TIGER

Journal Articles: 385 results
A New "Bottom-Up" Framework for Teaching Chemical Bonding  Tami Levy Nahum, Rachel Mamlok-Naaman, Avi Hofstein, and Leeor Kronik
This article presents a general framework for bonding that can be presented at different levels of sophistication depending on the student's level and needs. The pedagogical strategy for teaching this model is a "bottom-up" one, starting with basic principles and ending with specific properties.
Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Kronik, Leeor. J. Chem. Educ. 2008, 85, 1680.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Materials Science |
MO Theory |
Noncovalent Interactions
Ionic Blocks  Richard S. Sevcik, Rex Gamble, Elizabet Martinez, Linda D. Schultz, and Susan V. Alexander
"Ionic Blocks" is a teaching tool designed to help middle school students visualize the concepts of ions, ionic compounds, and stoichiometry. It can also assist high school students in reviewing their subject mastery.
Sevcik, Richard S.; Gamble, Rex; Martinez, Elizabet; Schultz, Linda D.; Alexander, Susan V. J. Chem. Educ. 2008, 85, 1631.
Ionic Bonding |
Nomenclature / Units / Symbols |
Nonmajor Courses |
Stoichiometry
Elemental Chem Lab  Antonio Joaquín Franco Mariscal
Three puzzles use the symbols of 45 elements to spell the names of 32 types of laboratory equipment usually found in chemical labs.
Franco Mariscal, Antonio Joaquín. J. Chem. Educ. 2008, 85, 1370.
Laboratory Equipment / Apparatus |
Nomenclature / Units / Symbols |
Periodicity / Periodic Table
The Penny Experiment Revisited: An Illustration of Significant Figures, Accuracy, Precision, and Data Analysis  Joseph Bularzik
In this general chemistry laboratory the densities of pennies are measured by weighing them and using two different methods to measure their volumes. The average and standard deviation calculated for the resulting densities demonstrate that one measurement method is more accurate while the other is more precise.
Bularzik, Joseph. J. Chem. Educ. 2007, 84, 1456.
Chemometrics |
Nomenclature / Units / Symbols |
Nonmajor Courses |
Physical Properties
Lewis Structure Representation of Free Radicals Similar to ClO  Warren Hirsch and Mark Kobrak
An unconventional Lewis structure is proposed to explain the properties of the free radical ClO and a series of its isoelectronic analogues, particularly trends in the spin density of these species.
Hirsch, Warren; Kobrak, Mark. J. Chem. Educ. 2007, 84, 1360.
Atmospheric Chemistry |
Computational Chemistry |
Covalent Bonding |
Free Radicals |
Lewis Structures |
Molecular Modeling |
MO Theory |
Valence Bond Theory
The Mechanism of Covalent Bonding: Analysis within the Hückel Model of Electronic Structure  Sture Nordholm, Andreas Bäck, and George B. Bacskay
Hckel molecular orbital theory is shown to be uniquely useful in understanding and interpreting the mechanism of covalent bonding. Using the Hckel model it can be demonstrated that the dynamical character of the molecular orbitals is related simultaneously to the covalent bonding mechanism and to the degree of delocalization of the electron dynamics.
Nordholm, Sture; Bäck, Andreas; Bacskay, George B. J. Chem. Educ. 2007, 84, 1201.
Covalent Bonding |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
The Origin of the Names Malic, Maleic, and Malonic Acid  William B. Jensen
Explores the origins of the terms malic, maleic, and malonic acid.
Jensen, William B. J. Chem. Educ. 2007, 84, 924.
Nomenclature / Units / Symbols
Teaching Mathematics to Chemistry Students with Symbolic Computation  J. F. Ogilvie and M. B. Monagan
The authors explain how the use of mathematical software improves the teaching and understanding of mathematics to and by chemistry students while greatly expanding their abilities to solve realistic chemical problems.
Ogilvie, J. F.; Monagan, M. B. J. Chem. Educ. 2007, 84, 889.
Chemometrics |
Computational Chemistry |
Fourier Transform Techniques |
Mathematics / Symbolic Mathematics |
Nomenclature / Units / Symbols
Predicting the Stability of Hypervalent Molecules  Tracy A. Mitchell, Debbie Finocchio, and Jeremy Kua
In this exercise, students use concepts in thermochemistry such as bond energy, ionization potentials, and electron affinities to predict the relative stability of two hypervalent molecules (PF5 and PH5) relative to their respective non-hypervalent counterparts.
Mitchell, Tracy A.; Finocchio, Debbie; Kua, Jeremy. J. Chem. Educ. 2007, 84, 629.
Computational Chemistry |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Molecular Modeling |
Calorimetry / Thermochemistry |
Molecular Properties / Structure
Sudoku Puzzles for First-Year Organic Chemistry Students  Alice L. Perez and G. Lamoureux
Sudoku puzzles are used to help the students learn the correspondence between the names of amino acids, their abbreviations, and codes; and the correspondence between the names of functional groups, their structures, and abbreviations.
Perez, Alice L.; Lamoureux, G. J. Chem. Educ. 2007, 84, 614.
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkylation |
Amines / Ammonium Compounds |
Amino Acids |
MO Theory |
Nomenclature / Units / Symbols |
Student-Centered Learning |
Alkynes |
Amides
Sudoku Puzzles as Chemistry Learning Tools  Thomas D. Crute and Stephanie A. Myers
Sudoku puzzles that use a mixture of chemical terms and symbols serve as a tool to encourage the necessary repetition and attention to detail desired for mastering chemistry. The classroom-ready examples provided use polyatomic ions, organic functional groups, and strong nucleophiles. Guidelines for developing additional puzzles are described.
Crute, Thomas D.; Myers, Stephanie A. J. Chem. Educ. 2007, 84, 612.
Learning Theories |
Nomenclature / Units / Symbols |
Student-Centered Learning
Let Us Give Lewis Acid–Base Theory the Priority It Deserves  Alan A. Shaffer
The Lewis concept is simple yet powerful in its scope, and can be used to help beginning students understand reaction mechanisms more fully. However, traditional approaches to acid-base reactions at the introductory level ignores Lewis acid-base theory completely, focusing instead on proton transfer described by the Br?nsted-Lowry concept.
Shaffer, Alan A. J. Chem. Educ. 2006, 83, 1746.
Acids / Bases |
Lewis Acids / Bases |
Lewis Structures |
Mechanisms of Reactions |
Molecular Properties / Structure |
VSEPR Theory |
Covalent Bonding |
Brønsted-Lowry Acids / Bases
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
The Use of Dots in Chemical Formulas  William B. Jensen
Traces the origins and uses of dots in chemical formulas.
Jensen, William B. J. Chem. Educ. 2006, 83, 1590.
Nomenclature / Units / Symbols
Concentration Scales for Sugar Solutions  David W. Ball
Examines several special scales used to indicate the concentration of sugar solutions and their application to industry.
Ball, David W. J. Chem. Educ. 2006, 83, 1489.
Nomenclature / Units / Symbols |
Food Science |
Solutions / Solvents
Classifying Matter: A Physical Model Using Paper Clips  Bob Blake, Lynn Hogue, and Jerry L. Sarquis
By using colored paper clips, students can represent pure substances, mixtures, elements, and compounds and then discuss their similarities and differences. This model is advantageous for the beginning student who would not know enough about the detailed composition of simple materials like milk, brass, sand, and air to classify them properly.
Blake, Bob; Hogue, Lynn; Sarquis, Jerry L. J. Chem. Educ. 2006, 83, 1317.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Solids |
Student-Centered Learning
More on the Nature of Resonance  Robert C. Kerber
The author continues to find the use of delocalization preferable to resonance.
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 1291.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Resonance Theory |
Nomenclature / Units / Symbols
More on the Nature of Resonance  William B. Jensen
Supplements a recent article on the interpretation of resonance theory with three additional observationsone historical and two conceptual.
Jensen, William B. J. Chem. Educ. 2006, 83, 1290.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Acid–Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols  David E. Goodney
Examples of acidbase reactions from Robert Boyle's The Sceptical Chemist are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe what can be done quite simply with a chemical equation.
Goodney, David E. J. Chem. Educ. 2006, 83, 1001.
Acids / Bases |
Descriptive Chemistry |
Nonmajor Courses |
Reactions |
Nomenclature / Units / Symbols
Octachem Model: Organic Chemistry Nomenclature Companion  Joaquin Palacios
The Octachem model is an educational physical model designed to guide students in the identification, classification, and naming of the chemical structures of organic compounds. In this article the basic concepts of Octachem model are presented, and the physical model and contents are described.
Palacios, Joaquin. J. Chem. Educ. 2006, 83, 890.
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amines / Ammonium Compounds |
Esters |
Ethers |
Nomenclature / Units / Symbols
Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts  Gerard Parkin
The purpose of this article is to clarify the terms valence, oxidation number, coordination number, formal charge, and number of bonds and illustrate how the valence of an atom in a molecule provides a much more meaningful criterion for establishing the chemical reasonableness of a molecule than does the oxidation number.
Parkin, Gerard. J. Chem. Educ. 2006, 83, 791.
Coordination Compounds |
Covalent Bonding |
Lewis Structures |
Oxidation State |
Nomenclature / Units / Symbols
The Rainbow Wheel and Rainbow Matrix: Two Effective Tools for Learning Ionic Nomenclature  Joseph S. Chimeno, Gary P Wulfsberg, Michael J. Sanger, and Tammy J. Melton
This study compared the learning of ionic nomenclature by three different methods, one traditional and the other two using game formats. The game formats were found to be more effective in helping students develop a working knowledge of chemical nomenclature.
Chimeno, Joseph S.; Wulfsberg, Gary P.; Sanger, Michael J.; Melton, Tammy J. J. Chem. Educ. 2006, 83, 651.
Enrichment / Review Materials |
Nomenclature / Units / Symbols |
Nonmajor Courses
Revisiting Molar Mass, Atomic Mass, and Mass Number: Organizing, Integrating, and Sequencing Fundamental Chemical Concepts  Stephen DeMeo
It is often confusing for introductory chemistry students to differentiate between molar mass, atomic mass, and mass number as well as to conceptually understand these ideas beyond a surface level. One way to improve understanding is to integrate the concepts, articulate their relationships, and present them in a meaningful sequence.
DeMeo, Stephen. J. Chem. Educ. 2006, 83, 617.
Descriptive Chemistry |
Enrichment / Review Materials |
Nomenclature / Units / Symbols |
Physical Properties
Nomenclature Made Practical: Student Discovery of the Nomenclature Rules  Michael C. Wirtz, Joan Kaufmann, and Gary Hawley
Presents a method to teach chemical nomenclature to students in an introductory chemistry course that utilizes the discovery-learning model. Inorganic compounds are grouped into four categories and introduced through separate activities interspersed throughout the first semester to provide context and avoid confronting the student with all of the nomenclature rules at once.
Wirtz, Michael C.; Kaufmann, Joan; Hawley, Gary. J. Chem. Educ. 2006, 83, 595.
Nomenclature / Units / Symbols |
Nonmetals |
Student-Centered Learning
Acrostic Puzzles in the Classroom  Dorothy Swain
Acrostic puzzles are an effective vehicle to expose students to the history and philosophy of science without lecturing.
Swain, Dorothy. J. Chem. Educ. 2006, 83, 589.
Atomic Properties / Structure |
Enrichment / Review Materials |
Nomenclature / Units / Symbols |
Nonmajor Courses |
Periodicity / Periodic Table
If It's Resonance, What Is Resonating?  Robert C. Kerber
This article reviews the origin of the terminology associated with the use of more than one Lewis-type structure to describe delocalized bonding in molecules and how the original usage has evolved to reduce confusion
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 223.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
The Nature of Hydrogen Bonding  Emeric Schultz
Students use toy connecting blocks and Velcro to investigate weak intermolecular interactions, specifically hydrogen bonds.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 400A.
Noncovalent Interactions |
Hydrogen Bonding |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Covalent Bonding |
Molecular Modeling |
Molecular Properties / Structure
Are Some Elements More Equal Than Others?  Ronald L. Rich
Presents a new periodic chart with 18 columns but no interruptions of atomic numbers at Lanthanum or Actinum, and no de-emphasis of elements 57-71 or 89-103 by seeming to make footnotes of them. It shows some elements more than once in order to illuminate multiple relationships in chemical behavior.
Rich, Ronald L. J. Chem. Educ. 2005, 82, 1761.
Atomic Properties / Structure |
Descriptive Chemistry |
Inner Transition Elements |
Main-Group Elements |
Nomenclature / Units / Symbols |
Oxidation State |
Periodicity / Periodic Table |
Transition Elements
Improving Conceptions in Analytical Chemistry: ci Vi = cf Vf  Margarita Rodríguez-López and Arnaldo Carrasquillo Jr.
A common misconception related to analytical chemistry, which may be generalized as the failure to recognize and to account analytically for changes in substance density, is discussed. A cautionary example is made through the use of mass-based units of composition during volumetric dilution. The correct application of the volumetric dilution equation ci Vi = cf Vf is discussed. A quantitative description of the systematic error introduced by incorrect use of the volumetric dilution equation is also specified.
Rodríguez-López, Margarita; Carrasquillo, Arnaldo, Jr. J. Chem. Educ. 2005, 82, 1327.
Industrial Chemistry |
Nomenclature / Units / Symbols |
Quantitative Analysis |
Solutions / Solvents
Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number  Derek W. Smith
It is argued that the terms valence, covalence, hypervalence, oxidation state, and coordination number are often confused and misused in the literature. It is recommended that use of the term valence, and its associated terminology, should be restricted to simple molecular main group substances and to some oxoacids and derivatives, but avoided in both main group and transition element coordination chemistry.
Smith, Derek W. J. Chem. Educ. 2005, 82, 1202.
Coordination Compounds |
Covalent Bonding |
Main-Group Elements |
Oxidation State
Conceptual Considerations in Molecular Science  Donald T. Sawyer
The undergraduate curriculum and associated textbooks include several significant misconceptions.
Sawyer, Donald T. J. Chem. Educ. 2005, 82, 985.
Catalysis |
Covalent Bonding |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Reactions |
Reactive Intermediates |
Thermodynamics |
Water / Water Chemistry
Electronegativity and the Bond Triangle  Terry L. Meek and Leah D. Garner
The dependence of bond type on two parameters, electronegativity difference (??) and average electronegativity (?av), is examined. It is demonstrated that ionic character is governed by the partial charges of the bonded atoms, and metallic character by the HOMOLUMO band gap.
Meek, Terry L.; Garner, Leah D. J. Chem. Educ. 2005, 82, 325.
Atomic Properties / Structure |
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Main-Group Elements
Empirical Formulas and the Solid State: A Proposal  William B. Jensen
This brief article calls attention to the failure of most introductory textbooks to point out explicitly the fact that nonmolecular solids do not have molecular formulas and suggests some practical remedies for improving textbook coverage of this subject. The inadequacies of the terms "empirical formula" and "molecular formula" are also discussed, and the terms "relative compositional formula" and "absolute compositional formula" are proposed as more appropriate alternatives.
