TIGER

Journal Articles: 137 results
A New "Bottom-Up" Framework for Teaching Chemical Bonding  Tami Levy Nahum, Rachel Mamlok-Naaman, Avi Hofstein, and Leeor Kronik
This article presents a general framework for bonding that can be presented at different levels of sophistication depending on the student's level and needs. The pedagogical strategy for teaching this model is a "bottom-up" one, starting with basic principles and ending with specific properties.
Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Kronik, Leeor. J. Chem. Educ. 2008, 85, 1680.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Materials Science |
MO Theory |
Noncovalent Interactions
On Capillary Rise and Nucleation  R. Prasad
A comparison of capillary rise and nucleation shows that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. This comparison may help to introduce nucleation with capillary rise, a topic familiar to students.
Prasad, R. J. Chem. Educ. 2008, 85, 1389.
Liquids |
Materials Science |
Metallurgy |
Solids
Polymeric, Metallic and Other Glasses in Introductory Chemistry  Stephen J. Hawkes
Polymeric, metallic, and other glasses and their importance are described in a manner suitable for introductory chemistry.
Hawkes, Stephen J. J. Chem. Educ. 2008, 85, 1377.
Consumer Chemistry |
Materials Science |
Phases / Phase Transitions / Diagrams |
Solids
National Chemistry Week  JCE Editorial Staff
JCE offers a wealth of materials for teaching and learning chemistry available in print or at JCE Online (http://www.jce.divched.org). Here are some JCE resources for celebrating National Chemistry Week and its theme, "Having a Ball with Chemistry."
JCE Editorial Staff. J. Chem. Educ. 2008, 85, 1336.
Materials Science
JCE Resources for Chemistry and Sports  Erica K. Jacobsen
This annotated bibliography collects the best that past issues of JCE have to offer related to the 2008 National Chemistry Week theme, "Having a Ball with Chemistry."
Jacobsen, Erica K. J. Chem. Educ. 2008, 85, 1331.
Materials Science
Modern Sport and Chemistry: What a Golf Fanatic Should Know  Scott E. McKay, Timothy Robbins, and Renée S. Cole
This paper focuses on golf and examines some of the structures and properties of materials that have led to significant changes in the skills required to excel at the highest levels of the game.
McKay, Scott E.; Robbins, Timothy; Cole, Renée S. J. Chem. Educ. 2008, 85, 1319.
Consumer Chemistry |
Applications of Chemistry |
Materials Science
Construction of a Polyaniline Nanofiber Gas Sensor  Shabnam Virji, Bruce H. Weiller, Jiaxing Huang, Richard Blair, Heather Shepherd, Tanya Faltens, Philip C. Haussmann, Richard B. Kaner, and Sarah H. Tolbert
The objectives of this lab are to synthesize different diameter polyaniline nanofibers and compare them as sensor materials. Its advantages include simplicity and low cost, making it suitable for both high school and college students, particularly in departments with modest means.
Virji, Shabnam; Weiller, Bruce H.; Huang, Jiaxing; Blair, Richard; Shepherd, Heather; Faltens, Tanya; Haussmann, Philip C.; Kaner, Richard B.; Tolbert, Sarah H. J. Chem. Educ. 2008, 85, 1102.
Acids / Bases |
Aromatic Compounds |
Conductivity |
Hydrogen Bonding |
Oxidation / Reduction |
Oxidation State |
pH |
Polymerization |
Synthesis
Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery  Hiromasa Goto, Hiroyuki Yoneyama, Fumihiro Togashi, Reina Ohta, Akitsu Tsujimoto, Eiji Kita, and Ken-ichi Ohshima
The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level.
Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi. J. Chem. Educ. 2008, 85, 1067.
Aromatic Compounds |
Conductivity |
Electrochemistry |
Materials Science |
Oxidation / Reduction |
Polymerization
A Simplified Synthetic Experiment of YBa2Cu3O7–x Superconductor for First-Year Chemistry Laboratory  Jui-Lin She and Ru-Shi Liu
In this first-year chemistry experiment, a simplified synthetic superconductor is prepared to demonstrate high temperature superconductivity and the Meissner effect.
She, Jui-Lin; Liu, Ru-Shi. J. Chem. Educ. 2008, 85, 825.
Materials Science |
Solid State Chemistry |
Superconductivity |
X-ray Crystallography
Thermal Analysis of Plastics  Teresa D'Amico, Craig J. Donahue, and Elizabeth A. Rais
Students interpret previously recorded scans generated by differential scanning calorimetry and thermal gravimetric analysis to investigate a polypropylene dog bone, a polyethylene terephthalate pop bottle, the plastics in automobile head- and taillights, fishing line and a tea bag, and the rubber tread of an automobile tire.
D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A. J. Chem. Educ. 2008, 85, 404.
Materials Science |
Polymerization |
Thermal Analysis
Pennies and Eggs: Initiation into Inquiry Learning for Preservice Elementary Education Teachers  Donald J. Wink and Jeong Hye Hwang-Choe
Describes two labs incorporating the Science Writing Heuristic in a course for preservice students in elementary education. The first lab is a discovery activity involving the change in composition and mass of pennies in 1982; the second uses flotation methods to separate hard-boiled and uncooked eggs.
Wink, Donald J.; Hwang-Choe, Jeong Hye. J. Chem. Educ. 2008, 85, 396.
Aqueous Solution Chemistry |
Materials Science |
Solutions / Solvents |
Physical Properties
Stuffed Derivatives of Close-Packed Structures  Bodie E. Douglas
Examines a variety of stuffed silica crystal structures in terms of the close-packing of one set of atoms or ions (P sites) with other atoms or ions in tetrahedral (T) or octahedral (O) sites and filled or partially filled layers in the regular pattern, PTOT.
Douglas, Bodie E. J. Chem. Educ. 2007, 84, 1846.
Crystals / Crystallography |
Group Theory / Symmetry |
Materials Science |
Metals |
Solid State Chemistry |
Solids
Benchtop Nanoscale Patterning Using Soft Lithography  Viswanathan Meenakshi, Yelizaveta Babayan, and Teri W. Odom
This paper outlines several nanoscale patterning experiments designed to use readily available and inexpensive materials such as compact discs, glass microscope slides, and curable polymers, and supplemented by an online video lab manual. These labs allow students to generate polymeric and metallic structures with feature sizes as small as 110 nm.
Meenakshi, Viswanathan; Babayan, Yelizaveta; Odom, Teri W. J. Chem. Educ. 2007, 84, 1795.
Materials Science |
Nanotechnology
Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes  Benjamin M. Hutchins, Thomas T. Morgan, Miné G. Ucak-Astarlioglu, and Mary Elizabeth Williams
Visually observed fluorescent colors of quantum dots in conjunction with spectroscopic data show students the additive emission of such mixtures; while some appear to emit white light, their fluorescence peaks remain spectroscopically resolved.
Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Miné G.; Williams, Mary Elizabeth. J. Chem. Educ. 2007, 84, 1301.
Dyes / Pigments |
Fluorescence Spectroscopy |
Materials Science |
Nanotechnology |
Photochemistry |
Qualitative Analysis |
Spectroscopy |
UV-Vis Spectroscopy
Modifying Optical Properties of ZnO Films by Forming Zn1-xCoxO Solid Solutions via Spray Pyrolysis  Anne K. Bentley, Gabriela C. Weaver, Cianán B. Russell, William L. Fornes, Kyoung-Shin Choi, and Susan M. Shih
Presents a simple experiment demonstrating the presence of an energy band gap in a semiconductor and its relationship to the material's composition through observed color and UVvis absorption.
Bentley, Anne K.; Weaver, Gabriela C.; Russell, Cianán B.; Fornes, William L.; Choi, Kyoung-Shin; Shih, Susan M. J. Chem. Educ. 2007, 84, 1183.
