alternative to using the PV = nRT equation   Desmarais, George
This author shares his application of the factor-label method to solving gas problems which involves using the ideal gas constant as the starting point in the relationship.
Desmarais, George J. Chem. Educ. 1988, 65, 392.
Gases |
Stoichiometry |
Chemometrics
Gas cans and gas cubes: Visualizing Avogadro's Law   Bouma, J.
The author shares a strategy for making gas laws "visible" for students.
Bouma, J. J. Chem. Educ. 1986, 63, 586.
Gases |
Stoichiometry
Why teach the gas laws?  Davenport, Derek A.
Justification for teaching the gas laws.
Davenport, Derek A. J. Chem. Educ. 1985, 62, 505.
Gases |
Stoichiometry
What a smell!  Perkins, Robert
How many molecules of vanillin are necessary in order to smell it anywhere within the Goodyear Airship hangar?
Perkins, Robert J. Chem. Educ. 1984, 61, 384.
Gases |
Stoichiometry
Pressure and the exploding beverage container   Perkins, Robert R.
The question in this article is an extension of exploding pop bottles to illustrate the balancing of a chemical equation, enthalpy, stoichiometry, and vapor pressure calculations, and the use of the Ideal Gas Equation. The question is aimed at the first-year level student.
Perkins, Robert R. J. Chem. Educ. 1981, 58, 363.
Stoichiometry |
Gases |
Thermodynamics |
Chemometrics
A "road map" problem for freshman chemistry students  Burness, James H.
Question suitable for a take-home type of exam.
Burness, James H. J. Chem. Educ. 1980, 57, 647.
Gases |
Solutions / Solvents |
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics
Bicarbonate in Alka-Seltzer: A general chemistry experiment  Peck, Larry; Irgolic, Kurt; O'Connor, Rod
Determining the percentage bicarbonate ion by mass in Alka-Seltzer.
Peck, Larry; Irgolic, Kurt; O'Connor, Rod J. Chem. Educ. 1980, 57, 517.
Quantitative Analysis |
Gases |
Stoichiometry |
Acids / Bases
A chemistry lesson at Three Mile Island  Mammano, Nicholas J.
Teaching principles of general chemistry through references made to the nuclear incident at Three Mile Island.
Mammano, Nicholas J. J. Chem. Educ. 1980, 57, 286.
Equilibrium |
Gases |
Stoichiometry |
Nonmajor Courses |
Nuclear / Radiochemistry |
Applications of Chemistry
Participatory lecture demonstrations  Battino, Rubin
Examples of participatory lecture demonstrations in chromatography, chemical kinetics, balancing equations, the gas laws, the kinetic-molecular theory, Henry's law, electronic energy levels in atoms, translational, vibrational, and rotational energies of molecules, and organic chemistry.
Battino, Rubin J. Chem. Educ. 1979, 56, 39.
Chromatography |
Kinetic-Molecular Theory |
Kinetics |
Stoichiometry |
Gases |
Atomic Properties / Structure |
Molecular Properties / Structure
Molar volumes: Microscopic insight from macroscopic data  Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan
The molar volumes of the alkali metal halides; molar volumes of binary hydrogen compounds; molar volumes of the first transition series; molar volumes of the lanthanoids and actinoids; molar volumes of the carbon family; molar volumes of isotopically related species; aquated ions and ions in aqueous solution.
Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan J. Chem. Educ. 1978, 55, 93.
Inner Transition Elements |
Metals |
Periodicity / Periodic Table |
Stoichiometry |
Gases |
Transition Elements |
Aqueous Solution Chemistry |
Isotopes
3 [Three] basketballs = 1 [one] mole of ideal gas at STP  Jardine, Fred H.
The volume of three basketballs = one mole of ideal gas at STP.
Jardine, Fred H. J. Chem. Educ. 1977, 54, 112.
Stoichiometry |
Gases
The extent of reaction as a unifying basis for stoichiometry in elementary chemistry  Garst, John F.
The author uses a more approachable symbol for "moles rxn per liter". The author outlines this approach with some examples.
Garst, John F. J. Chem. Educ. 1974, 51, 194.
Stoichiometry |
Gases
Gas Laws, Equilibrium, and the Commercial Synthesis of Nitric acid. A Simple Demonstration  Alexander, M. Dale
This demonstration of the commercial production of nitric acid uses a simple apparatus to illustrate a number of basic chemical concepts, including Le Chatelier's principle.
Alexander, M. Dale J. Chem. Educ. 1971, 48, 838.
Synthesis |
Industrial Chemistry |
Acids / Bases |
Gases |
Equilibrium |
Reactions |
Stoichiometry
An improved equivalent weight apparatus  Brown, Oliver L.
Presents an improved apparatus for the reaction of weighed samples of metals with hydrochloric acid and the measurement of the volume of hydrogen evolved.
Brown, Oliver L. J. Chem. Educ. 1969, 46, 617.
Laboratory Equipment / Apparatus |
Metals |
Laboratory Management |
Reactions |
Gases |
Stoichiometry
A simple vacuum apparatus for lecture experiments  Peterson, L. K.; Ruddy, F. H.
Describes a simple vacuum apparatus and examples of its use in lecture situations.
Peterson, L. K.; Ruddy, F. H. J. Chem. Educ. 1968, 45, 742.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Physical Properties |
Transport Properties |
Stoichiometry |
Calorimetry / Thermochemistry
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Bolte, John
(1) Is the mole a number or a weight? (2) Is there an easy way to locate a compound by volume and page in Beilstein? (3) What are the stages evident in a gas discharge tube as the pressure of the gas and the voltage are changed? - answer by Bolte
Young, J. A.; Malik, J. G.; Bolte, John J. Chem. Educ. 1968, 45, 718.
Stoichiometry |
Nomenclature / Units / Symbols |
Gases
The relationship between Avogadro's Principle and the Law of Gay-Lussac  Feifer, Nathan
Teaching Avogadro's Principle as an explanation of the phenomena described by Gay-Lussac's Law gives the instructor an opportunity to stress some of the basic assumptions in chemistry and to highlight the logic implicit in Avogadro's reasoning.
Feifer, Nathan J. Chem. Educ. 1966, 43, 411.
Stoichiometry |
Gases
Determination of Avogadro's number by Perrin's law  Slabaugh, W. H.
The experimental procedure for determining Avogadro's number by the Perrin method includes preparing a monodisperse colloid, ascertaining the mass of the particles, and making an accurate count of the number of particles at two points in the equilibrated colloid.
Slabaugh, W. H. J. Chem. Educ. 1965, 42, 471.
Stoichiometry |
Kinetic-Molecular Theory |
Gases |
Colloids
Hypodermic syringes in quantitative elementary chemistry experiments. Part 2. General chemistry experiments  Davenport, Derek A.; Saba, Afif N.
Presents a variety of experiments that make use of hypodermic syringes in quantitative elementary chemistry.
Davenport, Derek A.; Saba, Afif N. J. Chem. Educ. 1962, 39, 617.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Reactions |
Equilibrium |
Stoichiometry
Letters to the editor  Saxena, Satish Chandra
The author offers a restatement of Avogadro's law.
Saxena, Satish Chandra J. Chem. Educ. 1956, 33, 188.
Gases |
Stoichiometry