Jensen, William B. J. Chem. Educ. 2004, 81, 1772.
Solid State Chemistry |
Solids |
Stoichiometry |
Nomenclature / Units / Symbols
The Formula for Ammonia Monohydrate  Stephen J. Hawkes
The reality of NH4OH was argued in J. Chem. Educ. and elsewhere a decade ago. Further evidence is now available. My colleague Darrah Thomas has calculated the geometry and bond lengths of H5NO using Gaussian. The calculation was done using the D95 basis set and the B3LYP method.
Hawkes, Stephen J. J. Chem. Educ. 2004, 81, 1569.
Covalent Bonding
Etymology as an Aid to Understanding Chemistry Concepts  Nittala S. Sarma
Recognition of word roots and the pattern of evolution of scientific terms can be helpful in understanding chemistry concepts (gaining knowledge of new concepts represented by related terms). The meaning and significance of various etymological roots, occurring as prefixes and suffixes in technical terms particularly of organic chemistry, are explained in a unified manner in order to show the connection of various concepts vis  vis the terms in currency. The meanings of some special words and many examples are provided.
Sarma, Nittala S. J. Chem. Educ. 2004, 81, 1437.
Nomenclature / Units / Symbols
The Origin of the Mole Concept  William B. Jensen
In response to a reader query, the column traces the origins of the mole concept in chemistry.
Jensen, William B. J. Chem. Educ. 2004, 81, 1409.
Stoichiometry |
Nomenclature / Units / Symbols
SI for Chemists: A Modification  Robert D. Freeman
To correct my original blunder, I recommend that the name "amount of substance" be replaced by "quant" (rather than posos). The word "quant" is in standard dictionaries and has a single meaning related to boating.
Freeman, Robert D. J. Chem. Educ. 2004, 81, 802.
Nomenclature / Units / Symbols
SI for Chemists: Another Position  Tomislav Cvitas
I must say that I agree neither with what was said in the original commentary by R. D. Freeman, nor with the letter by P. Karol.
Cvitas, Tomislav. J. Chem. Educ. 2004, 81, 801.
Nomenclature / Units / Symbols
SI for Chemists: Persistent Problems, Solid Solutions; SI Basic Units: The Kilogram and the Mole  Robert D. Freeman
Karols letter is a prime example of the type of article about which he complains in his first paragraph. There are four major flaws in Karols suggestions.
Freeman, Robert D. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Stoichiometry
SI for Chemists: Persistent Problems, Solid Solutions. SI Basic Units: The Kilogram and the Mole  Paul J. Karol
The persistent perceived problem with the base units kilogram and mole addressed in those journal articles is resolvable once it is finally recognized that we have been using a double standard: the international platinumiridium kilogram prototype and 12C.
Karol, Paul J. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Quantitative Analysis |
Stoichiometry
SI for Chemists: Persistent Problems, Solid Solutions. SI Basic Units: The Kilogram and the Mole  Paul J. Karol
The persistent perceived problem with the base units kilogram and mole addressed in those journal articles is resolvable once it is finally recognized that we have been using a double standard: the international platinumiridium kilogram prototype and 12C.
Karol, Paul J. J. Chem. Educ. 2004, 81, 800.
Nomenclature / Units / Symbols |
Quantitative Analysis |
Stoichiometry
Exothermic Bond Breaking: A Persistent Misconception  William C. Galley
Surveys taken the past several years at the onset of an introductory physical chemistry course reveal that the vast majority of students believe that bond breaking is exothermic.
Galley, William C. J. Chem. Educ. 2004, 81, 523.
Covalent Bonding |
Calorimetry / Thermochemistry
Functional Group Wordsearch  Terry L. Helser
This puzzle contains 24 names and terms from organic chemistry in a 12 ? 12 letter matrix. A descriptive narrative with underlined spaces to be filled gives clues to the terms students need to find.
Helser, Terry L. J. Chem. Educ. 2004, 81, 517.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Organic Chemistry Wordsearch  Terry L. Helser
This puzzle contains 27 names and terms from organic chemistry in a 13 ? 13 letter matrix. A descriptive narrative with underlined spaces to be filled gives clues to the terms students need to find.
Helser, Terry L. J. Chem. Educ. 2004, 81, 515.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Caveman Chemistry: 28 Projects, from the Creation of Fire to the Production of Plastics (Kevin M. Dunn)  Michael S. Matthews
In Caveman Chemistry, Kevin Dunn presents a historically oriented hands-on introduction to chemistry and chemical technology that is tremendously entertaining.
Matthews, Michael S. J. Chem. Educ. 2004, 81, 490.
Stoichiometry |
Oxidation / Reduction |
Applications of Chemistry |
Nomenclature / Units / Symbols |
Natural Products |
Nonmajor Courses
Teaching Molecular Geometry with the VSEPR Model  Ronald J. Gillespie
The difficulties associated with the usual treatment of the VB and MO theories in connection with molecular geometry in beginning courses are discussed. It is recommended that the VB and MO theories should be presented only after the VSEPR model either in the general chemistry course or in a following course, particularly in the case of the MO theory, which is not really necessary for the first-year course.
Gillespie, Ronald J. J. Chem. Educ. 2004, 81, 298.
Covalent Bonding |
Molecular Properties / Structure |
Main-Group Elements |
Theoretical Chemistry |
VSEPR Theory |
MO Theory
Reactions (→) vs Equations (=)  S. R. Logan
A recent chemical kinetics text uses an equals sign for an overall reaction, whereas an arrow is used in each of the reaction steps that are proposed to constitute the mechanism, and for any elementary process.
Logan, S. R. J. Chem. Educ. 2003, 80, 1258.
Kinetics |
Nomenclature / Units / Symbols |
Reactions |
Mechanisms of Reactions
Organic Nomenclature  David B. Shaw and Laura R. Yindra
Organic Nomenclature is a drill-and-practice exercise in naming organic compounds (using both common and IUPAC names) and identifying structural formulas. It consists of multiple-choice questions where a name or formula is given and the correct formula or name is chosen from a list of five possible answers.
Shaw, David B.; Yindra, Laura R. J. Chem. Educ. 2003, 80, 1223.
Nomenclature / Units / Symbols
Writing Electron Dot Structures   Kenneth R. Magnell
Drill with feedback for students learning to write electron dot structures.
Magnell, Kenneth R. J. Chem. Educ. 2003, 80, 711.
Covalent Bonding |
Lewis Structures |
Resonance Theory |
Enrichment / Review Materials
Inorganic Nomenclature   David Shaw
Drill-and-practice exercises in naming and writing formulas for ionic and covalent inorganic compounds.
Shaw, David. J. Chem. Educ. 2003, 80, 711.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Organic Functional Group Playing Card Deck  Michael J. Welsh
Organic functional group playing card deck used for review of the name and structure of organic functional groups that can be used to play any game that a normal deck of cards is used for.
Welsh, Michael J. J. Chem. Educ. 2003, 80, 426.
Nomenclature / Units / Symbols |
Nonmajor Courses |
Enrichment / Review Materials |
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amides |
Amines / Ammonium Compounds |
Aromatic Compounds |
Carboxylic Acids |
Esters |
Ethers |
Mechanisms of Reactions |
Synthesis
The Molecular Model Game  Stephanie A. Myers
Student teams must draw Lewis structures and build models of various molecules and polyatomic ions; different team members have different responsibilities.
Myers, Stephanie A. J. Chem. Educ. 2003, 80, 423.
Molecular Properties / Structure |
Covalent Bonding |
Lewis Structures |
VSEPR Theory |
Enrichment / Review Materials
The Name Game: Learning the Connectivity between the Concepts  Marina C. Koether
Game in which students review words (names of elements and compounds, instrumentation, types of reactions) using an ice-breaker-type activity; each student given a word that they can't see but everyone else can; must learn their name by asking as few yes-no questions as possible.
Koether, Marina C. J. Chem. Educ. 2003, 80, 421.
Instrumental Methods |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Terminology: Four Puzzles from One Wordsearch  Terry L. Helser
Tips for constructing multiple wordsearch puzzles; example of a lab safety wordsearch provided.
Helser, Terry L. J. Chem. Educ. 2003, 80, 414.
Nomenclature / Units / Symbols |
Learning Theories |
Enrichment / Review Materials
Find the Symbols of Elements Using a Letter Matrix Puzzle  V. D. Kelkar
Letter matrix puzzle using chemical symbols.
Kelkar, V. D. J. Chem. Educ. 2003, 80, 411.
Periodicity / Periodic Table |
Main-Group Elements |
Transition Elements |
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Mole, Mole per Liter, and Molar: A Primer on SI and Related Units for Chemistry Students  George Gorin
A brief historical overview of the SI system, the concept of the mole and the definition of mole unit, the status of the liter in the metric and SI systems, and the meaning of molar and molarity.
Gorin, George. J. Chem. Educ. 2003, 80, 103.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Enrichment / Review Materials
What's in a Name?   Robert M. Hanson
Quiz that asks questions that are helpful in determining what is happening in an aqueous solution.
Hanson, Robert M. J. Chem. Educ. 2002, 79, 1380.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry
The Chemical Name Game  Robert M. Hanson
Provides practice in learning about names and properties of chemical species.
Hanson, Robert M. J. Chem. Educ. 2002, 79, 1380.
Nomenclature / Units / Symbols |
Descriptive Chemistry |
Physical Properties
An Interactive Graphical Approach to Temperature Conversions  Jonathan Mitschele
Activity to demonstrate the relationship between the Fahrenheit and Celsius temperature scales by graphing measurements of English- and metric-unit thermometers.
Mitschele, Jonathan. J. Chem. Educ. 2002, 79, 1235.
Nomenclature / Units / Symbols |
Chemometrics |
Calorimetry / Thermochemistry
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
A Three-Dimensional Model for Water  J. L. H. Johnson and S. H. Yalkowsky
Using Molymod spheres and magnets to simulate the structure and properties of water and aqueous systems.
Johnson, J. L. H.; Yalkowsky, S. H. J. Chem. Educ. 2002, 79, 1088.
Aqueous Solution Chemistry |
Covalent Bonding |
Lipids |
Liquids |
Solutions / Solvents |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
An Evergreen: The Tetrahedral Bond Angle  Marten J. ten Hoor
Summary and analysis of derivations of the tetrahedral bond angle.
ten Hoor, Marten J. J. Chem. Educ. 2002, 79, 956.
Molecular Properties / Structure |
Covalent Bonding
Chemistry Formatter Add-ins for Microsoft Word and Excel  Christopher King
MS Word and Excel add-ins that automatically convert chemistry symbols and notations.
King, Christopher. J. Chem. Educ. 2002, 79, 896.
Nomenclature / Units / Symbols
How We Teach Molecular Structure to Freshmen  Michael O. Hurst
Examination of how textbooks discuss various aspects of molecular structure; conclusion that much of general chemistry is taught the way it is for historical and not pedagogical reasons.
Hurst, Michael O. J. Chem. Educ. 2002, 79, 763.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure |
Lewis Structures |
VSEPR Theory |
Valence Bond Theory |
MO Theory
Correctly Expressing Atomic Weights (re J. Chem. Educ. 2000, 77, 1438)  Moreno Paolini, Giovanni Cercignani, and Carlo Bauer
Alternative units in which to express atomic weight.
Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo. J. Chem. Educ. 2002, 79, 163.
Nomenclature / Units / Symbols |
Learning Theories
Correctly Expressing Atomic Weights (re J. Chem. Educ. 2000, 77, 1438)  George Gorin
Alternative units in which to express atomic weight.
Gorin, George. J. Chem. Educ. 2002, 79, 163.
Nomenclature / Units / Symbols |
Learning Theories
The Role of Lewis Structures in Teaching Covalent Bonding  S. R. Logan
Difficulties with the Lewis theory of covalent bonding and upgrading it to the Molecular Orbital theory.
Logan, S. R. J. Chem. Educ. 2001, 78, 1457.
Covalent Bonding |
MO Theory |
Nonmajor Courses |
Learning Theories |
Lewis Structures |
Molecular Properties / Structure
Learning the Functional Groups: Keys to Success  Shannon Byrd and David P. Hildreth
Classification activity and scheme for learning functional groups.
Byrd, Shannon; Hildreth, David P. J. Chem. Educ. 2001, 78, 1355.
Nomenclature / Units / Symbols
An Investigation of the Value of Using Concept Maps in General Chemistry  Gayle Nicoll, Joseph S. Francisco, and Mary B. Nakhleh
Study of the degree to which students in introductory chemistry classes linked related concepts; comparisons of a class in which concept mapping was used and another in which it was not.
Nicoll, Gayle; Francisco, Joseph S.; Nakhleh, Mary B. J. Chem. Educ. 2001, 78, 1111.
Covalent Bonding |
Learning Theories
Lewis Structures in General Chemistry: Agreement between Electron Density Calculations and Lewis Structures  Gordon H. Purser
The internuclear electron densities of a series of X-O bonds (where X = P, S, or Cl) are calculated using quantum mechanics and compared to Lewis structures for which the formal charges have been minimized; a direct relationship is found between the internuclear electron density and the bond order predicted from Lewis structures in which formal charges are minimized.
Purser, Gordon H. J. Chem. Educ. 2001, 78, 981.
Covalent Bonding |
Computational Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Quantum Chemistry
Krebs Cycle Wordsearch  Terry L. Helser
Puzzle with 46 names, terms, prefixes, and acronyms that describe the citric acid (Krebs) cycle.
Helser, Terry L. J. Chem. Educ. 2001, 78, 515.
Metabolism |
Nomenclature / Units / Symbols
Glycolysis Wordsearch  Terry L. Helser
Puzzle with 30 names, terms, prefixes, and acronyms that describe glycolysis and fermentation.
Helser, Terry L. J. Chem. Educ. 2001, 78, 503.
Metabolism |
Nomenclature / Units / Symbols |
Carbohydrates
b-Oxidation Wordsearch  Terry L. Helser
Puzzle with 36 names, terms, prefixes, and acronyms that describe lipid metabolism.
Helser, Terry L. J. Chem. Educ. 2001, 78, 483.
Metabolism |
Nomenclature / Units / Symbols |
Lipids
Protein Structure Wordsearch  Terry L. Helser
Puzzle with 37 names, terms, prefixes, and acronyms that describe protein structure.
Helser, Terry L. J. Chem. Educ. 2001, 78, 474.
Proteins / Peptides |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
Fast Ionic Migration of Copper Chromate  Adolf Cortel
Among the many demonstrations of ionic migration in an electric field, the ones showing the migration of colored Cu+2 and CrO4-2 ions are popular. The demonstration described here introduces some modifications to allow a fast displacement of these ions.
Cortel, Adolf. J. Chem. Educ. 2001, 78, 207.
Covalent Bonding |
Electrophoresis |
Separation Science
Correctly Expressing Atomic Weights   Moreno Paolini, Giovanni Cercignani, and Carlo Bauer
Proposal on the basis of clear-cut formulas that, contrary to customary statements, atomic and molecular weights should be expressed as dimensional quantities (masses) in which the Dalton (= 1.663 x 10-24 g) is taken as the unit.