Materials Science |
Semiconductors |
Solid State Chemistry |
UV-Vis Spectroscopy
Preparation of CdS Nanoparticles by First-Year Undergraduates  Kurt Winkelmann, Thomas Noviello, and Steven Brooks
First-year undergraduate students prepare bulk and nanometer-sized cadmium sulfide clusters within water-in-oil micelles and calculate particle size using the effective mass model.
Winkelmann, Kurt; Noviello, Thomas; Brooks, Steven. J. Chem. Educ. 2007, 84, 709.
Colloids |
Materials Science |
Nanotechnology |
Micelles |
Semiconductors |
UV-Vis Spectroscopy
Hydrophilic Inorganic Macro-Ions in Solution: Unprecedented Self-Assembly Emerging from Historical "Blue Waters"  Tianbo Liu, Ekkehard Diemann, and Achim Müller
The behavior of supramolecular structures in solution is different from that of simple ions, polymers, surfactant micelles, and colloids. New research involving polyoxometalates, which are fully hydrophilic but tend to self-associate into macro-ionic structures, may change our understanding of inorganic ionic solutions.
Liu, Tianbo; Diemann, Ekkehard; Müller, Achim. J. Chem. Educ. 2007, 84, 526.
Aqueous Solution Chemistry |
Colloids |
Materials Science |
Nanotechnology |
Solutions / Solvents |
Spectroscopy |
Lasers |
Physical Properties
Chemical Nanotechnology: A Liberal Arts Approach to a Basic Course in Emerging Interdisciplinary Science and Technology  Lon A. Porter, Jr.
This course focuses on the basic science behind the major research initiatives in nanotechnology, while revisiting the origins of the field and spotlighting current advances. Students are also challenged to consider the political, economical, environmental, and ethical concerns relating to nanotechnology and its potential impact on modern society.
Porter, Lon A., Jr. J. Chem. Educ. 2007, 84, 259.
Applications of Chemistry |
Materials Science |
Nanotechnology |
Nonmajor Courses |
Surface Science
Introducing New Learning Tools into a Standard Classroom: A Multi-Tool Approach to Integrating Fuel-Cell Concepts into Introductory College Chemistry   Matthew J. DAmato, Kenneth W. Lux, Kenneth A. Walz, Holly Walter Kerby, and Barbara Anderegg
Describes an approach to deliver the science and engineering concepts involved in fuel-cell technology to the introductory college chemistry classroom using traditional lectures, multimedia learning objects, and a lab activity to enhance student learning in a hands-on, interactive manner.
DAmato, Matthew J.; Lux, Kenneth W.; Walz, Kenneth A.; Kerby, Holly Walter; Anderegg, Barbara. J. Chem. Educ. 2007, 84, 248.
Electrochemistry |
Materials Science |
Nanotechnology |
Oxidation / Reduction |
Membranes
Titration of a Solid Acid Monitored By X-Ray Diffraction  Keenan E. Dungey and Paul Epstein
Presents a solid-state laboratory in which students react fixed amounts of zirconium phosphate with increasing equivalents of NaOH(aq). From X-ray diffraction patterns, students calculate the interplanar spacings before and after the reaction. The spacings increase until the molar equivalence point is reached, indicating incorporation of the sodium ion into the crystal.
Dungey, Keenan E.; Epstein, Paul. J. Chem. Educ. 2007, 84, 122.
Acids / Bases |
Crystals / Crystallography |
Materials Science |
Solid State Chemistry |
X-ray Crystallography |
Titration / Volumetric Analysis
Powder Diffraction Simulated by a Polycrystalline Film of Spherical Colloids  Dean J. Campbell and Younan Xia
This article describes a simple way to demonstrate powder diffraction in a classroom setting using a dry film of spherical colloids on a glass substrate.
Campbell, Dean. J.; Xia, Younan. J. Chem. Educ. 2006, 83, 1638.
Crystals / Crystallography |
Mathematics / Symbolic Mathematics |
X-ray Crystallography |
Materials Science
Chemical Bonding Makes a Difference!  Mary Harris
This report describes a PowerPoint presentation that shows how a small difference in bonding can result in a drastic change in the properties of a material.
Harris, Mary. J. Chem. Educ. 2006, 83, 1435.
Enrichment / Review Materials |
Materials Science |
Polymerization |
Carbohydrates
Polymers: Cornerstones of Construction  John P. Droske and Charles E. Carraher, Jr.
This report summarizes the application of natural and synthetic polymers as building materials.
Droske, John P.; Carraher, Charles E., Jr. J. Chem. Educ. 2006, 83, 1428.
Materials Science |
Applications of Chemistry
A Demonstration of Refractive Index Matching Using Isopropyl Alcohol and MgF2  Frederick C. Sauls
Isopropyl alcohol and magnesium fluoride have nearly identical refractive indices; thus a chip of MgF2 disappears when immersed in isopropanol.
Sauls, Frederick C. J. Chem. Educ. 2006, 83, 1170.
Mathematics / Symbolic Mathematics |
Physical Properties |
Solids |
Materials Science
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
From "Greasy Chemistry" to "Macromolecule": Thoughts on the Historical Development of the Concept of a Macromolecule  Pedro J. Bernal
This paper presents a narrative about the historical development of the concept of a macromolecule. It does so to illustrate how the history of science might be used as a pedagogical tool to teach science, particularly to non-majors.
Bernal, Pedro J. J. Chem. Educ. 2006, 83, 870.
Colloids |
Nonmajor Courses |
Polymerization |
Molecular Properties / Structure |
Physical Properties
Demonstrating Void Space in Solids: A Simple Demonstration To Challenge a Powerful Misconception  Mary Whitfield
The concept of bridging analogies is used in a simple demonstration to illustrate the substantial quantity of empty space that remains when solid spheres are packed together. The same demonstration also shows that the percentage of empty space is independent of particle size.
Whitfield, Mary. J. Chem. Educ. 2006, 83, 749.
Atomic Properties / Structure |
Materials Science |
Solids
Calcium Phosphates and Human Beings  Sergey V. Dorozhkin
This article describes the general importance of calcium phosphates for human beings. The basic information on the structure and chemical properties of the biologically relevant calcium phosphates is summarized.
Dorozhkin, Sergey V. J. Chem. Educ. 2006, 83, 713.
Applications of Chemistry |
Bioinorganic Chemistry |
Biotechnology |
Materials Science |
Medicinal Chemistry |
Natural Products
An Introduction to Polymer Processing, Morphology, and Property Relationships through Thermal Analysis of Plastic PET Bottles. Exercises Designed to Introduce Students to Polymer Physical Properties  H. Darrell Iler, Eric Rutt, and Seth Althoff
Through thermal analyses of poly(ethylene terephthlate) (PET) bottles, students are introduced to the relationships between processing, morphology, and physical properties of polymer materials.
Iler, H. Darrell; Rutt, Eric; Althoff, Seth. J. Chem. Educ. 2006, 83, 439.
Applications of Chemistry |
Heat Capacity |
Instrumental Methods |
Materials Science |
Thermal Analysis
Chemical Characterization of Activated Carbon Fibers and Activated Carbons  J. M. Valente Nabais and P. J. M. Carrott
The main objective of this laboratory is the chemical characterization of carbon materials, mainly activated carbons and activated carbon fibers, using several methods to obtain the information without using expensive instruments.
Valente Nabais, J. M.; Carrott, P. J. M. J. Chem. Educ. 2006, 83, 436.
Acids / Bases |
Aqueous Solution Chemistry |
Materials Science |
Surface Science |
Titration / Volumetric Analysis
Intelligent Thermochromic Windows  Ivan P. Parkin and Troy D. Manning
This article covers the background and related science associated with a thermochromic window, a device that changes its reflectance and transmission properties at a specific critical temperature.
Parkin, Ivan P.; Manning, Troy D. J. Chem. Educ. 2006, 83, 393.
Materials Science |
Physical Properties |
Solid State Chemistry
Teaching Chemistry Laboratory Skills in Industrial Contexts  Julianne M. Braun and Carol White
A recently completed project has produced a compilation of 40 laboratory experiments presented within the contexts of five major industries. This article provides a summary of these experiments, along with a discussion of ancillary materials.
Braun, Julianne M.; White, Carol. J. Chem. Educ. 2006, 83, 353.
Applications of Chemistry |
Industrial Chemistry |
Metals |
Polymerization |
Water / Water Chemistry
Gifts from Mother Earth—The Good, the Bad, and the Ugly  Sabine Heinhorst and Gordon C. Cannon
Recent articles from the journal Nature that deal with good, bad, and ugly gifts from Mother Earth are described.
Heinhorst, Sabine; Cannon, Gordon C. J. Chem. Educ. 2006, 83, 196.
Biosynthesis |
Biotechnology |
Natural Products |
Nutrition |
Plant Chemistry |
Polymerization |
Proteins / Peptides
Thermal Degradation and Identification of Heat-Sensitive Polymers. Applications of Pyrolysis and Distillation and Instrumental Methods of Analysis  Stuart C. Clough and Emma W. Goldman
An experiment for undergraduate teaching laboratories is described that involves the identification of samples of polystyrene and poly(methyl methacrylate). This involves the thermal degradation of the polymers (a destructive distillation) into their respective monomers. The monomers are then identified using infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and gas chromatographymass spectrometry.
Clough, Stuart C.; Goldman, Emma W. J. Chem. Educ. 2005, 82, 1378.
Nonmajor Courses |
IR Spectroscopy |
Mass Spectrometry |
NMR Spectroscopy |
Polymerization
Electropolymerized Conducting Polymer as Actuator and Sensor Device: An Undergraduate Electrochemical Laboratory Experiment  María T. Cortés and Juan C. Moreno
A trilayer formed by two conducting polymer films sandwiched around an adhesive polymer layer works as actuator and sensor simultaneously. This device can be bent up to 180 and it can be used as a sensing device of physical chemistry parameters such as cell temperature and electrolyte concentration. In this article, it is shown in a didactic way how to electrochemically synthesize ClO4-doped polypyrrole (PPy) films, how to fabricate a trilayer device, and how to evaluate its actuating and sensing capabilities. The required materials are simple and a complicated setup is not necessary.
Cortés, María T.; Moreno, Juan C. J. Chem. Educ. 2005, 82, 1372.
Electrochemistry |
Materials Science |
Undergraduate Research |
Polymerization |
Applications of Chemistry
Making and Using a Sensing Polymeric Material for Cu2+: An Introduction to Polymers and Chemical Sensing  Jean R. Paddock, Anne T. Maghasi, William R. Heineman, and Carl J. Seliskar
In this experiment, students will be introduced to concepts of polymer chemistry, chemical sensors, metal chelates, spectroscopy, and quantitative analytical methods. A polymer network is generated by students and consists of crosslinked poly(vinyl alcohol) blended with the polyelectrolyte poly(acrylic acid), which is then doped with the spectroscopically-active chelating agent PAN, 1-(2-pyridylazo)-2-napthol. All components of this hydrogel serve as an ion-exchange medium trapping cations that, when exposed to solutions of 2+ metals, can act as a material in a chemical sensor.
Paddock, Jean R.; Maghasi, Anne T.; Heineman, William R.; Seliskar, Carl J. J. Chem. Educ. 2005, 82, 1370.
Quantitative Analysis |
UV-Vis Spectroscopy |
Polymerization |
Ion Exchange |
Quantitative Analysis
Introduction to Photolithography: Preparation of Microscale Polymer Silhouettes  Kimberly L. Berkowski, Kyle N. Plunkett, Qing Yu, and Jeffrey S. Moore
In this experiment, a glass microscope slide acts as the microchip. Students can pattern this "microchip" by layering negative photoresist on the slide using a solution containing monomer, crosslinker, photoinitiator, and dye. The students then cover the photoresist with a photomask, which is the negative of a computer-generated image or text printed on transparency film, and illuminate it with UV light. The photoresist in the exposed area polymerizes into a polymer network with a shape dictated by the photomask. The versatility of this technique is exemplified by allowing each student to fabricate virtually any shape imaginable, including his or her silhouette.
Berkowski, Kimberly L.; Plunkett, Kyle N.; Yu, Qing; Moore, Jeffrey S. J. Chem. Educ. 2005, 82, 1365.
Materials Science |
Applications of Chemistry |
Free Radicals |
Polymerization
Hands-on Classroom Photolithography Laboratory Module To Explore Nanotechnology  Scott J. Stelick, William H. Alger, Jesse S. Laufer, Anna M. Waldron, and Carl A. Batt
Teaching nanotechnology in the high school and undergraduate environment is a challenge given the typical expense of instruments used to create micro- and nano-sized devices. To meet this challenge, a portable optical reduction stepper was designed, fabricated, and optimized for use in classrooms. This unique system was designed to provide a safe, hands-on experience for students to create microscale circuits using photolithography. Students are able to design, fabricate, and test a circuit with dimensions as small as 100 mm.
Stelick, Scott J.; Alger, William H.; Laufer, Jesse S.; Waldron, Anna M.; Batt, Carl A. J. Chem. Educ. 2005, 82, 1361.
Applications of Chemistry |
Enrichment / Review Materials |
Nanotechnology |
Polymerization |
Undergraduate Research
Physical Chemistry at the Nanometer Scale  K. W. Hipps
An overview is provided of the Petroleum Research Fund sponsored summer school, "Physical Chemistry at the Nanometer Scale." Several articles resulting from the school (and printed in this issue) are introduced and placed in perspective from the standpoint of how they might be used in the undergraduate curriculum.
Hipps, K. W. J. Chem. Educ. 2005, 82, 693.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science
Self-Assembled Colloidal Crystals: Visualizing Atomic Crystal Chemistry Using Microscopic Analogues of Inorganic Solids  Neal M. Abrams and Raymond E. Schaak
Monodisperse spherical colloids spontaneously crystallize into close-packed crystals, in analogy to the simple crystal structures of many of the elements. Since colloids are orders of magnitude larger than atoms, students can directly observe crystal structure and behavior in a microscope using colloidal crystals. This laboratory exercise provides a modular series of materials science experiments appropriate for undergraduate chemistry and engineering majors. The individual modules include aspects of chemical synthesis (monodisperse SiO2 and polymer spheres), self-assembly (colloidal crystallization), and structural characterization through microscopy (optical and scanning electron microscopies) and optical spectroscopy (optical diffraction and UVvisible spectroscopy).
Abrams, Neal M.; Schaak, Raymond E. J. Chem. Educ. 2005, 82, 450.
Colloids |
Materials Science |
Solid State Chemistry |
Solids
Color My Nanoworld  Adam D. McFarland, Christy L. Haynes, Chad A. Mirkin, Richard P. Van Duyne, and Hilary A. Godwin
This activity begins with the synthesis of 13 nm-diameter gold nanoparticles by reduction of a gold salt. The students use the resulting nanoparticle solution to explore the size-dependent optical properties of gold nanoparticles.
McFarland, Adam D.; Haynes, Christy L.; Mirkin, Chad A.; Van Duyne, Richard P.; Godwin, Hilary A. J. Chem. Educ. 2004, 81, 544A.
Colloids |
Materials Science |
Nanotechnology |
UV-Vis Spectroscopy |
Metals
Measuring Viscoelastic Deformation with an Optical Mouse  T. W. Ng
A simple demonstration of viscoelasticity can be carried out by attaching a weight to a polymer film and watching it extend over time. For accurate and quantifiable data on the deformation, an electronic displacement sensor should be incorporated. Most of such sensors are expensive. Here, an optical mouse was demonstrated to provide accurate data at low cost. The experiment was also devised in a manner to allow students to learn about viscoelastic deformation experientially.