Paolini, Moreno; Cercignani, Giovanni; Bauer, Carlo. J. Chem. Educ. 2000, 77, 1438.
Nomenclature / Units / Symbols |
Learning Theories
Are We Taking Symbolic Language for Granted?   Paul Marais and Faan Jordaan
This study formed part of a broader investigation into the role of language in teaching and learning chemical equilibrium. Students were tested for their understanding of 25 words and five symbols commonly used in connection with chemical equilibrium. This test showed that most of the students had an inadequate grasp of the meaning of all five symbols. It also showed that, on the average, their understanding of symbols was more problematic than their understanding of words.
Marais, Paul; Jordaan, Faan. J. Chem. Educ. 2000, 77, 1355.
Equilibrium |
Nomenclature / Units / Symbols
Learning about Atoms, Molecules, and Chemical Bonds: A Case Study of Multiple-Model Use  William R. Robinson
A report from the journal Science Education focusing on the Harrison and Treagust article Learning about Atoms, Molecules, and Chemical Bonds: A Case Study.
Robinson, William R. J. Chem. Educ. 2000, 77, 1110.
Learning Theories |
Kinetic-Molecular Theory |
Molecular Modeling |
Covalent Bonding
News from Online: Learning Communities  Carolyn Sweeney Judd
Summary of a variety of online, chemistry resources.
Judd, Carolyn Sweeney. J. Chem. Educ. 2000, 77, 808.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Classroom Nomenclature Games--BINGO  Thomas D. Crute
The use of games in the chemistry classroom can provide instruction, feedback, practice, and fun. A modification of a BINGO game to chemical nomenclature and a specific application to alkanes are described. Tips on preparation of materials, and suggested variations including inorganic nomenclature are presented.
Crute, Thomas D. J. Chem. Educ. 2000, 77, 481.
Learning Theories |
Nomenclature / Units / Symbols |
Nonmajor Courses
Sugar Wordsearch  Terry L. Helser
Wordsearch puzzle containing 29 names, terms, prefixes and acronyms that describe sugars and their polymers.
Helser, Terry L. J. Chem. Educ. 2000, 77, 480.
Carbohydrates |
Nomenclature / Units / Symbols
Lipid Wordsearch  Terry L. Helser
Wordsearch puzzle containing 37 names, terms, prefixes and acronyms that describe lipids.
Helser, Terry L. J. Chem. Educ. 2000, 77, 479.
Lipids |
Nomenclature / Units / Symbols
How to Make Learning Chemical Nomenclature Fun, Exciting, and Palatable  Joseph Chimeno
One great challenge that introductory chemistry students have is learning the names of various chemical compounds. To make chemical nomenclature fun, exciting, and palatable, the "Rainbow Wheel" was developed at North Iowa Area Community College.
Chimeno, Joseph. J. Chem. Educ. 2000, 77, 144.
Nomenclature / Units / Symbols
The Use of Extent of Reaction in Introductory Courses  Sebastian G. Canagaratna
This article discusses the use of the extent of reaction as an alternative to the traditional approach to stoichiometry in first-year chemistry. The method focuses attention on the reaction as a whole rather than on pairs of reagents as in the traditional approach. The balanced equation is used as the unit of change.
Canagaratna, Sebastian G. J. Chem. Educ. 2000, 77, 52.
Stoichiometry |
Thermodynamics |
Nomenclature / Units / Symbols
Amino Acids, Aromatic Compounds, and Carboxylic Acids: How Did They Get Their Common Names?  Sam H. Leung
This article provides a brief survey of the origins of the common names of some amino acids, aromatic compounds, and carboxylic acids.
Leung, Sam H. J. Chem. Educ. 2000, 77, 48.
Amino Acids |
Aromatic Compounds |
Nomenclature / Units / Symbols |
Carboxylic Acids
A Comment on Molecular Geometry   Frank J. Gomba
A method of determining the correct molecular geometry of simple molecules and ions with one central atom is proposed. While the usual method of determining the molecular geometry involves first drawing the Lewis structure, this method can be used without doing so. In fact, the Lewis structure need not be drawn at all. The Lewis structure may be drawn as the final step, with the geometry of the simple molecule or ion already established.
Gomba, Frank J. J. Chem. Educ. 1999, 76, 1732.
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
The Use of Molecular Modeling and VSEPR Theory in the Undergraduate Curriculum to Predict the Three-Dimensional Structure of Molecules  Brian W. Pfennig and Richard L. Frock
Despite the simplicity and elegance of the VSEPR model, however, students often have difficulty visualizing the three-dimensional shapes of molecules and learning the more subtle features of the model, such as the bond length and bond angle deviations from ideal geometry that accompany the presence of lone pair or multiple bond domains or that result from differences in the electronegativity of the bonded atoms, partial charges and molecular dipole moments, and site preferences in the trigonal bipyramidal electron geometry.
Pfennig, Brian W.; Frock, Richard L. J. Chem. Educ. 1999, 76, 1018.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
The Evolution of the Celsius and Kelvin Temperature Scales and the State of the Art  Julio Pellicer, M. Amparo Gilabert, and Ernesto Lopez-Baeza
A physical analysis is given of the evolution undergone by the Celsius and Kelvin temperature scales, from their definition to the present day.
Pellicer, Julio; Gilabert, M. Amparo; Lopez-Baeza, Ernesto. J. Chem. Educ. 1999, 76, 911.
Nomenclature / Units / Symbols |
Thermodynamics |
Learning Theories
Letters  
Extending the rule for rounding significant figures of products and quotients.
Hawkes, Stephen J. J. Chem. Educ. 1999, 76, 897.
Nomenclature / Units / Symbols
Calculating Units with the HP 48G Calculator  Matthew E. Morgan
The HP 48G's units function can make simple calculations, such as converting grams to moles, or more complex unit analysis, such as gas law calculations. Examples and calculator keystrokes for both of these examples are included in this article.
Morgan, Matthew E. J. Chem. Educ. 1999, 76, 631.
Learning Theories |
Nomenclature / Units / Symbols
Periodic Puns for the Classroom  Paul E. Vorndam
Some puns on the names of the elements are presented.
Vorndam, Paul E. J. Chem. Educ. 1999, 76, 492.
Nomenclature / Units / Symbols |
Periodicity / Periodic Table |
Learning Theories
Using Games To Teach Chemistry. 2. CHeMoVEr Board Game  Jeanne V. Russell
A board game similar to Sorry or Parcheesi was developed. Students must answer chemistry questions correctly to move their game piece around the board. Card decks contain questions on balancing equations, identifying the types of equations, and predicting products from given reactants.
Russell, Jeanne V. J. Chem. Educ. 1999, 76, 487.
Stoichiometry |
Nomenclature / Units / Symbols
Using Games to Teach Chemistry. 1. The Old Prof Card Game  Philip L. Granath and Jeanne V. Russell
A card game has been developed and used to teach nomenclature of the elements and their symbols in the first laboratory session of General Chemistry. The game both helps the students learn or review the symbols of the elements and is a good "icebreaker" where students learn the names of other students.
Granath, Philip L.; Russell, Jeanne V. J. Chem. Educ. 1999, 76, 485.
Learning Theories |
Nomenclature / Units / Symbols
A Way To Predict the Relative Stabilities of Structural Isomers  John M. Lyon
This paper discusses a method to evaluate the relative stabilities of structural isomers of inorganic and organic compounds. The method uses a simple set of rules that can be applied with only a knowledge of the electron configuration of the atoms and the periodic trends in atomic size.
Lyon, John M. J. Chem. Educ. 1999, 76, 364.
Covalent Bonding |
Diastereomers |
Molecular Properties / Structure
The Gravity of the Situation  Damon Diemente
This article presents a few calculations demonstrating that gravitational attraction between atoms is many orders of magnitude weaker than the gravitational attraction between Earth and an atom, and that the gravitational attraction between two ions is many orders of magnitude weaker than the electromagnetic attraction between them.
Diemente, Damon. J. Chem. Educ. 1999, 76, 55.
Atomic Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
CHEMiCALC (4000161) and CHEMiCALC Personal Tutor (4001108), Version 4.0 (by O. Bertrand Ramsay)  Scott White and George Bodner
CHEMiCALC is a thoughtfully designed software package developed for use by high school and general chemistry students, who will benefit from the personal tutor mode that helps to guide them through unit conversion, empirical formula, molecular weight, reaction stoichiometry, and solution stoichiometry calculations.
White, Scott; Bodner, George M. J. Chem. Educ. 1999, 76, 34.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
Temperature Scale Conversion as a Linear Equation: True Unit Conversion vs Zero-Offset Correction  Reuben Rudman
The equation used for the interconversion between the Fahrenheit and Celsius temperature scales is in reality the general case of the straight-line equation (y = ax + b). This equation is the paradigm for many of the calculations taught in introductory chemistry.
Rudman, Reuben. J. Chem. Educ. 1998, 75, 1646.
Nomenclature / Units / Symbols |
Chemometrics
Oxygen vs Dioxygen: Diatomic/Monatomic Usage  Sharon, Jared B.
Using the name dioxygen for O2.
Sharon, Jared B. J. Chem. Educ. 1998, 75, 1089.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Solutions / Solvents
An Alternative Framework for Chemical Bonding  William R. Robinson
Recent, qualitative research in science education has uncovered many nave or incorrect ideas about aspects of science commonly held by students and others at all levels. This article discusses how misconceptions can cluster and compound.
Robinson, William R. J. Chem. Educ. 1998, 75, 1074.
Covalent Bonding |
Ionic Bonding
Demonstrations on Paramagnetism with an Electronic Balance  Adolf Cortel
The demonstration shows the paramagnetism of common inorganic compounds by measuring the force with which they are attracted by a magnet over the plate of an electronic balance.
Cortel, Adolf. J. Chem. Educ. 1998, 75, 61.
Magnetic Properties |
Atomic Properties / Structure |
Covalent Bonding
Celsius to Fahrenheit and Vice Versa - Quick, Exact, and Neat  S. C. Dutta Roy
A quick, exact, and neat method is given for conversion of Celsius to Fahrenheit temperatures and vice versa.
Roy, S. C. Dutta. J. Chem. Educ. 1997, 74, 1199.
Learning Theories |
Nomenclature / Units / Symbols
A Note on the Term "Chalcogen"  William B. Jensen
It is argued that the best translation of the term "chalcogen" is "ore former." It is further suggested that the term chalcogenide should be replaced with the term chalcide in order to maintain a parallelism with the terms halogen and halide.
Jensen, William B. J. Chem. Educ. 1997, 74, 1063.
Nomenclature / Units / Symbols |
Periodicity / Periodic Table |
Descriptive Chemistry
Ionization or Dissociation?  Emeric Schultz
The use of the terms Dissociation and Ionization in the teaching of chemistry is discussed. It is suggested that the term dissociation, and what it suggests in terms of ordinary language, is inappropriate when used in certain contexts. Since an alternate and more physically correct term, specifically ionization, is available for these contexts, it is argued that this term be used consistently in these contexts.
Schultz, Emeric. J. Chem. Educ. 1997, 74, 868.
Equilibrium |
Nomenclature / Units / Symbols
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Three Programs for DOS: Abstract of Volume 10B, Number 1 2. Periodic Table Games  John S. Martin
The Periodic Table Games are intended to expose students to the vocabulary of chemistry: formulas, combination rules, and descriptive chemistry. They may be played by an individual against the computer, or by several competing players.
Martin, John S. J. Chem. Educ. 1997, 74, 346.
Descriptive Chemistry |
Periodicity / Periodic Table |
Nomenclature / Units / Symbols
Exponential Notation  Gavin D Peckham
Suggestion for streamlined typing of exponential notation.
Peckham, Gavin D. J. Chem. Educ. 1997, 74, 64.
Nomenclature / Units / Symbols
Interfacing "8088" Computers in the Chemistry Laboratory  James Goodrich and Bill Durham
The goal of using such puzzles is to provide a bit of variety to beginning chemistry students and reduce the tedium of memorizing chemical names.
Goodrich, James; Durham, Bill. J. Chem. Educ. 1996, 73, A130.
Nomenclature / Units / Symbols
Displaying Chemical Formulas in Microsoft Excel  E. Joseph Billo
An Excel macro which automates the entry of subscripts in Excel spreadsheets is described. The macro is assigned to a custom button on Excel's standard toolbar, so that, after typing a text label containing a chemical formula, clicking the button automatically formats the text as a chemical formula.
Billo, E. Joseph. J. Chem. Educ. 1996, 73, A40.
Nomenclature / Units / Symbols
Inorganic Nomenclature  ten Hoor, Marten J.
Inorganic naming schemes should be brought in line with IUPAC recommendations.
ten Hoor, Marten J. J. Chem. Educ. 1996, 73, 825.
Nomenclature / Units / Symbols
Ionization Energies, Electronegativity, Polar Bonds, and Partial Charges  James N. Spencer, Richard S. Moog, and Ronald J. Gillespie
Ionization energies obtained experimentally from photoelectron spectroscopy provide a convenient and simple method for obtaining electronegativity values that correlate well with the standard methods of Pauling, Allred, and Rochow.
James N. Spencer, Richard S. Moog, and Ronald J. Gillespie. J. Chem. Educ. 1996, 73, 627.
Covalent Bonding |
Atomic Properties / Structure |
Spectroscopy
Bonding and Molecular Geometry without Orbitals- The Electron Domain Model  Ronald J. Gillespie, James N. Spencer, and Richard S. Moog
An alternative to the conventional valence bond approach to bonding and geometry-the electron domain model-is presented. This approach avoids some of the problems with the standard approach and presents fewer difficulties for the student, while still providing a physical basis for the VSEPR model and a link to the valence bond model.
Ronald J. Gillespie, James N. Spencer, and Richard S. Moog. J. Chem. Educ. 1996, 73, 622.
Atomic Properties / Structure |
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
Why Don't Water and Oil Mix?  Katia Pravia and David F. Maynard
To develop an understanding of the molecular interactions of polar and nonpolar molecules, we have developed two simple and extremely useful overhead projection demonstrations that help students conceptualize the solubility rules.
Katia Pravia and David F. Maynard. J. Chem. Educ. 1996, 73, 497.
Hydrogen Bonding |
Covalent Bonding |
Precipitation / Solubility |
Molecular Properties / Structure
An Excel 4.0 Add-in Function to Calculate Molecular Mass  Christian Hauck
185. In this paper, a Microsoft Excel 4.0 add-in function is presented, which consists of a parser to interpret molecular formulas and a database containing three values for the atomic masses for every element: the mass number of the most abundant isotope, the mass of the most abundant isotope, and the atomic weight.
Hauck, Christian. J. Chem. Educ. 1996, 73, 433.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Dimensional Analysis: An Analogy to Help Students Relate the Concept to Problem Solving  James R. McClure
Using dominoes to help students understand the conversion factor method of dimensional analysis.
McClure, James R. J. Chem. Educ. 1995, 72, 1093.