Ng, T. W. J. Chem. Educ. 2004, 81, 1628.
Consumer Chemistry |
Laboratory Equipment / Apparatus |
Materials Science
Using Organic Light-Emitting Electrochemical Thin-Film Devices To Teach Materials Science  Hannah Sevian, Sean Müller, Hartmut Rudmann, and Michael F. Rubner
Light-emitting thin films provide an excellent opportunity to learn about principles of electrochemistry, spectroscopy, microscopic structure of the solid state, basic circuits, and engineering design. There is currently strong interest in academic and industrial engineering research centering on developing organic light-emitting devices for applications in flat panel displays. In this educational module, designed for high school or introductory undergraduate courses, students learn how to make a ruthenium-based thin-film device. In the process, they learn about the solid-state electrochemistry at work in the film, as well as the electroluminescence that results when current passes through the device.
Sevian, Hannah; Müller, Sean; Rudmann, Hartmut; Rubner, Michael F. J. Chem. Educ. 2004, 81, 1620.
Electrochemistry |
Photochemistry |
Materials Science |
Oxidation / Reduction |
Solid State Chemistry
Spectacular Pseudo-Exfoliation of an Exfoliated–Compressed Graphite  M. Comet, L. Schreyeck, S. Verdan, G. Burato, and H. Fuzellier
This kind of reaction has been called pseudo-exfoliation of carbonaceous material. This demonstration spectacularly illustrates the layered nature of graphite.
Comet, M.; Schreyeck, L.; Verdan, S.; Burato, G.; Fuzellier, H. J. Chem. Educ. 2004, 81, 819.
Materials Science |
Oxidation / Reduction |
Solid State Chemistry
Inorganic Fullerenes, Onions, and Tubes  Andrew P. E. York
Proposed applications for the inorganic fullerenes include electronic devices and storage media, probes and electron microscope tips, and nano-ball bearings and high temperature lubricants.
York, Andrew P. E. J. Chem. Educ. 2004, 81, 673.
Materials Science |
Nanotechnology |
Solid State Chemistry
Boron Clusters Come of Age  Russell N. Grimes
This article attempts to summarize the current state of the art, illustrated by examples selected to convey some of the excitement and possibilities for future exploitation of these remarkable compounds.
Grimes, Russell N. J. Chem. Educ. 2004, 81, 657.
Main-Group Elements |
Materials Science |
Organometallics
Magnetic Particle Technology. A Simple Preparation of Magnetic Composites for the Adsorption of Water Contaminants  Luiz C. A. Oliveira, Rachel V. R. A. Rios, José D. Fabris, Rochel M. Lago, and Karim Sapag
In this article a simple undergraduate laboratory experiment to produce magnetic adsorbents is described. These magnetic materials efficiently adsorb contaminants from water and can be easily removed from the medium by a simple magnetic separation process.
Oliveira, Luiz C.A.; Rios, Rachel V.R.A.; Fabris, José D.; Lago, Rochel M.; Sapag, Karim. J. Chem. Educ. 2004, 81, 248.
Green Chemistry |
Magnetic Properties |
Materials Science |
Separation Science |
Water / Water Chemistry
Challenges at the Molecular Frontier  John W. Moore
Discussion of report "Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering", regarding new frontiers in chemistry, the importance of helping the public and students to better understand the contributions of chemistry, and attracting the best students to the field.
Moore, John W. J. Chem. Educ. 2003, 80, 591.
Biotechnology |
Consumer Chemistry |
Materials Science |
Nanotechnology |
Administrative Issues
Keeping Current with Chemistry  John W. Moore
The importance of incorporating aspects of biochemistry and materials science into the undergraduate chemistry curriculum.
Moore, John W. J. Chem. Educ. 2003, 80, 463.
Professional Development |
Materials Science
The Chemical Adventures of Sherlock Holmes: The Blackwater Escape  Thomas G. Waddell and Thomas R. Rybolt
A chemical mystery involving electrochemistry and featuring Sherlock Holmes and Dr. Watson.
Waddell, Thomas G.; Rybolt, Thomas R. J. Chem. Educ. 2003, 80, 401.
Electrochemistry |
Materials Science |
Qualitative Analysis |
Oxidation / Reduction |
Enrichment / Review Materials |
Applications of Chemistry
A Photolithography Laboratory Experiment for General Chemistry Students   Adora M. Christenson, Gregory W. Corder, Thomas C. DeVore, and Brian H. Augustine
A photolithography laboratory experiment for general chemistry that introduces materials science and the production of microfabricated devices.
Christenson, Adora M.; Corder, Gregory W.; DeVore, Thomas C.; Augustine, Brian H. J. Chem. Educ. 2003, 80, 183.
Kinetics |
Materials Science |
Photochemistry |
Spectroscopy
Chemical Recycling of Pop Bottles: The Synthesis of Dibenzyl Terephthalate from the Plastic Polyethylene Terephthalate  Craig J. Donahue, Jennifer A. Exline, and Cynthia Warner
Procedure in which students depolymerize a common plastic (PET from 2-L pop bottles) under mild conditions using nontoxic chemicals to produce monomer building blocks.
Donahue, Craig J.; Exline, Jennifer A.; Warner, Cynthia. J. Chem. Educ. 2003, 80, 79.
Industrial Chemistry |
Synthesis |
Aromatic Compounds |
Polymerization
The Electrolytic Recovery of Copper from Brass. A Laboratory Simulation of an Industrial Application of Electrical Energy  Domenico Osella, Mauro Ravera, Cristina Soave, and Sonia Scorza
Procedure demonstrating the electrolytic purification of copper.
Osella, Domenico; Ravera, Mauro; Soave, Cristina; Scorza, Sonia. J. Chem. Educ. 2002, 79, 343.
Electrochemistry |
Materials Science |
Metals
Spontaneous Assembly of Soda Straws  D. J. Campbell, E. R. Freidinger, J. M. Hastings, and M. K. Querns
Demonstrating spontaneous assembly using soda straws.
Campbell, D. J.; Freidinger, E. R.; Hastings, J. M.; Querns, M. K. J. Chem. Educ. 2002, 79, 201.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Thermodynamics
LEDs Are Diodes  George C. Lisensky, S. Michael Condren, Cynthia G. Widstrand, Jonathan Breitzer, and Arthur B. Ellis
Comparison of incandescent bulbs with LEDs powered by AC and DC voltages; shows that LEDs are diodes and illustrates the relative energies of different wavelengths of light.
Lisensky, George C.; Condren, S. Michael; Widstrand, Cynthia G.; Breitzer, Jonathan; Ellis, Arthur B. J. Chem. Educ. 2001, 78, 1664A.
Atomic Properties / Structure |
Materials Science |
Nanotechnology |
Solid State Chemistry |
Applications of Chemistry
An Introduction to the Scientific Process: Preparation of Poly(vinyl acetate) Glue  Robert G. Gilbert, Christopher M. Fellows, James McDonald, and Stuart W. Prescott
Exercise to give students experience in scientific processes while introducing them to synthetic polymer colloids.
Gilbert, Robert G.; Fellows, Christopher M.; McDonald, James; Prescott, Stuart W. J. Chem. Educ. 2001, 78, 1370.
Industrial Chemistry |
Noncovalent Interactions |
Surface Science |
Polymerization |
Applications of Chemistry |
Colloids
LEDs: New Lamps for Old and a Paradigm for Ongoing Curriculum Modernization  S. Michael Condren, George C. Lisensky, Arthur B. Ellis, Karen J. Nordell, Thomas F. Kuech, and Steve Stockman
Summary of the key points of a white paper on LEDs as potential replacements for a significant fraction of vehicle, display, home, and workplace lighting, with substantial safety and environmental conserving benefits.
Condren, S. Michael; Lisensky, George C.; Ellis, Arthur B.; Nordell, Karen J.; Kuech, Thomas F.; Stockman, Steve. J. Chem. Educ. 2001, 78, 1033.
Materials Science |
Nanotechnology |
Semiconductors |
Solid State Chemistry |
Applications of Chemistry
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
Interactive Nano-Visualization of Materials over the Internet  Eddie W. Ong, Anshuman Razdan, Antonio A. Garcia, Vincent Pizziconi, B. L. Ramakrishna, and William S. Glaunsinger
By employing a direct visual approach to learning, the Interactive Nano-Visualization in Science and Engineering Education (IN-VSEE) project endeavors to remove many of the conventional barriers that hinder effective teaching and learning by empowering learners with Internet access to revolutionary scanning probe microscopes (SPMs) that can image materials at resolutions down to the atomic scale.
Ong, Eddie W.; Razdan, Anshuman; Garcia, Antonio A.; Pizziconi, Vincent; Ramakrishna, B. L.; Glaunsinger, William S. J. Chem. Educ. 2000, 77, 1114.
Kinetic-Molecular Theory |
Materials Science |
Nanotechnology
Kixium Monolayers: A Simple Alternative to the Bubble Raft Model for Close-Packed Spheres  Keenan E. Dungey
This model focuses on the two-dimensional sheets, which are spontaneously formed from cereal pieces. The structure of the cereal rafts can be presented with an overhead projector.
Dungey, Keenan E. J. Chem. Educ. 2000, 77, 618.
Crystals / Crystallography |
Materials Science |
Solid State Chemistry
Cleaning Up with Chemistry: Investigating the Action of Zeolite in Laundry Detergent  
In this activity, you will investigate the properties of one ingredient, aluminosilicate. The particular aluminosilicate used in powdered laundry detergent is sodium zeolite A. In this activity, you will extract sodium zeolite A from powdered laundry detergent and examine its properties.
J. Chem. Educ. 1999, 76, 1416A.
Materials Science |
Consumer Chemistry |
Applications of Chemistry |
Separation Science |
Water / Water Chemistry |
Ion Exchange
Thermochromism in Commercial Products  Mary Anne White and Monique LeBlanc
Many commercial products change color with a change of temperature. How do they do it? The processes responsible for the two major categories of commercial thermochromic coloring agents are presented, along with a description of applications of thermochromic materials.
White, Mary Anne; LeBlanc, Monique. J. Chem. Educ. 1999, 76, 1201.
Acids / Bases |
Consumer Chemistry |
Materials Science |
Applications of Chemistry
Preparation and Properties of an Aqueous Ferrofluid  Patricia Enzel, Nicholas B. Adelman, Katie J. Beckman, Dean J. Campbell, Arthur B. Ellis, and George C. Lisensky
This paper describes a simple synthesis of an aqueous-based ferrofluid that may be used in an introductory science or engineering laboratory. This paper also describes a method for repelling both oil- and water-based ferrofluid from solid surfaces that would otherwise be stained by the fluid. Finally, a demonstration of the interaction between ferrofluid and magnetic fields, in which ferrofluid is induced to leap upward by a stack of magnets, is described.
Enzel, Patricia; Adelman, Nicholas B.; Beckman, Katie J.; Campbell, Dean J.; Ellis, Arthur B.; Lisensky, George C. J. Chem. Educ. 1999, 76, 943.
Materials Science |
Magnetic Properties |
Nanotechnology |
Stoichiometry |
Colloids
Both Nylon and PET Fibers Burn Continuously under Atmospheric Conditions  Shouei Fujishige, Nagako Maebashi, and Mizue Miyauchi
In contrast to the descriptions in many textbooks, it was confirmed by taking two series of photographs that both nylon and PET fibers burn continuously even after the ignition flame has been removed. The photographs also show that a small spherical fire ball forms and occasionally leaves from the flame.
Fujishige, Shouei; Maebashi, Nagako; Miyauchi, Mizue. J. Chem. Educ. 1999, 76, 793.
Consumer Chemistry |
Materials Science |
Gases |
Laboratory Management
Pushing the Rainbow: Frontiers in Color Chemistry; Light and Color in Chemistry; Report on Two American Chemical Society Presidential Events  Nancy S. Gettys
On Sunday March 21, 1999, the 217th ACS National Meeting in Anaheim, California sponsored two Presidential Events, "Pushing the Rainbow: Frontiers in Color Chemistry" and "Light and Color in Chemistry". The events included 10 exceptional and very different speakers who explored various aspects of the importance of light and color in chemistry and chemistry teaching, in other sciences, and in art and human culture.
Gettys, Nancy S. J. Chem. Educ. 1999, 76, 737.
Conferences |
Photochemistry |
Materials Science |
Applications of Chemistry
Solid State Resources CD-ROM: Abstract of Special Issue 12, 2nd Edition   George C. Lisensky , Joey M. Blackwell, and Arthur B. Ellis
The Solid State Resources CD-ROM for Mac OS and Windows compatible computers has been updated with a new HTML interface and video identical to that published in the General Chemistry Collection, 2nd Edition. This includes both new video and improved versions of some of the movies on the original Solid State Resources CD.
Lisensky, George C.; Blackwell, Joey M.; Ellis, Arthur B. J. Chem. Educ. 1998, 75, 1351.
Materials Science |
Solids
Chemical Etching of Group III - V Semiconductors  Najah J. Kadhim, Stuart H. Laurie, and D. Mukherjee
This article reviews the chemical etchants used for the treatment of GaAs and others III - V. Semiconductors, the factors involved in their mechanism and the many potential pitfalls, arwillan defects associated with them.
Kadhim, Najah J.; Laurie, Stuart H.; Mukherjee, D. J. Chem. Educ. 1998, 75, 840.
Materials Science |
Surface Science |
Physical Properties
The ThermobileTM: A Nitinol-Based Scientific Toy  George B. Kauffman and Isaac Mayo
The "memory metal" Thermobile toy is highlighted.
Kauffman, George B.; Mayo, Isaac. J. Chem. Educ. 1998, 75, 313.
Materials Science |
Metals |
Applications of Chemistry
Elements of Curriculum Reform: Putting Solids in the Foundation  Arthur B. Ellis
Until recently, solids were a relatively small part of the chemistry curriculum. Helping to close this particular gap between the research and educational enterprises was the objective of the Ad Hoc Committee for Solid-State Instructional Materials, formed in 1990.
Ellis, Arthur B. J. Chem. Educ. 1997, 74, 1033.
Materials Science |
Solid State Chemistry |
Nanotechnology |
Magnetic Properties
A Refrigerator Magnet Analog of Scanning-Probe Microscopy  Julie K. Lorenz, Joel A. Olson, Dean J. Campbell, George C. Lisensky, and Arthur B. Ellis
The magnetic interactions between a flexible-sheet refrigerator magnet and a probe tip cut from the same magnet is used as a macroscopic analog of scanning probe microscopies.
Lorenz, Julie K.; Olson, Joel A.; Campbell, Dean J.; Lisensky, George C.; Ellis, Arthur B. J. Chem. Educ. 1997, 74, 1032A.
Surface Science |
Materials Science |
Atomic Properties / Structure |
Nanotechnology |
Magnetic Properties
A Simple Laboratory Demonstration of Electrochromism  Bertil Forslund
A laboratory exercise in which students are asked to construct an electrochromic cell, consisting of a thin, transparent layer of WO3 on a glass plate with a thin, transparent, and conducting surface coating of doped SnO2.
Forslund, Bertil. J. Chem. Educ. 1997, 74, 962.
Electrochemistry |
Materials Science |
Solid State Chemistry
An Inexpensive Kit for Constructing Models of Crystals  Michael Laing
This simple kit comprises five trays, each of 25 square wells, and a lid. It can be used to construct primitive cubic, FCC, BCC, diamond, zinc blende, NaCl, CsCl, rutile, fluorite, perovskite structures. The trays are square tissue culture Petri dishes (multiwell plates). Atoms are represented by glass marbles.