Nomenclature / Units / Symbols |
Chemometrics
Celsius to Fahrenheit--Quick and Dirty  Colin Hester
Simple algorithm for converting Celsius temperature to Fahrenheit temperature.
Hester, Colin. J. Chem. Educ. 1995, 72, 1026.
Calorimetry / Thermochemistry |
Nomenclature / Units / Symbols |
Chemometrics
Those Baffling Subscripts  Arthur W. Friedel and David P. Maloney
Study of the difficulties students have in interpreting subscripts correctly and distinguishing atoms from molecules when answering questions and solving problems.
Friedel, Arthur W.; Maloney, David P. J. Chem. Educ. 1995, 72, 899.
Nomenclature / Units / Symbols |
Stoichiometry |
Chemometrics
Lewis Structures of Oxygen Compounds of 3p-5p Nonmetals  Darel K. Straub
Procedure for writing Lewis structures of oxygen compounds of 3p-5p nonmetals.
Straub, Darel K. J. Chem. Educ. 1995, 72, 889.
Lewis Structures |
Molecular Properties / Structure |
Covalent Bonding |
Main-Group Elements
Demonstrating a Lack of Reactivity Using a Teflon-Coated Pan  Thomas G. Richmond
Demonstration to illustrate a lack of chemical activity using a Teflon-coated pan.
Richmond, Thomas G.; Krause, Paul F. J. Chem. Educ. 1995, 72, 731.
Reactions |
Covalent Bonding
An Introductory Infrared Spectroscopy Experiment   Kenneth R. Hess, Wendy D. Smith, Marcus W. Thomsen, and Claude H. Yoder
An activity designed to introduce IR spectroscopy as a structure-determining technique to introductory chemistry students.
Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H. J. Chem. Educ. 1995, 72, 655.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
The Chemical Bond Studied by IR Spectroscopy in Introductory Chemistry: An Exercise in Cooperative Learning  Janet S. Anderson, David M. Hayes, and T. C. Werner
Activity that enables introductory chemistry students to run their own IR spectra using a FTIR spectrophotometer as part of learning about the dynamical nature of the chemical bond.
Anderson, Janet S.; Hayes, David M.; Werner, T. C. J. Chem. Educ. 1995, 72, 653.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
Common Textbook and Teaching Misrepresentations of Lewis Structures   Laila Suidan, Jay K. Badenhoop, Eric D. Glendening, and Frank Weinhold
Clarifying leading Lewis structures using computational software.
Suidan, Laila; Badenhoop, Jay K.; Glendening, Eric D.; Weinhold, Frank. J. Chem. Educ. 1995, 72, 583.
Lewis Structures |
Covalent Bonding |
Quantum Chemistry |
Molecular Properties / Structure
Small Scale One-Pot Reactions of Copper, Iron, and Silver  Epp, Dianne N.
Investigation of a series of reactions involving copper, iron, and silver, all conducted with very small quantities in a single well.
Epp, Dianne N. J. Chem. Educ. 1995, 72, 545.
Nomenclature / Units / Symbols |
Reactions |
Acids / Bases |
Precipitation / Solubility
Lewis Structures of Boron Compounds Involving Multiple Bonding  Straub, Darel K.
Considers evidence for multiple bonding in boron compounds and supposed exceptions to the octet rule.
Straub, Darel K. J. Chem. Educ. 1995, 72, 494.
Lewis Structures |
Covalent Bonding
Bond Energy Data Summarized  Kildahl, Nicholas K.
A periodic table that summarizes a variety of bond energy information.
Kildahl, Nicholas K. J. Chem. Educ. 1995, 72, 423.
Periodicity / Periodic Table |
Covalent Bonding |
Ionic Bonding
A Quantitative van Arkel Diagram  Jensen, William B.
Using van Arkel diagrams to schematically represent relationships between ionic, covalent, and metallic bonds.
Jensen, William B. J. Chem. Educ. 1995, 72, 395.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Measuring with a Purpose: Involving Students in the Learning Process  Metz, Patricia A.; Pribyl, Jeffrey R.
Constructivist learning activities for helping students to understand measurement, significant figures, uncertainty, scientific notation, and unit conversions.
Metz, Patricia A.; Pribyl, Jeffrey R. J. Chem. Educ. 1995, 72, 130.
Nomenclature / Units / Symbols |
Chemometrics |
Constructivism
Metric for Me! A Layperson's Guide to the Metric System for Everyday Use with Exercises, Problems, and Estimations (Schoemaker, Robert W.)  
Title of interest.
J. Chem. Educ. 1994, 71, A23.
Nomenclature / Units / Symbols
Candy Sprinkles To Illustrate One Part Per Million  Meloan, Clifton E.; Meloan, Mindy L.; Meloan, John M.
1,000,000 colored candy sprinkles (5,246 g) with a single black one placed in a clear, spherical fish tank.
Meloan, Clifton E.; Meloan, Mindy L.; Meloan, John M. J. Chem. Educ. 1994, 71, 658.
Nomenclature / Units / Symbols
Symbolic Algebra and Stoichiometry  DeToma, Robert P.
Applying symbolic algebra (instead of the factor-label method) to stoichiometry calculations.
DeToma, Robert P. J. Chem. Educ. 1994, 71, 568.
Chemometrics |
Nomenclature / Units / Symbols
Basic Principles of Scale Reading  Peckham, Gavin D.
Steps and basic principles of reading the scales of laboratory instruments.
Peckham, Gavin D. J. Chem. Educ. 1994, 71, 423.
Instrumental Methods |
Laboratory Equipment / Apparatus |
Nomenclature / Units / Symbols
Organic Nomenclature  Shaw, David B.
Drill-and-practice exercise in naming organic compounds and identifying structural formulas.
Shaw, David B. J. Chem. Educ. 1994, 71, 421.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Molecular Properties / Structure
Visualization of the Abstract in General Chemistry  Paselk, Richard A.
A series of software programs for beginning chemistry, including a series of modules addressing the fundamental phenomena associated with bonding, the microscopic phenomena underlying commonly observed systems, and a reference periodic table.
Paselk, Richard A. J. Chem. Educ. 1994, 71, 225.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Periodicity / Periodic Table
Mole and Chemical Amount: A Discussion of the Fundamental Measurements of Chemistry  Gorin, George
Demonstrates that the mole is little different from other units of measurement.
Gorin, George J. Chem. Educ. 1994, 71, 114.
Nomenclature / Units / Symbols
Classifying Substances by Electrical Character: An Alternative to Classifying by Bond Type  Nelson, P. G.
An alternative classification of substances based on their electrical properties.
Nelson, P. G. J. Chem. Educ. 1994, 71, 24.
Conductivity |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Semiconductors
Photon-initiated hydrogen-chlorine reaction: A student experiment at the microscale level   Egolf, Leanne M.; Keiser, Joseph T.
This lab offers a way to integrate the principles of thermodynamics and kinetics as well as other valuable instrumental methods.
Egolf, Leanne M.; Keiser, Joseph T. J. Chem. Educ. 1993, 70, A208.
Covalent Bonding |
Ionic Bonding |
Electrochemistry |
Free Radicals |
Microscale Lab |
Thermodynamics |
Kinetics
Electronegativity and bond type: I. Tripartate separation  Sproul, Gordon D.
As a unifying concept of bonding, electronegativity has been widely applied but gets only a limited treatment in most general chemistry texts.
Sproul, Gordon D. J. Chem. Educ. 1993, 70, 531.
Ionic Bonding |
Covalent Bonding |
Electrochemistry
Transformation of chemistry experiments into real world contexts   Bayer, Richard; Hudson, Bud; Schneider, Jane
Some background on the importance of using lasers to teach concepts in general chemistry and examples of demonstrations under development.
Bayer, Richard; Hudson, Bud; Schneider, Jane J. Chem. Educ. 1993, 70, 323.
Lasers |
Chirality / Optical Activity |
Covalent Bonding
The metric system  Mason, Lynn M.
Metric conversions commonly encountered in chemistry and biology, with tests over each lesson.
Mason, Lynn M. J. Chem. Educ. 1992, 69, 818.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Chemometrics
Misusing "molecular"  Goldberg, David E.
In discussing net ionic equations, the authors of many general chemistry textbooks call the overall equation a "molecular equation", which is misleading at best and incorrect at worst.
Goldberg, David E. J. Chem. Educ. 1992, 69, 776.
Nomenclature / Units / Symbols
Imprecise numbers and incautious safety procedure mar experiment.  Nelson, Robert N.
Problems with significant figures and safety concerns regarding two published experiments.
Nelson, Robert N. J. Chem. Educ. 1992, 69, 688.
Reactions |
Nomenclature / Units / Symbols
The anode and the sunrise.  Mierzecki, Roman.
Etymology of the terms anode and cathode.
Mierzecki, Roman. J. Chem. Educ. 1992, 69, 657.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Nomenclature / Units / Symbols
Teaching inorganic nomenclature: A systematic approach.  Lind, Gerhard.
Convenient flow charts for naming inorganic compounds.
Lind, Gerhard. J. Chem. Educ. 1992, 69, 613.
Nomenclature / Units / Symbols
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Significant figures: A classroom demonstration  Kirksey, H. Graden.
Demonstration to show students the function and importance of significant figures in a measurement.
Kirksey, H. Graden. J. Chem. Educ. 1992, 69, 497.
Nomenclature / Units / Symbols
A mole of salt crystals-Or how big is the Avogadro number?  Hoyt, William.
Calculations designed to help students put the size of Avogadro's number into perspective.
Hoyt, William. J. Chem. Educ. 1992, 69, 496.
Nomenclature / Units / Symbols |
Chemometrics
Views of nursing professionals on chemistry course content for nursing education  Walhout, Justine S.; Heinschel, Judie.
Analysis of survey conducted of deans of schools of nursing, chairs of nursing departments, and registered nurses regarding courses required of nursing students and the importance of different units of measure and 39 chemistry topics to the nursing profession.
Walhout, Justine S.; Heinschel, Judie. J. Chem. Educ. 1992, 69, 483.
Medicinal Chemistry |
Nomenclature / Units / Symbols
Organic Nomenclature (Lampman, Gary)  Damey, Richard F.
An interactive tutorial / drill for naming organic compounds.
Damey, Richard F. J. Chem. Educ. 1990, 67, A220.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Ethers |
Alcohols |
Amines / Ammonium Compounds |
Phenols
Electrochemical conventions: Responses to a provocative opinion (6)  Martin-Sanchez, M.; Martin-Sanchez, MaT
The solution may be to use the etymological meaning of anode and cathode.
Martin-Sanchez, M.; Martin-Sanchez, MaT J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (5)  Sweeting, Linda M.
The chemical potential of the electrons, not their "richness" determines direction of flow.
Sweeting, Linda M. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (4)  Fochi, Giovanni
It is sufficient to show what part of the circuit is the electric generator.
Fochi, Giovanni J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (3)  Woolf, A. A.
There are no shortcuts in teaching the electrochemistry of galvanic cells; the process in each cell must be treated holistically.
Woolf, A. A. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (2)  Castellan, Gilbert W.
The difficulty is not so much confusion over conventions as the actual wrong use of terminology.
Castellan, Gilbert W. J. Chem. Educ. 1990, 67, 991.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (1)  Freeman, Robert D.
There is no convincing evidence of confusion regarding electrochemical conventions and the author's proposed solutions are unacceptable.
Freeman, Robert D. J. Chem. Educ. 1990, 67, 990.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Avogadro's number, moles, and molecules  McCullough, Thomas, CSC
A simple diagram that relates Avogadro's number, moles, and number of atoms / molecules.
McCullough, Thomas, CSC J. Chem. Educ. 1990, 67, 783.
Nomenclature / Units / Symbols |
Stoichiometry
Pop-up units converter  Filby, Gordon; Klusmann, Martin
Program that provides conversion factors and calculations among a variety of units.
Filby, Gordon; Klusmann, Martin J. Chem. Educ. 1990, 67, 770.
Nomenclature / Units / Symbols
Name for the basic physical quantity n, symbol for relative mass  Nelson, P. G.
Recommendations for naming the basic physical quantity n, symbol for relative mass.
Nelson, P. G. J. Chem. Educ. 1990, 67, 628.
Nomenclature / Units / Symbols |
Stoichiometry
A significant example: How many days in a century?  Lisensky, George
Calculating the number of days in a century can help clarify the subject of significant figures.
Lisensky, George J. Chem. Educ. 1990, 67, 562.
Nomenclature / Units / Symbols |
Chemometrics
Magnetic marbles as teaching aids  Hill, John W.
Magnetic marbles are valuable teaching aids for teachers who have steel chalkboards in their classroom.
Hill, John W. J. Chem. Educ. 1990, 67, 320.
Atomic Properties / Structure |
Covalent Bonding |
Ion Exchange
Please, no angstrometer!  Gorin, George
Instead of urging the adoption of more prefixes, there is good reason to propose that some of them be eliminated.
Gorin, George J. Chem. Educ. 1990, 67, 277.
Nomenclature / Units / Symbols
Quantities, Units, and Symbols in Physical Chemistry (Mills, Ian; Cvitas, Tomislav; Homann, Klaus; Kallay, Nikola; Kuchitsu, Kozo)  Freeman, Robert D.
Everything you ever wanted to know about physical quantities, symbols, and units.
Freeman, Robert D. J. Chem. Educ. 1989, 66, A188.
Nomenclature / Units / Symbols
Chemical Nomenclature and Balancing Equations (Bergwall Educational Software)  Kling, Timothy A.
These computer programs deal exclusively with the subjects of inorganic nomenclature and balancing simple equations.
Kling, Timothy A. J. Chem. Educ. 1989, 66, A41.
Nomenclature / Units / Symbols
Exception to solving chem problems without the factor-label approach (the author replies)  Cardulla, Frank
There are other ways to teach problem solving, and they can produce competent, successful, and enthusiastic students.
Cardulla, Frank J. Chem. Educ. 1989, 66, 1066.
Chemometrics |
Nomenclature / Units / Symbols
Exception to solving chem problems without the factor-label approach  Gillette, Marcia L.
The classroom analogy Cardulla uses could be made much more meaningful if it were used to demonstrate the relation between what is obvious and what is not.
Gillette, Marcia L. J. Chem. Educ. 1989, 66, 1065.
Chemometrics |
Nomenclature / Units / Symbols
Amending the IUPAC Green Book  Tykodi, R. J.
Suggested amendments to the IUPAC Green Book regarding standardized chemical terminology and units of measure.
Tykodi, R. J. J. Chem. Educ. 1989, 66, 1064.
Nomenclature / Units / Symbols
Elementary my dear Watson  Helser, Terry L.
A puzzle using the names and symbols of the elements.
Helser, Terry L. J. Chem. Educ. 1989, 66, 980.
Nomenclature / Units / Symbols
Fundamental concepts in the teaching of chemistry: Part 1. The two worlds of the chemist make nomenclature manageable  Loeffler, Paul A.
A proposal to precisely define and consistently employ the terms chemical substance and chemical species; the article uses the classification of matter and nomenclature as examples of the scheme's application.