Laing, Michael. J. Chem. Educ. 1997, 74, 795.
Crystals / Crystallography |
Materials Science |
Solid State Chemistry |
Molecular Properties / Structure
Rayon from Dryer Lint: A Demonstration  Michael A. Knopp
Threads of rayon several cm in length formed from ordinary household dryer lint stirred into the traditional Schweizer reagent mixture.
Knopp, Michael A. J. Chem. Educ. 1997, 74, 401.
Polymerization
A Simpler Small Scale Method for the Identification of Plastics  Anderson, Guy E.
Previously a method for separating and identifying plastics was introduced that required the preparation of a series of solutions with different known densities. The procedure described here simplifies the preparation by requiring only one solution.
Anderson, Guy E. J. Chem. Educ. 1996, 73, A173.
Microscale Lab |
Polymerization |
Qualitative Analysis |
Physical Properties
A Polymer "Pollution Solution" Classroom Activity  Terry L. Helser
An active classroom project testing the solubility of foam packing nuggets is described.
J. Chem. Educ. 1996, 73, 843.
Polymerization |
Alcohols
Report on the WPI Conference: General Chemistry and Materials Science: The Interrelationships  Herbert Beall
Of the recent accomplishments of chemistry, some of the most spectacular have been in the area of materials. Materials receive surprisingly little attention as examples of chemical phenomena in fundamental chemistry classes, which are still built largely on the behavior of gases and liquids.
Beall, Herbert. J. Chem. Educ. 1996, 73, 756.
Conferences |
Materials Science
Solid State Resources CD  George C. Lisensky and Arthur B. Ellis
The Solid State Resource CD-ROM is intended to help instructors to integrate materials science examples into introductory chemistry courses.
Lisensky, G. C.; Ellis, A. B. . J. Chem. Educ. 1996, 73, 667.
Solid State Chemistry |
Materials Science
Polymer Science Pilot Program   Mary L. Maier
The Polymer Science Pilot Program consists of a sequence of experiences with polymers, designed to focus upon the ways in which these materials resemble and/or compare with nonpolymers in physical properties, versatility, and function.
Mary L. Maier. J. Chem. Educ. 1996, 73, 643.
Polymerization |
Physical Properties |
Materials Science
Superabsorbent Polymers: An Idea Whose Time Has Come  Fredric L. Buchholz
A simple laboratory preparation of partially neutralized, cross-linked poly(acrylic acid) is given along with test methods suitable for measuring the absorption capacity of the product. Experiments are described that demonstrate the ability of a swelling gel to perform work.
Buchholz, Fredric L. J. Chem. Educ. 1996, 73, 512.
Polymerization |
Consumer Chemistry
Materials in Today's World (Thrower, Peter A.)  Johnson, Brian J.
Text aimed at developing chemistry concepts through the perspective of materials science.
Johnson, Brian J. J. Chem. Educ. 1995, 72, A124.
Materials Science |
Nonmajor Courses
A General Chemistry Course that Focuses on the Emerging Chemical Sciences  Owens, P. M.
Outline of topics considered in a materials, life, and environmental interdisciplinary general science course at the U.S. Military Academy.
Owens, P. M. J. Chem. Educ. 1995, 72, 528.
Materials Science
Polymers and Material Science: A Course for Nonscience Majors   Anderson, Janet S.
In an effort to provide a more appropriate science experience for nonscience majors, a course was designed to introduce them to polymer chemistry and properties.
Anderson, Janet S. J. Chem. Educ. 1994, 71, 1044.
Nonmajor Courses |
Materials Science
Not So Late Night Chemistry with USD  Koppang, Miles D.; Webb, Karl M.; Srinivasan, Rekha R.
Through the program, college students enhance their knowledge and expertise on a chemical topic and gain experience in scientific presentations. They also serve as role models to the high school students who can relate to college students more easily than the chemistry faculty members and their high school students.
Koppang, Miles D.; Webb, Karl M.; Srinivasan, Rekha R. J. Chem. Educ. 1994, 71, 929.
Forensic Chemistry |
Polymerization |
Electrochemistry |
Isotopes |
Acids / Bases
Chemical Magic: Polymers from a Nonexistent Monomer  Seymour, Raymond B.; Kauffman, George B.
Synthesis, properties, and applications of polyvinyl alcohol and related polymers.
Seymour, Raymond B.; Kauffman, George B. J. Chem. Educ. 1994, 71, 582.
Polymerization |
Alcohols
Materials Chemistry Case Study Approach to Facilitate Learning the Fundamentals of Chemistry: Introductory College and Secondary Level  Shultz, Mary Jane
Award in the Course and Curriculum Development (CCD) program for FY1994.
Shultz, Mary Jane J. Chem. Educ. 1994, 71, 507.
Materials Science
Nickel-Titanium Memory Metal: A "Smart" Material Exhibiting a Solid-State Phase Change and Superelasticity  Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C.
Several simple experiments that illustrate the shape-memory, mechanical, and acoustical properties of Nitinol.
Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C. J. Chem. Educ. 1994, 71, 334.
Solid State Chemistry |
Phases / Phase Transitions / Diagrams |
Materials Science |
Applications of Chemistry
Introducing chemistry to chemical engineering students   Bottani, Eduardo Jorge
Description of changes introduced to a general chemistry course for chemical engineering students.
Bottani, Eduardo Jorge J. Chem. Educ. 1993, 70, 935.
Quantum Chemistry |
Materials Science
Slime and poly(vinyl alcohol) fibers: An improved method  Stroebel, Gary G.; Whitesell, Jonathan A.; Kriegel, Robert M.
Students in a day-long Slime Workshop refine the preparation and demonstrations of this ubiquitous classroom polymer.
Stroebel, Gary G.; Whitesell, Jonathan A.; Kriegel, Robert M. J. Chem. Educ. 1993, 70, 893.
Undergraduate Research |
Polymerization
Rolling happy and unhappy balls and their coefficients of friction   Nicholson, Lois
Writer brings to attention some misinformation a previous author had communicated in an attempt to explain the popular demonstration using "happy" and "unhappy" balls made of Neoprene and Polynorborene.
Nicholson, Lois J. Chem. Educ. 1993, 70, 867.
Materials Science
Experiments illustrating metal-insulator transitions in solids  Keller, Steven W.; Mallouk, Thomas E.
Experiments and demonstrations to expose undergraduate students to electronic properties of solids.
Keller, Steven W.; Mallouk, Thomas E. J. Chem. Educ. 1993, 70, 855.
Crystals / Crystallography |
Semiconductors |
MO Theory |
Materials Science
Investigating protective coatings for steel   Runyan, Tom; Herrmann, Mary
Learning about corrosion chemistry provides students with authentic inquiry experience as well as an opportunity to learn relevant and applicable content.
Runyan, Tom; Herrmann, Mary J. Chem. Educ. 1993, 70, 843.
Oxidation / Reduction |
Acids / Bases |
Metals |
Applications of Chemistry |
Consumer Chemistry |
Materials Science
Solid state chemistry: Taught as a comprehensive university course for chemistry students  Boldyreva, Elena V.
While the importance of solid state chemistry for both fundamental chemical science and for modern technology is recognized, there are hardly any comprehensive courses offered for non-specialist students. This author relates her experience in offering such a course.
Boldyreva, Elena V. J. Chem. Educ. 1993, 70, 551.
Solid State Chemistry |
Materials Science
A simple and reliable chemical preparation of YBa2Cu3O7-x superconductors: An experiment in high temperature superconductivity for an advanced undergraduate laboratory  Djurovich, Peter I.; Watts, Richard J.
The popular kits used to engage students in sythetic procedures contain pedagogical flaws. This article presents an alternative to the so-called "shake and bake" kits.
Djurovich, Peter I.; Watts, Richard J. J. Chem. Educ. 1993, 70, 497.
Semiconductors |
Materials Science |
Solid State Chemistry |
Superconductivity
The importance of understanding structure   Galasso, Frank
Solid state chemistry and its link with atomic structure is a topic that is still being neglected in students' education., despite the interesting scientific discoveries and developments that will likely be relevant in students' lives and possible careers.
Galasso, Frank J. Chem. Educ. 1993, 70, 287.
Solid State Chemistry |
Materials Science |
Solids |
Physical Properties
Interfacial polymerizations: Microscale polymer laboratory experiments for undergraduate students.  Lewis, Ronald G.; Choquette, Michael; Darden, Edward H.; Gilbert, Mark P.; Martinez, Douglas; Myhaver, Cindy; Schlichter, Karen; Woudenberg, Richard; Zawistowski, Keith.
Experimental procedure for vinyl polymerizations modified to fit a microscale format.
Lewis, Ronald G.; Choquette, Michael; Darden, Edward H.; Gilbert, Mark P.; Martinez, Douglas; Myhaver, Cindy; Schlichter, Karen; Woudenberg, Richard; Zawistowski, Keith. J. Chem. Educ. 1992, 69, A215.
Polymerization |
Microscale Lab |
Surface Science
Materials chemistry companion to general chemistry: An update  Ellis, Arthur B.; Geselbracht, Margret J.; Greenblatt, Martha; Lisensky, George C.; Robinson, William R.; Whittingham, M. Stanley
Writing of A Materials Chemistry Companion to General Chemistry, a reference for teachers that correlates standard chemistry topics with particular kinds of materials and their applications; includes exercises, demonstrations, and experiments.
Ellis, Arthur B.; Geselbracht, Margret J.; Greenblatt, Martha; Lisensky, George C.; Robinson, William R.; Whittingham, M. Stanley J. Chem. Educ. 1992, 69, 1015.
Materials Science
Incorporating polymeric materials topics into the undergraduate chemistry core curriculum  Droske, John P.
Fourteen lecture "snapshots" and sixteen new polymer experiments developed for incorporation into the general chemistry course.
Droske, John P. J. Chem. Educ. 1992, 69, 1014.
Materials Science |
Polymerization
Free-radical polymerization of acrylamide  Silversmith, Ernest F.
A rapid and foolproof thermal polymerization.
Silversmith, Ernest F. J. Chem. Educ. 1992, 69, 763.
Free Radicals |
Polymerization |
Reactions
A safe and novel polymerization of styrene   Flynn, Brendan R.
A safer way to demonstrate the synthesis of addition polymers.
Flynn, Brendan R. J. Chem. Educ. 1991, 68, 1038.
Polymerization |
Synthesis |
Consumer Chemistry
Diffraction of a laser light by a memory chip   Klier, Kamil; Taylor, J. Ashley
A way of demonstrating the relationship between structure and diffraction.
Klier, Kamil; Taylor, J. Ashley J. Chem. Educ. 1991, 68, 155.
X-ray Crystallography |
Solids |
Solid State Chemistry |
Surface Science |
Materials Science
Direct visualization of Bragg diffraction with a He-Ne laser and an ordered suspension of charged microspheres  Spencer, Bertrand H.; Zare, Richard N.
Bragg diffraction from colloidal crystals proves to be an excellent teaching tool. Only modest equipment and lab skill are needed to produce a diffraction pattern to provide students with an in-depth understanding of what ordered structure is and how it can be probed by diffraction techniques.
Spencer, Bertrand H.; Zare, Richard N. J. Chem. Educ. 1991, 68, 97.
X-ray Crystallography |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
The optical transform: Simulating diffraction experiments in introductory courses  Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B.
Using optical transforms to prepare slides with patterns that will diffract red and green visible light from a laser.
Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B. J. Chem. Educ. 1991, 68, 91.
X-ray Crystallography |
Molecular Properties / Structure |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
Synthesis of a phenol-formaldehyde thermosetting polymer  Bedard, Y.; Riedl, B.
Procedure that allows for the synthesis of a 50% aqueous solution of a prepolymer that, with the proper application of heat and pressure, can be used to bind together wood or other materials.
Bedard, Y.; Riedl, B. J. Chem. Educ. 1990, 67, 977.
Synthesis |
Aldehydes / Ketones |
Phenols |
Polymerization
A revision of a general chemistry experiment on an inorganic polymerization-condensation reaction  Palma, Robert J., Sr.; Sargent, Ed
An inorganic polymerization-condensation reaction modified for the general chemistry laboratory.
Palma, Robert J., Sr.; Sargent, Ed J. Chem. Educ. 1990, 67, 614.
Polymerization
Classroom demonstrations of polymer principles. Part II. Polymer formation  Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr.
Photopolymerization of acrylamide, bulk polymerization of methyl methacrylate, phenolic resins, and household adhesives and sealants.
Rodriguez, F.; Mathias, L. J.; Kroschwitz, J.; Carraher, C. E., Jr. J. Chem. Educ. 1987, 64, 886.
Polymerization
Expanded polystyrene: An experiment for undergraduate students  Feigenbaum, Alexandre; Scholler, Denise
Two very simple procedures to produce expanded polystyrene.
Feigenbaum, Alexandre; Scholler, Denise J. Chem. Educ. 1987, 64, 810.
Polymerization
Using NASA and the space program to help high school and college students learn chemistry. Part II. The current state of chemistry in the space program  Kelter, Paul B.; Snyder, William E.; Buchar, Constance S.
Examples and classroom applications in the areas of spectroscopy, materials processing, and electrochemistry.
Kelter, Paul B.; Snyder, William E.; Buchar, Constance S. J. Chem. Educ. 1987, 64, 228.
Astrochemistry |
Spectroscopy |
Materials Science |
Electrochemistry |
Crystals / Crystallography
Dramatization of polymeric bonding using slime  Sarquis, A.M.
Specific guidelines for demonstrating the properties of slime for young, concrete operational students.
Sarquis, A.M. J. Chem. Educ. 1986, 63, 60.
Learning Theories |
Polymerization
The gelation of polyvinyl alcohol with borax: A novel class participation experiment involving the preparation and properties of a "slime"  Casassa,E.Z.; Sarquis, A.M.; Van Dyke, C.H.
In this report, the authors describe a safe, interesting, and inexpensive class participation experiment, easily and quickly done by all the students in small to moderately large lecture halls.
Casassa,E.Z.; Sarquis, A.M.; Van Dyke, C.H. J. Chem. Educ. 1986, 63, 57.
Alcohols |
Polymerization |
Physical Properties
Chemistry of polymers, proteins, and nucleic acids: A short course on macromolecules for secondary schools  Lulav, Ilan; Samuel, David
Topics considered in a macromolecular chemistry unit for advanced high school chemistry students.
Lulav, Ilan; Samuel, David J. Chem. Educ. 1985, 62, 1075.
Polymerization |
Proteins / Peptides
Synthesis and a simple molecular weight determination of polystyrene  Armstrong, Daniel W.; Marx, John N.; Kyle, Don; Alak, Ala
Procedure for synthesizing styrene and determining its molecular weight using thin layer chromatography.
Armstrong, Daniel W.; Marx, John N.; Kyle, Don; Alak, Ala J. Chem. Educ. 1985, 62, 705.
Synthesis |
Polymerization |
Chromatography
Nylon 6 - A simple, safe synthesis of a tough commercial polymer  Mathias, Lon J.; Vaidya, Rajeev A.; Canterberry, J. B.
An improved procedure for the synthesis of Nylon 6 that is easier, safer, and gives a product with impressive strength.
Mathias, Lon J.; Vaidya, Rajeev A.; Canterberry, J. B. J. Chem. Educ. 1984, 61, 805.