Loeffler, Paul A. J. Chem. Educ. 1989, 66, 928.
Nomenclature / Units / Symbols |
Learning Theories
Atlantic-Pacific sig figs  Stone, Helen M.
Examples of applications of significant figures in calculations.
Stone, Helen M. J. Chem. Educ. 1989, 66, 829.
Nomenclature / Units / Symbols |
Chemometrics
How to visualize Avogadro's number  van Lubeck, Henk
Three examples to help students visualize the size of a mole.
van Lubeck, Henk J. Chem. Educ. 1989, 66, 762.
Nomenclature / Units / Symbols |
Chemometrics
Different Choices (author response)  Kemp, H.R.
Ronald Rich discusses the use of descriptive units in the problem of calculating the concentration of a 96% sulfuric acid solution of a known density.
Kemp, H.R. J. Chem. Educ. 1989, 66, 271.
Nomenclature / Units / Symbols |
Physical Properties
Different Choices  Rich, Ronald L.
Kemp wisely advocates that the values of physical quantities be treated as independent of the units used.
Rich, Ronald L. J. Chem. Educ. 1989, 66, 271.
Nomenclature / Units / Symbols |
Physical Properties
Concerning Units (author response)  Wadlinger, Robert
Strobel's additional comments are most welcome, especially his electron-volt argument.
Wadlinger, Robert J. Chem. Educ. 1989, 66, 271.
Nomenclature / Units / Symbols
Concerning Units  Strobel, Pierre
Wadlinger rightly pointed out a number of traps and misunderstandings resulting from an omission of such descriptive units as atom or wave. Here are some more examples, which any chemist dealing with some physics is likely to encounter.
Strobel, Pierre J. Chem. Educ. 1989, 66, 270.
Nomenclature / Units / Symbols
Searching Chemical Abstracts Online in undergraduate chemistry: Part 2. Registry (structure) File: molecular formulas, names, and name fragments  Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie
This data base, essentially a subject index, consists of substance names, their Registry Numbers and characteristics, and actual structural representations.
Krumpolc, Miroslav; Trimakas, Diana; Miller, Connie J. Chem. Educ. 1989, 66, 26.
Nomenclature / Units / Symbols |
Molecular Properties / Structure
Chemistry according to ROF (Fee, Richard)  Radcliffe, George; Mackenzie, Norma N.
Two reviews on a software package that consists of 68 programs on 17 disks plus an administrative disk geared toward acquainting students with fundamental chemistry content. For instance, acids and bases, significant figures, electron configuration, chemical structures, bonding, phases, and more.
Radcliffe, George; Mackenzie, Norma N. J. Chem. Educ. 1988, 65, A239.
Chemometrics |
Atomic Properties / Structure |
Equilibrium |
Periodicity / Periodic Table |
Periodicity / Periodic Table |
Stoichiometry |
Physical Properties |
Acids / Bases |
Covalent Bonding
A colorful demonstration to simulate orbital hybridization  Emerson, David W.
A simple, colorful demonstration involving nothing more than several beakers of colored water can speed up student comprehension of hybrid orbitals at the introductory level.
Emerson, David W. J. Chem. Educ. 1988, 65, 454.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
Mnemonic for Z and E nomenclature  Thomas, C. W.
A visual reminder that makes it unnecessary to memorize the German terms.
Thomas, C. W. J. Chem. Educ. 1988, 65, 44.
Diastereomers |
Alkenes |
Nomenclature / Units / Symbols
Writing Chemical Formulas, Review I (Ross, Don)  Sweeney-Hammond, Kathleen
Program to give students practice in writing chemical formulas and to facilitate the understanding of balancing positive and negative charges in a chemical formula.
Sweeney-Hammond, Kathleen J. Chem. Educ. 1987, 64, A90.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
Writing Chemical Formulas, Review I (Ross, Don)  Pavlovich, Joseph M.
Program to give students practice in writing chemical formulas and to facilitate the understanding of balancing positive and negative charges in a chemical formula.
Pavlovich, Joseph M. J. Chem. Educ. 1987, 64, A88.
Nomenclature / Units / Symbols |
Enrichment / Review Materials
The chemical bond  DeKock, Roger L.
Overview of the chemical bond; considers ionic bonds, covalent bonds, Lewis electron dot structures, polar molecules and hydrogen bonds, and bonding in solid-state elements.
DeKock, Roger L. J. Chem. Educ. 1987, 64, 934.
Ionic Bonding |
Covalent Bonding |
Hydrogen Bonding |
Solid State Chemistry |
Lewis Structures |
Molecular Properties / Structure
Outmoded terminology: The normal hydrogen electrode  Ramette, R. W.
As educators, we should not confuse the "normal hydrogen electrode" with the "standard hydrogen electrode".
Ramette, R. W. J. Chem. Educ. 1987, 64, 885.
Electrochemistry |
Nomenclature / Units / Symbols
The many chemical names for H2O  Treptow, Richard S.
"Inventing" names for water to illustrate the limitations of any naming system.
Treptow, Richard S. J. Chem. Educ. 1987, 64, 697.
Nomenclature / Units / Symbols
Making sense of the nomenclature of the oxyacids and their salts  Rodgers, Glen E.; State, Harold M.; Bivens, L.
An overall scheme or "roadmap" for naming oxyacids and their salts.
Rodgers, Glen E.; State, Harold M.; Bivens, L. J. Chem. Educ. 1987, 64, 409.
Nomenclature / Units / Symbols |
Acids / Bases
Allotropes and polymorphs  Sharma, B. D.
Definitions and examples of allotropes and polymorphs.
Sharma, B. D. J. Chem. Educ. 1987, 64, 404.
Nomenclature / Units / Symbols |
Crystals / Crystallography |
Molecular Properties / Structure
Molar and equivalent amounts and concentrations  Kohman, Truman P.
What are the quantities of which molar and normal are units?
Kohman, Truman P. J. Chem. Educ. 1987, 64, 246.
Stoichiometry |
Nomenclature / Units / Symbols
No rabbit ears on water. The structure of the water molecule: What should we tell the students?  Laing, Michael
Analysis of the bonding found in water and how it results in the observed geometry of the water molecule.
Laing, Michael J. Chem. Educ. 1987, 64, 124.
Molecular Properties / Structure |
MO Theory |
Covalent Bonding
Is the theoretical emperor really wearing any clothes?   Sanderson, R. T.
The author asserts that general chemistry material both pushes material of doubtful value and omits material that is useful to many.
Sanderson, R. T. J. Chem. Educ. 1986, 63, 845.
Theoretical Chemistry |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
SI and non-SI units of concentration: A truce?  Rich, Ronald L.
These authors examine whether a truce could be promoted by filling a chemical gap in the System Internationale with special attention on concentration.
Rich, Ronald L. J. Chem. Educ. 1986, 63, 784.
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
Find-the-pairs  Ryan, Jack
73. Bits and pieces, 29. A computer game that can help students avoid the drudgery of memorizing such essential items as elemental names and symbols or conversion factors.
Ryan, Jack J. Chem. Educ. 1986, 63, 626.
Nomenclature / Units / Symbols
A flowchart for dimensional analysis  Graham, D. M.
A flowchart to help students organize their thoughts when solving conversion problems.
Graham, D. M. J. Chem. Educ. 1986, 63, 527.
Chemometrics |
Nomenclature / Units / Symbols |
Stoichiometry
Where did that number come from?   DeLorenzo, Ronald
With more careful labeling and handling of numbers, instructors can reduce the confusion students sometimes feel when watching problems being solved by the instructor on the board.
DeLorenzo, Ronald J. Chem. Educ. 1986, 63, 514.
Chemometrics |
Nomenclature / Units / Symbols
Coulombic models in chemical bonding. II. Dipole moments of binary hydrides  Sacks, Lawrence J.
A discussion of Coulumbic models and their aid in understanding chemical bonding.
Sacks, Lawrence J. J. Chem. Educ. 1986, 63, 373.
Electrochemistry |
Molecular Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
Competition analogy  Felty, Wayne L.
Using football competition as an analogy for bond polarity.
Felty, Wayne L. J. Chem. Educ. 1985, 62, 869.
Covalent Bonding |
Atomic Properties / Structure
Mathematics in the chemistry classroom. Part 1. The special nature of quantity equations  Dierks, Werner; Weninger, Johann; Herron, J. Dudley
Differences between operation on quantities and operation on numbers and how chemical quantities should be described mathematically.
Dierks, Werner; Weninger, Johann; Herron, J. Dudley J. Chem. Educ. 1985, 62, 839.
Chemometrics |
Stoichiometry |
Nomenclature / Units / Symbols
Elemental etymology: What's in a name?  Ball, David W.
Summarizes patterns to be found among the origins of the names of the elements.
Ball, David W. J. Chem. Educ. 1985, 62, 787.
Nomenclature / Units / Symbols
The definition and symbols for the quantity called "molarity" or "concentration" and for the SI units of this quantity  Gorin, George
An alternative formulation for concentration and the SI units for this quantity.
Gorin, George J. Chem. Educ. 1985, 62, 741.
Nomenclature / Units / Symbols |
Solutions / Solvents
Conversion of standard thermodynamic data to the new standard state pressure  Freeman, Robert D.
Analyzes the changes that will be required to convert standard thermodynamic data from units of atmospheres to the bar.
Freeman, Robert D. J. Chem. Educ. 1985, 62, 681.
Thermodynamics |
Nomenclature / Units / Symbols
Working backwards is a forward step in the solution of problems by dimensional analysis  Drake, Robert F.
Solving chemistry calculations by determining the units of the desired answer and then working backwards using dimensional analysis.
Drake, Robert F. J. Chem. Educ. 1985, 62, 414.
Chemometrics |
Nomenclature / Units / Symbols
Nuclear synthesis and identification of new elements  Seaborg, Glenn T.
Review of descriptive terms, nuclear reactions, radioactive decay modes, and experimental methods in nuclear chemistry.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 392.
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
The origin and adoption of the Stock system  Kauffman, George B.; Jrgensen, Christian Klixbll
The history and development of the Stock system of inorganic nomenclature.
Kauffman, George B.; Jrgensen, Christian Klixbll J. Chem. Educ. 1985, 62, 243.
Nomenclature / Units / Symbols
Toward a more rational terminology  Tykodi, R. J.
Recommended changes in the terms atomic weight, molecular weight, gram atomic / molecular / formula weights, gram equivalent weight, specific heat / volume / density, and chemical equation.
Tykodi, R. J. J. Chem. Educ. 1985, 62, 241.
Nomenclature / Units / Symbols
Aqueous hydrogen peroxide: Its household uses and concentration units  Webb, Michael J.
Includes some simple weight / volume calculations and their answers.
Webb, Michael J. J. Chem. Educ. 1985, 62, 152.
Aqueous Solution Chemistry |
Consumer Chemistry |
Nomenclature / Units / Symbols |
Solutions / Solvents
Five Avogadro's number problems  Todd, David
Five problems involving Avogadro's number.
Todd, David J. Chem. Educ. 1985, 62, 76.
Nomenclature / Units / Symbols |
Stoichiometry |
Chemometrics
The mole: Questioning format can make a difference  Lazonby, John N.; Morris, Jane E.; Waddington, David J.
Study of 2,695 high school students that found that it is the piecing together of the individual steps involved in mole calculations that presents the main difficulty for students.
Lazonby, John N.; Morris, Jane E.; Waddington, David J. J. Chem. Educ. 1985, 62, 60.
Nomenclature / Units / Symbols |
Stoichiometry
A LAP on moles: Teaching an important concept  Ihde, John
The objective of the Learning Activity Packet on moles include understanding the basic concept of the mole as a chemical unit, knowing the relationships between the mole and the atomic weights in the periodic table, and being able to solve basic conversion problems involving grams, moles, atoms, and molecules. [Debut]
Ihde, John J. Chem. Educ. 1985, 62, 58.
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics |
Atomic Properties / Structure |
Molecular Properties / Structure |
Periodicity / Periodic Table
Polar Covalence (Sanderson, R. T.)  Sturgeon, George D.

Sturgeon, George D. J. Chem. Educ. 1984, 61, A327.
Covalent Bonding
A new meaning of the terms acid and base hydrolysis  Milic, Nikola B.
Suggestions for distinguishing between solvation, hydration, and solvolysis, and hydrolysis reactions that produce hydroxo and protonated complexes.
Milic, Nikola B. J. Chem. Educ. 1984, 61, 1066.
Acids / Bases |
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Solutions / Solvents
The unit gram/mole and its use in the description of molar mass  Gorin, G.
How is molar mass related to the quantity called "molecular (or atomic) weight"?
Gorin, G. J. Chem. Educ. 1984, 61, 1045.
Nomenclature / Units / Symbols |
Stoichiometry
The emergence of stochastic theories: What are they and why are they special?  Freeman, Gordon R.
Examines the word stochastic and its opposite, deterministic, and points out why stochastic models are receiving new emphasis of late.
Freeman, Gordon R. J. Chem. Educ. 1984, 61, 944.
Kinetics |
Nomenclature / Units / Symbols
Chemical bonding simulation  Pankuch, Brian J.
54. Bits and pieces, 21. A computerized simulation that allows students to build molecules from specific atoms using concepts of VSEPR theory and electronegativity.
Pankuch, Brian J. J. Chem. Educ. 1984, 61, 791.
VSEPR Theory |
Covalent Bonding
Natural sources of ionizing radiation  Bodner, George M.; Rhea, Tony A.
Units of radiation measurement, calculations of radiation dose equivalent, sources of ionizing radiation and its biological effects.
Bodner, George M.; Rhea, Tony A. J. Chem. Educ. 1984, 61, 687.
Natural Products |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols
Models to depict hybridization of atomic orbitals  Stubblefield, C. T.
Six models of hybridization: linear, trigonal, tetrahedral, planar, trigonal bipyrimidal, and octahedral.
Stubblefield, C. T. J. Chem. Educ. 1984, 61, 158.
Atomic Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Coordination Compounds
Teaching factor-label method without sleight of hand  Garrett, James M.
As an aid in teaching the factor-label method, the author has developed a rather simple card game involving the matching of symbols and colors.
Garrett, James M. J. Chem. Educ. 1983, 60, 962.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols
Electron-dot structures of O2 and NO: Ignored gems from the work of J. W. Linnett  Levy, Jack B.
The presented treatment makes it easier for students to make predictive models with electron-dot structures.
Levy, Jack B. J. Chem. Educ. 1983, 60, 404.
Lewis Structures |
MO Theory |
Covalent Bonding
The spilled can of paint   Perkins, Robert
The writer describes a problem for students to work out in order to better understand units of conversion.
Perkins, Robert J. Chem. Educ. 1983, 60, 343.
Nomenclature / Units / Symbols |
Chemometrics
A novel classification of concentration units  MacCarthy, Patrick
Concentration units can be a source of confusion for students. This article presents a treatment on this topic that may help students understand the differences between these units.
MacCarthy, Patrick J. Chem. Educ. 1983, 60, 187.
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
Numbers in chemical names  Fernelius, W. Conard
Discusses the various ways that numbers are used in the formulas and names of chemical compounds.
Fernelius, W. Conard J. Chem. Educ. 1982, 59, 964.
Nomenclature / Units / Symbols |
Oxidation State
The underprepared student, scientific literacy and Piaget: Reflections on the role of measurement in scientific discussion  Kurland, Daniel J.
The need for an explicit instructional component that stresses the notion of measurement as a means of physical description.
Kurland, Daniel J. J. Chem. Educ. 1982, 59, 574.
Learning Theories |
Nomenclature / Units / Symbols
A needed replacement for the customary description of chemical bonding  Sanderson, R. T.
Description of and encouragement to use an alternative to the covalent / ionic model for chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1982, 59, 376.
Covalent Bonding |
Ionic Bonding
The Nature of the Chemical Bond, Review 2 (Pauling, Linus)  Morlan, Gordon E.
Classic book on the valence-bond theory of chemical bonding.
Morlan, Gordon E. J. Chem. Educ. 1982, 59, 261.
Covalent Bonding
The Nature of the Chemical Bond, Review 1 (Pauling, Linus)  Roe, Robert, Jr.
Classic book on the valence-bond theory of chemical bonding.
Roe, Robert, Jr. J. Chem. Educ. 1982, 59, 260.
Covalent Bonding
Powers of ten  Herman Miller, Inc.
New version of the 1968 original.
Herman Miller, Inc. J. Chem. Educ. 1982, 59, 166.
Nomenclature / Units / Symbols
How much cholesterol is in your body?  Chamizo G., Jose Antonio
Calculations involving the size and proportion of the body consisting of cholesterol.
Chamizo G., Jose Antonio J. Chem. Educ. 1982, 59, 151.
Nomenclature / Units / Symbols |
Lipids
The extinction coefficient: S.I. and the dilemma of its units-six options  Wigfield, Donald C.
Six options for dealing with units in regards to the extinction coefficient.
Wigfield, Donald C. J. Chem. Educ. 1982, 59, 27.
Nomenclature / Units / Symbols
How big is Avogadro's number (or how small are atoms, molecules and ions)  Fulkrod, John E.
Calculating the volume occupied by Avogadro's number of drops of water helps students understand the magnitude of this quantity while giving them practice at using scientific notation and the metric system.
Fulkrod, John E. J. Chem. Educ. 1981, 58, 508.
Nomenclature / Units / Symbols |
Chemometrics |
Stoichiometry
Notation for order of addition  Niewahner, J. H.
The notation described here will enable a student to include in the chemical equation an implied statement regarding the order of addition.
Niewahner, J. H. J. Chem. Educ. 1981, 58, 461.
Reactions |
Nomenclature / Units / Symbols
Introduction to chemical nomenclature  Friedstein, Harriet

Friedstein, Harriet J. Chem. Educ. 1981, 58, 414.
Nomenclature / Units / Symbols
Tetrahedral bonding in CH4. An alternative explanation  Rees, Thomas
Using the VSEPR theory to conduct a thought experiment regarding the bonding and structure of methane.
Rees, Thomas J. Chem. Educ. 1980, 57, 899.
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Groups and subgroups in the periodic table of the elements: A proposal of modification in the nomenclature  Araneo, Antonio
A proposal to eliminate the "A" and "B" designations of subgroups and replace them with letters referring directly to the electronic structures of atoms.
Araneo, Antonio J. Chem. Educ. 1980, 57, 784.
Periodicity / Periodic Table |
Nomenclature / Units / Symbols |
Atomic Properties / Structure
An applied exam in coordination chemistry  Pantaleo, Daniel C.
Students draw from a pool of stock chemicals and answer questions based on its formula and observed properties.
Pantaleo, Daniel C. J. Chem. Educ. 1980, 57, 669.
Coordination Compounds |
Nomenclature / Units / Symbols
A "road map" problem for freshman chemistry students  Burness, James H.
Question suitable for a take-home type of exam.
Burness, James H. J. Chem. Educ. 1980, 57, 647.
Gases |
Solutions / Solvents |
Stoichiometry |
Nomenclature / Units / Symbols |
Chemometrics
Bent-bond models using framework molecular models  Sund, Eldon H.; Suggs, Mark W.
Using tubing to represent double and triple bonds.
Sund, Eldon H.; Suggs, Mark W. J. Chem. Educ. 1980, 57, 638.
Molecular Modeling |
Alkenes |
Alkynes |
Covalent Bonding
Compact comments  Rhodes, Gale; Goodmanson, David
A clear derivation of a temperature scale interconversion equation can be carried out by plotting temperatures of one scale against corresponding temperatures of the other.
Rhodes, Gale; Goodmanson, David J. Chem. Educ. 1980, 57, 506.
Nomenclature / Units / Symbols
Chem-deck: How to learn to write the formulas of chemical compounds (or lose your shirt)  Sherman, Alan; Sherman, Sharon J.
A game that helps students learn to name compounds and write chemical formulas.
Sherman, Alan; Sherman, Sharon J. J. Chem. Educ. 1980, 57, 503.
Nomenclature / Units / Symbols
Correlating Celsius and Fahrenheit temperatures by the "unit calculus"  Gorin, George
Deriving the mathematical relationship between Celsius and Fahrenheit temperatures.
Gorin, George J. Chem. Educ. 1980, 57, 350.
Nomenclature / Units / Symbols |
Chemometrics
Bent bonds and multiple bonds  Robinson, Edward A.; Gillespie, Ronald J.
Considers carbon-carbon multiple bonds in terms of the bent bond model first proposed by Pauling in 1931.
Robinson, Edward A.; Gillespie, Ronald J. J. Chem. Educ. 1980, 57, 329.
Covalent Bonding |
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Alkynes
Adopting SI units in introductory chemistry  Davies, William G.; Moore, John W.
Conventions associated with SI units, conversion relationships commonly used in chemistry, and a roadmap method for solving stoichiometry problems.
Davies, William G.; Moore, John W. J. Chem. Educ. 1980, 57, 303.
Nomenclature / Units / Symbols |
Chemometrics
Prospects and retrospects in chemical education  Pauling, Linus
Pauling provides suggestions for what concepts to focus on in an elementary chemistry course.
Pauling, Linus J. Chem. Educ. 1980, 57, 38.
Covalent Bonding |
Descriptive Chemistry |
Molecular Properties / Structure
Physical and chemical properties and bonding of metallic elements  Myers, R. Thomas
137. Common textbook errors concerning the physical and chemical properties, conductivity and bonding of metals.
Myers, R. Thomas J. Chem. Educ. 1979, 56, 712.
Physical Properties |
Metallic Bonding |
Metals |
Covalent Bonding
Electronegativity, bond energy, and chemical reactivity  Myers, R. Thomas
The Pauling electronegativity concept can be used to help rationalize several kinds of chemical reactions.
Myers, R. Thomas J. Chem. Educ. 1979, 56, 711.
Atomic Properties / Structure |
Covalent Bonding |
Reactions
Response to Comments on "SI Units? A Camel is a Camel"  Adamson, Arthur W.
Comments on an earlier article regarding SI units.
Adamson, Arthur W. J. Chem. Educ. 1979, 56, 665.
Nomenclature / Units / Symbols
Letters on SI Units  Dingledy, David
Comments on an earlier article regarding SI units.
Dingledy, David J. Chem. Educ. 1979, 56, 665.
Nomenclature / Units / Symbols
Letters on SI Units  Heslop, R. B.
Comments on an earlier article regarding SI units.
Heslop, R. B. J. Chem. Educ. 1979, 56, 665.
Nomenclature / Units / Symbols
An apologia for accepting at least an approximation to SI  Wright, P. G.
Comments on earlier articles regarding SI units.
Wright, P. G. J. Chem. Educ. 1979, 56, 663.
Nomenclature / Units / Symbols
On finding a middle ground for SI  Nelson, Robert A.
Comments on an earlier article regarding SI units.
Nelson, Robert A. J. Chem. Educ. 1979, 56, 661.
Nomenclature / Units / Symbols
Empirical formulas  Ryan, Dennis P.
This question forces one to duplicate the line of reasoning used by Dalton in his initial formulation of atomic weights; it tests for the ability to deduce atomic sizes and to calculate empirical formulas.
Ryan, Dennis P. J. Chem. Educ. 1979, 56, 528.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Periodicity / Periodic Table
Bond free energies  Amador, Alberto
Provides standard free energies for the formation of common single and multiple bonds.
Amador, Alberto J. Chem. Educ. 1979, 56, 453.
Covalent Bonding |
Thermodynamics
Loosely-bound diatomic molecules  Balfour, W. J.
Over the past decade, careful spectroscopic studies have established the existence of bound rare gas and alkaline earth diatomic molecules.
Balfour, W. J. J. Chem. Educ. 1979, 56, 452.
Covalent Bonding |
Molecular Properties / Structure
Hey, watch your language!  Herron, J. Dudley
If we do not use our words with care, we introduce and reinforce confusion.
Herron, J. Dudley J. Chem. Educ. 1979, 56, 330.
Nomenclature / Units / Symbols
The ambit of chemistry  Vitz, Edward W.
Proposal to revise the standard definition of chemistry to one that focusses on atoms and molecules rather than simply matter.
Vitz, Edward W. J. Chem. Educ. 1979, 56, 327.
Nomenclature / Units / Symbols
How many significant digits in 0.05C?  Power, James D.
Textbooks abound with erroneous examples, such as 33F = 0.56C.
Power, James D. J. Chem. Educ. 1979, 56, 239.
Chemometrics |
Nomenclature / Units / Symbols
Lecture projectable atomic orbital cross-sections and bonding interactions  Shepherd, Rex E.
Models using small Styrofoam balls and slinky toys improve student understanding of covalent bonds.
Shepherd, Rex E. J. Chem. Educ. 1978, 55, 317.
Atomic Properties / Structure |
Covalent Bonding |
MO Theory |
Molecular Modeling
The chemical equation. Part I: Simple reactions  Kolb, Doris
A chemical equation is often misunderstood by students as an "equation" that is used in chemistry. However, a more accurate description is that it is a concise statement describing a chemical reaction expressed in chemical symbolism.
Kolb, Doris J. Chem. Educ. 1978, 55, 184.
Stoichiometry |
Chemometrics |
Nomenclature / Units / Symbols |
Reactions
What is an element?  Kolb, Doris
Reviews the history of the discovery, naming, and representation of the elements; the development of the spectroscope and the periodic table; radioactive elements and isotopes; allotropes; and the synthesis of future elements.
Kolb, Doris J. Chem. Educ. 1977, 54, 696.
Periodicity / Periodic Table |
Nuclear / Radiochemistry |
Nomenclature / Units / Symbols |
Isotopes
Equations of electromagnetism from CGS to SI  Cvitas, T.; Kallay, N.
A general procedure for changing any CGS formula into SI.
Cvitas, T.; Kallay, N. J. Chem. Educ. 1977, 54, 530.
Nomenclature / Units / Symbols
A convenient notation for powers of ten and logarithms  Oesterreicher, H.
A convenient notation for powers of ten and logarithms that does not require superscripts.
Oesterreicher, H. J. Chem. Educ. 1977, 54, 367.
Nomenclature / Units / Symbols
Chemical aspects of Bohr's 1913 theory  Kragh, Helge
The chemical content of Bohr's 1913 theory has generally been neglected in the treatises on the history of chemistry; this paper regards Bohr as a theoretical chemist and discusses the chemical aspects of his atomic theory.
Kragh, Helge J. Chem. Educ. 1977, 54, 208.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding |
Theoretical Chemistry
Lower valent oxo acids of phosphorus and sulfur  Fernelius, W. C.; Loening, Kurt; Adams, Roy
Reviews current practice and some of the problems with partial solutions.
Fernelius, W. C.; Loening, Kurt; Adams, Roy J. Chem. Educ. 1977, 54, 30.
Nomenclature / Units / Symbols
Names for elements  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
System for naming new, heavy elements.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1975, 52, 583.
Nomenclature / Units / Symbols
Demonstrations for high school chemistry  Castka, Joseph F.
A sequence of demonstrations that may serve to initiate and maintain student interest in the development of acid-base theories and bond strength.
Castka, Joseph F. J. Chem. Educ. 1975, 52, 394.
Acids / Bases |
Covalent Bonding |
Lewis Acids / Bases |
Brønsted-Lowry Acids / Bases
Computer program for identifying alkane structures  Davidson, Scott
A Fortran IV computer program to identify and name alkane structure having C1-C16 main chains and C1-C4 side chains is available.
Davidson, Scott J. Chem. Educ. 1973, 50, 707.
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Nomenclature / Units / Symbols
The Cooper structure - A simple model to illustrate the tetrahedral geometry of sp3 bonding  Walker, Ruth A.
A cut out model illustrating the tetrahedral geometry of sp3 bonding.
Walker, Ruth A. J. Chem. Educ. 1973, 50, 703.
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding
Electron affinity. The zeroth ionization potential  Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C.
It is the purpose of this article to present the merits of adopting the terminology zeroth ionization potential to describe the energy change that occurs when a gaseous anion loses an electron.
Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C. J. Chem. Educ. 1973, 50, 487.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Derivatives of oxo acids. IUPAC Publications on Nomenclature. Other International Reports. SI Units  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Summarizes the nomenclature of oxo acid derivatives.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1973, 50, 341.
Nomenclature / Units / Symbols |
Acids / Bases
A simple demonstration of O2 paramagnetism. A macroscopically observable difference between VB and MO approaches to bonding theory  Saban, G. H.; Moran, T. F.
A simple apparatus to demonstrate the paramagnetic behavior of oxygen.
Saban, G. H.; Moran, T. F. J. Chem. Educ. 1973, 50, 217.
Molecular Properties / Structure |
Magnetic Properties |
MO Theory |
Covalent Bonding
Strength of chemical bonds  Christian, Jerry D.
Demonstrating the strength of chemical bonds by scaling a molecule up to a macroscopic size.
Christian, Jerry D. J. Chem. Educ. 1973, 50, 176.
Covalent Bonding |
Molecular Properties / Structure |
Metallic Bonding
A socially relevant problem in unit and dimension conversions  Bernstein, Stanley
An activity in which students determine the cheapest source of nutritional iron by considering a variety of food products.
Bernstein, Stanley J. Chem. Educ. 1973, 50, 65.
Nomenclature / Units / Symbols |
Nutrition |
Food Science |
Consumer Chemistry
Positive ions and binary compounds  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Guidelines for the names of positive ions and binary compounds; also errata from past articles in this series.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 844.
Nomenclature / Units / Symbols
Significant digits in logarithm-antilogarithm interconversions  Jones, Donald E.
Most textbooks are in error in the proper use of significant digits when interconverting logarithms and antilogarithms.
Jones, Donald E. J. Chem. Educ. 1972, 49, 753.
Nomenclature / Units / Symbols |
Chemometrics
Gimmicks for mid-year motivation  Adams, Richard C.
Suggestions include directions for making peanut brittle, examining common, antiquated names for chemical compounds, and periodic puns.