Polymerization |
Synthesis
On the crosslinked structure of rubber: Classroom demonstration or experiment: A quantitative determination by swelling  Sperling, L. H.; Michael, T. C.
Uses a rubber band to examine the crosslinked behavior of rubber.
Sperling, L. H.; Michael, T. C. J. Chem. Educ. 1982, 59, 651.
Applications of Chemistry |
Polymerization |
Molecular Properties / Structure
The chemistry of coatings   Griffith, James R.
Nature and humankind both produce spectacular coatings. These discussions of coating can contribute valuable chemistry lessons to the introductory curriculum.
Griffith, James R. J. Chem. Educ. 1981, 58, 956.
Applications of Chemistry |
Natural Products |
Materials Science
Polymer photophysics: A negative photoresist  Bramwell, Fitzgerald B.; Zadjura, Richard E.; Stemp, Leo; Fahrenholtz, Susan R.; Flowers, John M.
A negative photoresist is formulated that consists of a solution of a photosensitive film-forming polymer or resin that is used to create the negative image of an object on a glass slide.
Bramwell, Fitzgerald B.; Zadjura, Richard E.; Stemp, Leo; Fahrenholtz, Susan R.; Flowers, John M. J. Chem. Educ. 1979, 56, 541.
Photochemistry |
Polymerization
Petroleum chemistry  Kolb, Doris; Kolb, Kenneth E.
The history of petroleum chemistry.
Kolb, Doris; Kolb, Kenneth E. J. Chem. Educ. 1979, 56, 465.
Natural Products |
Geochemistry |
Applications of Chemistry |
Industrial Chemistry |
Catalysis |
Polymerization
Improving the Nylon rope trick  Bieber, Theodore I.
Suggestions for improving this classic demonstration and why they do so.
Bieber, Theodore I. J. Chem. Educ. 1979, 56, 409.
Polymerization
Ethylene: The organic chemical industry's most important building block  Fernelius, Condrad W.; Wittcoff, Harold; Varnerin, Robert E.
The sources, chemistry, and industrial uses of ethylene.
Fernelius, Condrad W.; Wittcoff, Harold; Varnerin, Robert E. J. Chem. Educ. 1979, 56, 385.
Alkenes |
Industrial Chemistry |
Applications of Chemistry |
Polymerization
Acne lotion - Great for pimples and making polymers!  May, Jeffrey
Benzoyl peroxide can easily be separated from acne lotion.
May, Jeffrey J. Chem. Educ. 1979, 56, 239.
Polymerization |
Consumer Chemistry |
Separation Science
Plastics: Utilizing the properties of string-like molecules  J. Chem. Educ. Staff
A summary of the properties of common polymers.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 42.
Polymerization |
Molecular Properties / Structure |
Applications of Chemistry
The Preparation of polyurethane foam: A lecture demonstration  Dirreen, Glen E.; Shakhashiri, Bassam Z.
A polyurethane foam is produced by forming a polyurethane polymer concurrently with a gas evolution process.
Dirreen, Glen E.; Shakhashiri, Bassam Z. J. Chem. Educ. 1977, 54, 431.
Reactions |
Polymerization
Lighter flint chemistry  Hentz, F. C., Jr.; Long, G. G.
The author describes an inquiry investigation into the composition of a lighter flint.
Hentz, F. C., Jr.; Long, G. G. J. Chem. Educ. 1976, 53, 651.
Materials Science |
Quantitative Analysis |
Qualitative Analysis
Simple tensile testing  McCormick, P. D.
Describes a simple tensiometer capable of giving good approximations to Young's Modulus.
McCormick, P. D. J. Chem. Educ. 1975, 52, 242.
Materials Science |
Solids
Emulsion polymerization and film formation of dispersed polymeric particles  Ceska, Gary W.
This project illustrates the principles of emulsion polymerization, copolymerization, glass transition temperature (Tg), and the effect of Tg on polymer properties.
Ceska, Gary W. J. Chem. Educ. 1973, 50, 767.
Conferences |
Professional Development |
Polymerization
A course for engineering and science students. Materials science in freshman chemistry  Companion, A.; Schug, K.
Description of a materials science in freshman chemistry.
Companion, A.; Schug, K. J. Chem. Educ. 1973, 50, 618.
Materials Science
Polymer models  Carraher, Charles E., Jr.
A child's "pop-it-bead" set or polystyrene spheres or corks with holes drilled through them and connected with a shoestring can be used to illustrate some relationships of structure to polymer properties.
Carraher, Charles E., Jr. J. Chem. Educ. 1970, 47, 581.
Molecular Properties / Structure |
Molecular Modeling |
Polymerization
The effect of structure on chemical and physical properties of polymers  Price, Charles C.
Suggests using polymers to teach the effect of changes in structure on chemical reactivity, the effect of structure on physical properties, the role of catalysts, and the basic principles of a chain reaction mechanism.
Price, Charles C. J. Chem. Educ. 1965, 42, 13.
Physical Properties |
Molecular Properties / Structure |
Polymerization |
Kinetics |
Reactions |
Catalysis |
Mechanisms of Reactions
Editor's note: "The nylon rope trick"  Morgan, Paul W.
Describes the popularity of the nylon rope trick.
Morgan, Paul W. J. Chem. Educ. 1965, 42, 12.
Polymerization
PolystyreneA multistep synthesis  Wilen, S. H.
Suggestions for research to accompany a previously published article.
Wilen, S. H. J. Chem. Educ. 1963, 40, A463.
Undergraduate Research |
Reactions |
Polymerization |
Synthesis
Letters to the editor  Lambert, Frank L.
The author calls attention to polymer models.
Lambert, Frank L. J. Chem. Educ. 1960, 37, 490.
Molecular Modeling |
Molecular Properties / Structure |
Polymerization
Models for linear polymers  Morgan, Paul W.
Suggests models for addition and condensation polymers.
Morgan, Paul W. J. Chem. Educ. 1960, 37, 206.
Molecular Modeling |
Molecular Properties / Structure |
Polymerization
Letters to the editor  Morgan, Paul W.; Kwolek, Stephanie L.
Offers modifications to "The Nylon Rope Trick."
Morgan, Paul W.; Kwolek, Stephanie L. J. Chem. Educ. 1959, 36, 530.
Polymerization
The nylon rope trick: Demonstration of condensation polymerization  Morgan, Paul W.; Kwolek, Stephanie L.
Describes the chemistry and variations of the classic polymerization demonstration.
Morgan, Paul W.; Kwolek, Stephanie L. J. Chem. Educ. 1959, 36, 182.
Polymerization
Laboratory preparation of cellophane  Miller, Meredith
Offers a simplified procedure suitable for the preparation of cellophane for small-scale classroom demonstration purposes.
Miller, Meredith J. Chem. Educ. 1958, 35, 517.
Synthesis |
Polymerization
Polymerization of ethylene at atmospheric pressure: A demonstration using a "Ziegler" type catalyst  Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max
A simple experiment on the polymerization of ethylene at atmospheric pressure is described using a "Ziegler" type catalyst prepared from amyl lithium and titanium tetrachloride.
Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max J. Chem. Educ. 1958, 35, 344.
Polymerization |
Reactions |
Catalysis |
Alkenes
Linear polymerization and synthetic fibers  Moncrieff, Robert W.
Examines early research in polymers, the synthesis of polyesters and polyamides, the polymerization of hydrocarbons, and condensation and addition polymerization.
Moncrieff, Robert W. J. Chem. Educ. 1954, 31, 233.
Polymerization
Lecture demonstrations with silicones  Spalding, David P.
Offers a series of demonstrations designed to illustrate some of the basic properties of the silicones that make them unusual substances, including their resistance to high and low temperatures, unusual surface properties, and chemical inertness.
Spalding, David P. J. Chem. Educ. 1952, 29, 288.
Polymerization