Adams, Richard C. J. Chem. Educ. 1972, 49, 536.
Periodicity / Periodic Table |
Consumer Chemistry |
Nomenclature / Units / Symbols
Numbers in nomenclature  Fernelius, W. C.; Loening, Kurt; Adams, Roy M.
Examines how multiplying affixes are used, particularly in inorganic nomenclature.
Fernelius, W. C.; Loening, Kurt; Adams, Roy M. J. Chem. Educ. 1972, 49, 49.
Nomenclature / Units / Symbols
SI units in physico-chemical calculations  Norris, A. C.
This article demonstrates how the adoption of SI units affects some of the more important physico-chemical calculations found at the undergraduate level.
Norris, A. C. J. Chem. Educ. 1971, 48, 797.
Nomenclature / Units / Symbols |
Chemometrics
Solubility and the chemistry of the covalent bond: More on DDT - A substituted alkyl halide  Hill, John W.
Discusses applications of the insolubility of DDT in water and its solubility in covalent fatty tissues.
Hill, John W. J. Chem. Educ. 1970, 47, 634.
Covalent Bonding |
Precipitation / Solubility |
Agricultural Chemistry |
Applications of Chemistry |
Molecular Properties / Structure
The mole again!  Haack, N. H.
Discusses the definition of the mole.
Haack, N. H. J. Chem. Educ. 1970, 47, 324.
Atomic Properties / Structure |
Stoichiometry |
Nomenclature / Units / Symbols
Intensive and extensive properties  Redlich, Otto
Defines and discusses the differences between intensive and extensive properties.
Redlich, Otto J. Chem. Educ. 1970, 47, 154.
Nomenclature / Units / Symbols
Physical versus chemical change  Gensler, Walter J.
Defines and discusses the differences between physical and chemical changes.
Gensler, Walter J. J. Chem. Educ. 1970, 47, 154.
Nomenclature / Units / Symbols
Intensive and extensive properties  Redlich, Otto
Defines and discusses the differences between intensive and extensive properties.
Redlich, Otto J. Chem. Educ. 1970, 47, 154.
Nomenclature / Units / Symbols
The electron-pair repulsion model for molecular geometry  Gmespie, R. J.
Reviews the electron-pair repulsion model for molecular geometry and examines three-centered bonds, cluster compounds, bonding among the transition elements, and exceptions to VSEPR rules.
Gmespie, R. J. J. Chem. Educ. 1970, 47, 18.
Molecular Properties / Structure |
Covalent Bonding |
MO Theory |
VSEPR Theory |
Transition Elements
Ionic versus covalent bonding  Goldish, Dorothy M.
Ionic sodium chloride dissolves in water but covalent benzyl chloride does not.
Goldish, Dorothy M. J. Chem. Educ. 1969, 46, A497.
Ionic Bonding |
Covalent Bonding |
Aqueous Solution Chemistry |
Precipitation / Solubility
Fuel conversion in transport phenomena  Gerlach, E. R.
Calculations comparing the fuel efficiency of a hummingbird with that of a Volkswagen.
Gerlach, E. R. J. Chem. Educ. 1969, 46, 455.
Calorimetry / Thermochemistry |
Chemometrics |
Nomenclature / Units / Symbols
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A.
(1) Suggestions for presenting the relationship between the Fahrenheit and Celsius temperature scales. (2) Why are 4s rather than 3d electrons involved in the first and second ionizations of the first row transition elements? - answer by Haight. (3) The basis for the mnemonic ordering of atomic orbitals. (4) What is a liquid-liquid membrane electrode? Is it the same as an ion-selective electrode? - answer by Rechnitz.
Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A. J. Chem. Educ. 1969, 46, 444.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Transition Elements |
Periodicity / Periodic Table |
Electrochemistry |
Ion Selective Electrodes |
Membranes
The languages of chemistry. Reading, writing, and understanding equations (Walker, Ruth A.; Johnston, Helen)  Fiekers, Bernard A.

Fiekers, Bernard A. J. Chem. Educ. 1968, 45, A620.
Nomenclature / Units / Symbols
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Bolte, John
(1) Is the mole a number or a weight? (2) Is there an easy way to locate a compound by volume and page in Beilstein? (3) What are the stages evident in a gas discharge tube as the pressure of the gas and the voltage are changed? - answer by Bolte
Young, J. A.; Malik, J. G.; Bolte, John J. Chem. Educ. 1968, 45, 718.
Stoichiometry |
Nomenclature / Units / Symbols |
Gases
Mole fraction versus molality  Creak, G. Alan
Mole fractions are not always unambiguous when used in the context of ionic solutions.
Creak, G. Alan J. Chem. Educ. 1968, 45, 622.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Solutions / Solvents
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
Normality and molality: The expendables  Sacks, L. J.
Discusses objections against normality and molality.
Sacks, L. J. J. Chem. Educ. 1968, 45, 183.
Nomenclature / Units / Symbols
Bond energies in the interpretation of descriptive chemistry  Howald, Reed A.
Most of the discrepancy between bond energies and bond dissociation energies is eliminated by the inclusion of pi bonding effects and using bond energies referred to as hypothetical "valence state" atoms in those cases where spin pairing provides substantial stabilization for the free atom.
Howald, Reed A. J. Chem. Educ. 1968, 45, 163.
Descriptive Chemistry |
Covalent Bonding
Atomic structure. Radioactivity (continued)   Alyea, Hubert N.
Formation of the complex Cu(NH3)4++ as an example of coordinate covalent bonding and hydrogen bonding as evidenced by viscosity.
Alyea, Hubert N. J. Chem. Educ. 1967, 44, A599.
Coordination Compounds |
Covalent Bonding |
Hydrogen Bonding |
Liquids
Letter to the editor  Brescia, Frank
Calls on instructors not to confuse students with inappropriate definitions of work.
Brescia, Frank J. Chem. Educ. 1967, 44, 771.
Thermodynamics |
Nomenclature / Units / Symbols
Significant figures and correlation of parameters  DeTar, DeLos F.
Examines the two quite different meanings for the term significant figures as applied to the parameters of an equation.
DeTar, DeLos F. J. Chem. Educ. 1967, 44, 759.
Nomenclature / Units / Symbols
Some simple models for the double quartet approach  Zipp, Arden P.
Pipe cleaners are used to construct simple models for the double quartet or electronic repulsion theory.
Zipp, Arden P. J. Chem. Educ. 1967, 44, 494.
Molecular Modeling |
Covalent Bonding
The significance of significant figures  Pinkerton, Richard C.; Gleit, Chester E.
This paper is an attempt to clarify some of our ideas about numerical data, measurements, mathematical operations, and significant figures.
Pinkerton, Richard C.; Gleit, Chester E. J. Chem. Educ. 1967, 44, 232.
Nomenclature / Units / Symbols |
Chemometrics
The electron repulsion theory of the chemical bond. I. New models of atomic structure  Luder, W. F.
Describes the electron repulsion theory of electron configuration and applies it to representative elements.
Luder, W. F. J. Chem. Educ. 1967, 44, 206.
Atomic Properties / Structure |
Covalent Bonding |
Metals
Models illustrating d orbitals involved in multiple bonding  Barrett, Edward J.
Describes the use of Framework Molecular Orbital Models to illustrate the d orbitals involved in multiple bonding
Barrett, Edward J. J. Chem. Educ. 1967, 44, 146.
Atomic Properties / Structure |
Molecular Modeling |
Covalent Bonding
Textbooks errors. Miscellanea no. 5  Mysels, Karol J.
Considers inconsistencies in the units involved in thermodynamic expressions, incorrect units given for equivalent conductivity, oscillations in polargraphic measurements, and inconsistencies in dealing with catalysis.
Mysels, Karol J. J. Chem. Educ. 1967, 44, 44.
Nomenclature / Units / Symbols |
Thermodynamics |
Catalysis
The MKS temperature scale  Georgian, John C.
A temperature scale to fit into the MKS system of units is proposed.
Georgian, John C. J. Chem. Educ. 1966, 43, 414.
Nomenclature / Units / Symbols
Letter to the editor  Onwood, D. P.
Discusses variations in the usage of the terms "acid" and "base," including Lowry-Bronsted and Lewis systems.
Onwood, D. P. J. Chem. Educ. 1966, 43, 335.
Acids / Bases |
Lewis Acids / Bases |
Nomenclature / Units / Symbols
Molecules versus moles  Guggenheim, E. A.
Now that the mass of molecules is known with great accuracy, there is nothing to be gained in continuing to use moles.
Guggenheim, E. A. J. Chem. Educ. 1966, 43, 250.
Stoichiometry |
Nomenclature / Units / Symbols
IV - Isoelectronic systems  Bent, Henry A.
A detailed consideration of the principles of isoelectric systems.
Bent, Henry A. J. Chem. Educ. 1966, 43, 170.
Gases |
Nonmetals |
Covalent Bonding
General chemistry exercise using atomic and molecular orbital models  Walker, Ruth A.
Styrofoam balls and pipecleaners are used to construct models designed to convey an understanding of the three-dimensionality of the electron distribution in the ground state atom and the effect of bonding on this distribution.
Walker, Ruth A. J. Chem. Educ. 1965, 42, 672.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
III - Bond energies  Benson, Sidney W.
Examines bond dissociation energies , methods for measuring such energies, some representative values of such energies, structural aspects of bond dissociation energies, and bond energies in ionized species.
Benson, Sidney W. J. Chem. Educ. 1965, 42, 502.
Covalent Bonding
Units of measurement: An early application of Avogadro's number  Brasted, Robert C.
A comparison is made between the measured volume of a regular metallic solid and its theoretical volume as calculated using Avogadro's number.
Brasted, Robert C. J. Chem. Educ. 1965, 42, 472.
Stoichiometry |
Nomenclature / Units / Symbols |
Metals |
Physical Properties
Experiments on metal amine salts  Haight, G. P., Jr.
Tetrammine monaquo copper(II) sulfate is prepared and studied qualitatively and quantitatively.
Haight, G. P., Jr. J. Chem. Educ. 1965, 42, 468.
Metals |
Covalent Bonding |
Hydrogen Bonding |
Qualitative Analysis |
Quantitative Analysis
A temperature-independent concentration unit  Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr.
Describes a new system of concentration, termed molicity by the authors.
Blumberg, A. A.; Siska, P. E.; San Filippo, Joseph, Jr. J. Chem. Educ. 1965, 42, 420.
Nomenclature / Units / Symbols |
Solutions / Solvents
Simplified temperature conversion  Midgley, Calvin P.
This simple method for temperature conversion can be done without pencil and paper.
Midgley, Calvin P. J. Chem. Educ. 1965, 42, 322.
Nomenclature / Units / Symbols
Derivation of equations for the interconversion of concentration units  Mills, Alfred P.
Presents the derivation of equations for the interconversion of concentration units.
Mills, Alfred P. J. Chem. Educ. 1965, 42, 314.
Nomenclature / Units / Symbols
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Modified exponential number notation  Frigerio, Norman A.
Suggests the notation 1P3 and 1N3 to represent 1000 and 0.001, respectively.
Frigerio, Norman A. J. Chem. Educ. 1965, 42, 213.
Nomenclature / Units / Symbols
An MKS system of units for chemists  Strong, Frederick C.
It would be worth investigating whether the MKS system would be useful in chemistry.
Strong, Frederick C. J. Chem. Educ. 1964, 41, 621.
Nomenclature / Units / Symbols
Systematic names for the tartaric acids  Baxter, J. N.
Examines the use of the small capital letters D and L in naming tartaric acids.
Baxter, J. N. J. Chem. Educ. 1964, 41, 619.
Nomenclature / Units / Symbols |
Acids / Bases |
Carbohydrates |
Chirality / Optical Activity |
Enantiomers
Lexicon of international and national units (Clason, W. E.)  Kieffer, William F.

Kieffer, William F. J. Chem. Educ. 1964, 41, 519.
Nomenclature / Units / Symbols
An atomic and molecular orbital models kit  Stone, A. Harris; Siegelman, Irwin
The models presented here allows one to see the overlap that constitutes covalent bonds.
Stone, A. Harris; Siegelman, Irwin J. Chem. Educ. 1964, 41, 395.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
The chemistry of the noble gases  Hyman, Herbert H.
Summarizes the chemistry of the noble gases and their bond-forming abilities.
Hyman, Herbert H. J. Chem. Educ. 1964, 41, 174.
Gases |
Main-Group Elements |
Covalent Bonding
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
A classical electrostatic view of chemical forces  Jaffe, H. H.
This paper reviews the different types of forces involved in the formation of chemical compounds, solids and liquids.
Jaffe, H. H. J. Chem. Educ. 1963, 40, 649.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Noncovalent Interactions
Tangent-sphere models of molecules. II. Uses in Teaching  Bent, Henry A.
Tangent-sphere models can be used to represent highly strained bonds and multicentered bonds, atoms with expanded and contracted octets, inter- and intramolecular interactions, and the effects of electronegative groups, lone pairs, and multiple bonds on molecular geometry, bond properties, and chemical reactivity.
Bent, Henry A. J. Chem. Educ. 1963, 40, 523.
Molecular Properties / Structure |
Covalent Bonding
Chemical bonding and the geometry of molecules (Ryschkewitsch, George E.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1963, 40, 441.
Molecular Properties / Structure |
Covalent Bonding
Relationship of exothermicities of compounds to chemical bonding  Siegel, Bernard
The sign and magnitude of the standard heat of formation of a chemical compound is often used incorrectly to characterize its relative stability compared to other compounds.
Siegel, Bernard J. Chem. Educ. 1963, 40, 308.
Calorimetry / Thermochemistry |
Covalent Bonding
The valence-shell electron-pair repulsion (VSEPR) theory of directed valency  Gillespie, R. J.
Presents the valence-shell electron-pair repulsion (VSEPR) theory of directed valency and its use to determine molecular shapes, bond angles, and bond lengths.
Gillespie, R. J. J. Chem. Educ. 1963, 40, 295.
VSEPR Theory |
Molecular Properties / Structure |
Covalent Bonding
Letters to the editor  Linde, Charlotte
Suggests the term "ionocule" for the opposite of molecule.
Linde, Charlotte J. Chem. Educ. 1963, 40, 270.
Nomenclature / Units / Symbols
Intrinsic bond energies  Siegel, S.; Siegel, B.
Examines intrinsic bond energies drawn from spectroscopic data and focusses on beryllium hydride as an example.
Siegel, S.; Siegel, B. J. Chem. Educ. 1963, 40, 143.
Covalent Bonding |
Molecular Properties / Structure
Non-existent compounds  Dasent, W. E.
The purpose of this review is to examine compounds that do not violate the rules of valence but which are nevertheless characterized by a high degree of instability, and to consider why these structures are unstable or non-existent.
Dasent, W. E. J. Chem. Educ. 1963, 40, 130.
Molecular Properties / Structure |
Covalent Bonding
Letters to the editor  Cockburn, B. L.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Cockburn, B. L. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Letters to the editor  Snatzke, G.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Snatzke, G. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Letters  Goldberg, David E.
The author suggests using the term "continuous chain" rather than "straight" chain so as to reduce confusion regarding the geometry of carbon chains.
Goldberg, David E. J. Chem. Educ. 1962, 39, 319.
Molecular Properties / Structure |
Nomenclature / Units / Symbols
Ultramacro and ultramicro science terms  de Ment, Jack
Proposes a convenient and consistent set of metric prefixes for very large and very small multiples and sub-multiples.
de Ment, Jack J. Chem. Educ. 1962, 39, 587.
Nomenclature / Units / Symbols
Editorially Speaking  Kieffer, William F.
Discussion of the conventions, definitions, and symbols of thermodynamics.
Kieffer, William F. J. Chem. Educ. 1962, 39, 489.
Nomenclature / Units / Symbols |
Thermodynamics
The carbon-12 scale of atomic masses  Labbauf, Abbas
Examines the concept of atomic weight and the rise and coexistence of the oxygen and carbon scales of atomic mass.
Labbauf, Abbas J. Chem. Educ. 1962, 39, 282.
Nomenclature / Units / Symbols |
Physical Properties
Editorially speaking  Kieffer, William F.
Discusses differences between mass and weight.
Kieffer, William F. J. Chem. Educ. 1962, 39, 275.
Physical Properties |
Nomenclature / Units / Symbols
Acids, Bases, and the Chemistry of the Covalent Bond (VanderWerf, Calvin A.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1962, 39, 273.
Acids / Bases |
Covalent Bonding
Demonstrations of simple bonding using magnets  Baker, Wilbur L.
Demonstrates a variety of bonding using iron washers, magnets, and steel balls.
Baker, Wilbur L. J. Chem. Educ. 1962, 39, 131.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Letters  Crawford, Crayton M.
Comments on use of the term equivalent weights and the determination of equivalent mass.
Crawford, Crayton M. J. Chem. Educ. 1961, 38, 637.
Nomenclature / Units / Symbols |
Stoichiometry
Models illustrating types of orbitals and bonding  Baker, Wilbur L.
A short note on a model of ethylene that clarifies the nature of bonding in the molecule.
Baker, Wilbur L. J. Chem. Educ. 1961, 38, 606.
Molecular Modeling |
Alkenes |
Covalent Bonding
Molecular weights by cryoscopy: A general chemistry laboratory experiment  Mikulak, Robert; Runquist, Olaf
Presents an experiment determining the cryoscopic constant of cyclohexanol.
Mikulak, Robert; Runquist, Olaf J. Chem. Educ. 1961, 38, 557.
Nomenclature / Units / Symbols
Moles and equivalents: Quantities of matter  Cohen, Irwin
Examines the various means of describing and measuring quantities of matter, including the mole and the equivalent.
Cohen, Irwin J. Chem. Educ. 1961, 38, 555.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Foy, John R.
Suggests a modification to an earlier proposed definition for the term mole.
Foy, John R. J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Bieber, Theodore I.
Provides a concise definition for the mole.
Bieber, Theodore I. J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
Letters  Cohen, Irwin
Proposes use of the term cardinal weight.
Cohen, Irwin J. Chem. Educ. 1961, 38, 554.
Stoichiometry |
Nomenclature / Units / Symbols
A redefinition of "mole"  Lee, Shiu
Proposes improvements to a set of terms related to gram formula weights.
Lee, Shiu J. Chem. Educ. 1961, 38, 549.
Stoichiometry |
Nomenclature / Units / Symbols
Vibrating molecular models: Frequency shifts in strained ring double bonds  Colthup, Norman B.
Describes the study of the general effect of double bond-single bond interaction using vibrating molecular models.
Colthup, Norman B. J. Chem. Educ. 1961, 38, 394.
Molecular Modeling |
Covalent Bonding
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
Letters  Laughton, P. M.
A short discussion on the meaning of empirical formula.
Laughton, P. M. J. Chem. Educ. 1961, 38, 378.
Nomenclature / Units / Symbols
Is there an alternative to pH?  Crane, Francis E., Jr.
Provides some alternatives to the traditional definition of pH that introductory students may find more intuitive and less confusing.
Crane, Francis E., Jr. J. Chem. Educ. 1961, 38, 365.
pH |
Acids / Bases |
Nomenclature / Units / Symbols
The mole and related quantities  Guggenheim, E. A.
Examines some of the terminology associated with the mole and expressing amounts of substances.
Guggenheim, E. A. J. Chem. Educ. 1961, 38, 86.
Stoichiometry |
Nomenclature / Units / Symbols
Letters (the author replies)  Thompson, H. Bradford
The author acknowledges minor errors in an earlier published article.
Thompson, H. Bradford J. Chem. Educ. 1960, 37, 438.
Atomic Properties / Structure |
Covalent Bonding
Letters  Cohen, Irwin
Points out minor errors in an earlier published article.
Cohen, Irwin J. Chem. Educ. 1960, 37, 438.
Atomic Properties / Structure |
Covalent Bonding
Dynamic projector display for atomic orbitals and the covalent bond  Thompson, H. Bradford
An overhead projector is used to display the combination of simple atomic orbitals to form hybrid and molecular orbitals.
Thompson, H. Bradford J. Chem. Educ. 1960, 37, 118.
Atomic Properties / Structure |
Covalent Bonding
New Prefixes for Units  
Outlines new recommendations for standardized metric prefixes.
J. Chem. Educ. 1960, 37, 85.
Nomenclature / Units / Symbols
Molecular models: A general chemistry exercise  Pierce, James B.
Students are provided a list of bond angles, covalent radii, and van der Waals radii, and sufficient polystyrene spheres, and then asked to construct models of molecules and ions.
Pierce, James B. J. Chem. Educ. 1959, 36, 595.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Letters to the editor  Hall, Arthur C.
The molality-molarity paradox presented in an earlier article is artificial rather than apparent.
Hall, Arthur C. J. Chem. Educ. 1959, 36, 584.
Stoichiometry |
Solutions / Solvents |
Nomenclature / Units / Symbols
A molality-molarity paradox?  Toby, Sidney
The author points out that there seems no obvious reason why molality could not equal molarity in a solution whose density is less than unity.
Toby, Sidney J. Chem. Educ. 1959, 36, 230.
Stoichiometry |
Nomenclature / Units / Symbols |
Solutions / Solvents |
Aqueous Solution Chemistry
Letters  Copley, G. N.
The author proposes terms and symbolism to represent different phase changes.
Copley, G. N. J. Chem. Educ. 1958, 35, 528.
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
Letters  Fisher, D. Jerome
A spirited discussion regarding terminology for crystal classes.
Fisher, D. Jerome J. Chem. Educ. 1958, 35, 214.
Crystals / Crystallography |
Nomenclature / Units / Symbols
Letters  Donohue, Jerry
A spirited discussion regarding terminology for crystal classes.
Donohue, Jerry J. Chem. Educ. 1958, 35, 214.
Crystals / Crystallography |
Nomenclature / Units / Symbols
Nomenclature of phase transition  McDonald, James E.
Discusses the curious situation in which the terminology of chemistry and physics has only five words to describe the six possible transitions between three states of matter.
McDonald, James E. J. Chem. Educ. 1958, 35, 205.
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
Letters  Pokras, Lewis
The author proposes the term "senacule" as analagous to molecule and to be used to refer to ionic species.
Pokras, Lewis J. Chem. Educ. 1958, 35, 159.
Nomenclature / Units / Symbols
Revised inorganic (Stock) nomenclature for the general chemistry student  Brasted, Robert C.
Examines the Stock System as applied to teaching general chemistry and naming binary compounds of nonmetals and metals, complex entities, and oxy-anions.
Brasted, Robert C. J. Chem. Educ. 1958, 35, 136.
Nomenclature / Units / Symbols
Textbook errors: XV. Miscellanea  Mysels, Karol J.
Textbooks errors considered include the solubility of acetates, the effect of light on reactions, tetrahedral carbon, the production of aluminum, and fumaric acid.
Mysels, Karol J. J. Chem. Educ. 1958, 35, 32.
Photochemistry |
Covalent Bonding
A suggested convention for the representation of ionic substances  Sunderwirth, Stanely G.
The author suggests conventions for the representation of ionic substances that may prove less confusing for introductory students.
Sunderwirth, Stanely G. J. Chem. Educ. 1957, 34, 520.
Nomenclature / Units / Symbols
Recent developments concerning the signs of electrode potentials  Licht, Truman S.; deBethune, Andre J.
It is the purpose of this paper to review recent developments concerning the signs of electrode potentials, particularly with respect to single electrode potential, half-reaction potential, and half-cell electromotive force.
Licht, Truman S.; deBethune, Andre J. J. Chem. Educ. 1957, 34, 433.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
Some aspects of organic molecules and their behavior. I. Electronegativity  Reinmuth, Otto
Reviews the concept of electronegativity as a means of helping introductory students understand aspects of organic molecules and their behavior.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 272.
Molecular Properties / Structure |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Covalent Bonding
Lone pair electrons  Fowles, Gerald W. A.
The lone pair electrons, whether in simple or hybrid orbitals, have profound effects on the properties of the molecule; these effects may be discussed as bond angles, dipole moments, bond energies and lengths, and coordination and hydrogen bonding.
Fowles, Gerald W. A. J. Chem. Educ. 1957, 34, 187.
Atomic Properties / Structure |
Covalent Bonding |
Coordination Compounds |
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure
Letters to the editor  Foster, Laurence S.
Thanks a reader for pointing out a misstatement in an earlier article involving atomic mass units and avograms.
Foster, Laurence S. J. Chem. Educ. 1956, 33, 477.
Nomenclature / Units / Symbols |
Atomic Properties / Structure
Letters to the editor  Mayper, Stuart A.
Points out a misstatement in an earlier article involving atomic mass units and avograms.
Mayper, Stuart A. J. Chem. Educ. 1956, 33, 477.
Nomenclature / Units / Symbols |
Atomic Properties / Structure
A chart of chemical compounds based on electronegativities  Yeh, Ping-Yuan
This short note presents a chart of chemical compounds based on the relative electronegativities of the elements.
Yeh, Ping-Yuan J. Chem. Educ. 1956, 33, 134.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding
Movable symbols and formulas as a teaching aid  Lippincott, W. T.; Wheaton, Roger
Movable magnetic squares with symbols and formulas printed on them are used as a visual teaching aid involving a variety of fundamental chemistry concepts.
Lippincott, W. T.; Wheaton, Roger J. Chem. Educ. 1956, 33, 15.
Nomenclature / Units / Symbols |
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Letters to the editor  Weiner, Samuel
Discusses some of the semantic confusions that plague teaching in chemistry.
Weiner, Samuel J. Chem. Educ. 1955, 32, 646.
Nomenclature / Units / Symbols
Trends in chemical education  Currier, Arnold J.
Topics examined include chemical nomenclature, the organization of subject matter in chemistry, carbon chemistry versus qualitative analysis, the laboratory versus the textbook, and supplies in chemistry teachers.
Currier, Arnold J. J. Chem. Educ. 1955, 32, 286.
Nomenclature / Units / Symbols |
Qualitative Analysis
Gram equivalent weights  Meldrum, William B.
The purpose of this paper is to review briefly the subject of equivalent weights and the more directly applicable gram equivalents and to offer a general method by which they may be deduced from chemical equations.
Meldrum, William B. J. Chem. Educ. 1955, 32, 48.
Nomenclature / Units / Symbols |
Stoichiometry
Note on the representation of the electronic structures of acetylene and benzene  Noller, Carl R.
The three dimensional nature of molecular orbitals in acetylene and benzene are illustrated.
Noller, Carl R. J. Chem. Educ. 1955, 32, 23.
Alkenes |
Alkynes |
Aromatic Compounds |
Molecular Properties / Structure |
Covalent Bonding |
MO Theory
The evolution of valence theory and bond symbolism  Mackle, Henry
Traces the historic evolution of valence theory and bond symbolism, including numerical aspects of chemical bonding, the mechanism of chemical bonding and its origins, chemical bonding in organic compounds, stereochemical aspects of chemical bonding, residual valence of unsaturated compounds, and electronic theories of valence.
Mackle, Henry J. Chem. Educ. 1954, 31, 618.
Covalent Bonding
An unconventional representation of multiple bonds  Gillis, Richard G.; Nelson, Peter F.
There are several advantages to differentiating between sigma and pi electrons in representing multiple bonds.
Gillis, Richard G.; Nelson, Peter F. J. Chem. Educ. 1954, 31, 546.
Covalent Bonding
Crossword puzzle solution  Brown, Curtis L.
Solution to a crossword puzzle appearing earlier in this issue of the Journal.
Brown, Curtis L. J. Chem. Educ. 1954, 31, 330.
Nomenclature / Units / Symbols
Crossword puzzle of chemical symbols  Brown, Curtis L.
A crossword puzzle of chemical symbols and molecular formulas.
Brown, Curtis L. J. Chem. Educ. 1954, 31, 298.
Nomenclature / Units / Symbols
Electronegativities in inorganic chemistry. III  Sanderson, R. T.
The purpose of this paper is to illustrate some of the practical applications of electronegativities and charge distribution.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 238.
Atomic Properties / Structure |
Covalent Bonding |
Acids / Bases
Letters to the editor  Steinhardt, Ralph G., Jr.
The author replies to a commentary on his earlier article regarding the definition of "spectrum."
Steinhardt, Ralph G., Jr. J. Chem. Educ. 1954, 31, 217.
Spectroscopy |
Nomenclature / Units / Symbols
Letters to the editor  Rosenbaum, E. J.
Commentary on an earlier article regarding the definition of "spectrum."
Rosenbaum, E. J. J. Chem. Educ. 1954, 31, 216.
Spectroscopy |
Nomenclature / Units / Symbols
Letters to the editor  Lash, M. E.
The author clarifies the definition of critical temperature, which is often stated uncritically in textbooks.
Lash, M. E. J. Chem. Educ. 1954, 31, 102.
Gases |
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
Chemistry of the covalent bond: The first-year course at Brown  Clapp, Leallyn B.
Provides an outline of the first-year chemistry course at Brown University, "The Chemistry of the Covalent Bond."
Clapp, Leallyn B. J. Chem. Educ. 1953, 30, 530.
Covalent Bonding
Letters  Azcuenaga-Chacon, J. V.
The author suggests that valence electrons be called "valentrons."
Azcuenaga-Chacon, J. V. J. Chem. Educ. 1953, 30, 155.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Letters  Brescia, Frank
The author calls for someone to invent another term for the word resonance as applied to the field of molecular structure.
Brescia, Frank J. Chem. Educ. 1952, 29, 261.
Resonance Theory |
Nomenclature / Units / Symbols |
Molecular Properties / Structure
On accenting observations in chemistry  Campbell, J. A.
A chemical equations is, for many a student, such a complete abstraction that he would be hard put to describe the actual observations that would be made in a process for which he was supplied the complete equation.
Campbell, J. A. J. Chem. Educ. 1951, 28, 634.
Reactions |
Stoichiometry |
Nomenclature / Units / Symbols