TIGER

Journal Articles: 171 results
A New "Bottom-Up" Framework for Teaching Chemical Bonding  Tami Levy Nahum, Rachel Mamlok-Naaman, Avi Hofstein, and Leeor Kronik
This article presents a general framework for bonding that can be presented at different levels of sophistication depending on the student's level and needs. The pedagogical strategy for teaching this model is a "bottom-up" one, starting with basic principles and ending with specific properties.
Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Kronik, Leeor. J. Chem. Educ. 2008, 85, 1680.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Materials Science |
MO Theory |
Noncovalent Interactions
On Capillary Rise and Nucleation  R. Prasad
A comparison of capillary rise and nucleation shows that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. This comparison may help to introduce nucleation with capillary rise, a topic familiar to students.
Prasad, R. J. Chem. Educ. 2008, 85, 1389.
Liquids |
Materials Science |
Metallurgy |
Solids
Polymeric, Metallic and Other Glasses in Introductory Chemistry  Stephen J. Hawkes
Polymeric, metallic, and other glasses and their importance are described in a manner suitable for introductory chemistry.
Hawkes, Stephen J. J. Chem. Educ. 2008, 85, 1377.
Consumer Chemistry |
Materials Science |
Phases / Phase Transitions / Diagrams |
Solids
National Chemistry Week  JCE Editorial Staff
JCE offers a wealth of materials for teaching and learning chemistry available in print or at JCE Online (http://www.jce.divched.org). Here are some JCE resources for celebrating National Chemistry Week and its theme, "Having a Ball with Chemistry."
JCE Editorial Staff. J. Chem. Educ. 2008, 85, 1336.
Materials Science
JCE Resources for Chemistry and Sports  Erica K. Jacobsen
This annotated bibliography collects the best that past issues of JCE have to offer related to the 2008 National Chemistry Week theme, "Having a Ball with Chemistry."
Jacobsen, Erica K. J. Chem. Educ. 2008, 85, 1331.
Materials Science
Modern Sport and Chemistry: What a Golf Fanatic Should Know  Scott E. McKay, Timothy Robbins, and Renée S. Cole
This paper focuses on golf and examines some of the structures and properties of materials that have led to significant changes in the skills required to excel at the highest levels of the game.
McKay, Scott E.; Robbins, Timothy; Cole, Renée S. J. Chem. Educ. 2008, 85, 1319.
Consumer Chemistry |
Applications of Chemistry |
Materials Science
Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery  Hiromasa Goto, Hiroyuki Yoneyama, Fumihiro Togashi, Reina Ohta, Akitsu Tsujimoto, Eiji Kita, and Ken-ichi Ohshima
The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level.
Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi. J. Chem. Educ. 2008, 85, 1067.
Aromatic Compounds |
Conductivity |
Electrochemistry |
Materials Science |
Oxidation / Reduction |
Polymerization
A Simplified Synthetic Experiment of YBa2Cu3O7–x Superconductor for First-Year Chemistry Laboratory  Jui-Lin She and Ru-Shi Liu
In this first-year chemistry experiment, a simplified synthetic superconductor is prepared to demonstrate high temperature superconductivity and the Meissner effect.
She, Jui-Lin; Liu, Ru-Shi. J. Chem. Educ. 2008, 85, 825.
Materials Science |
Solid State Chemistry |
Superconductivity |
X-ray Crystallography
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise  Thomas H. Bindel
This laboratory allows students to examine relationships among the microscopicmacroscopicsymbolic levels using crystalline mineral samples and corresponding crystal models. The exercise also reinforces Lewis dot structures, VSEPR theory, and the identification of molecular and coordination geometries.
Bindel, Thomas H. J. Chem. Educ. 2008, 85, 822.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling |
Solids |
VSEPR Theory |
Lewis Structures |
Physical Properties
Determination of the Formula of a Hydrate: A Greener Alternative  Marc A. Klingshirn, Allison F. Wyatt, Robert M. Hanson, and Gary O. Spessard
This article describes how the principles of green chemistry were applied to a first-semester, general chemistry courses, specifically in relation to the determination of the formula of a copper hydrate salt that changes color when dehydrated and is easily rehydrated with steam.
Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O. J. Chem. Educ. 2008, 85, 819.
Gravimetric Analysis |
Green Chemistry |
Solids |
Stoichiometry
Thermal Analysis of Plastics  Teresa D'Amico, Craig J. Donahue, and Elizabeth A. Rais
Students interpret previously recorded scans generated by differential scanning calorimetry and thermal gravimetric analysis to investigate a polypropylene dog bone, a polyethylene terephthalate pop bottle, the plastics in automobile head- and taillights, fishing line and a tea bag, and the rubber tread of an automobile tire.
D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A. J. Chem. Educ. 2008, 85, 404.
Materials Science |
Polymerization |
Thermal Analysis
Pennies and Eggs: Initiation into Inquiry Learning for Preservice Elementary Education Teachers  Donald J. Wink and Jeong Hye Hwang-Choe
Describes two labs incorporating the Science Writing Heuristic in a course for preservice students in elementary education. The first lab is a discovery activity involving the change in composition and mass of pennies in 1982; the second uses flotation methods to separate hard-boiled and uncooked eggs.
Wink, Donald J.; Hwang-Choe, Jeong Hye. J. Chem. Educ. 2008, 85, 396.
Aqueous Solution Chemistry |
Materials Science |
Solutions / Solvents |
Physical Properties
Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Close-Packed Structure  John A. Hawkins, Linda M. Soper, Jeffrey L. Rittenhouse, and Robert C. Rittenhouse
Examines the pedagogical advantages in presenting the primitive rhombohedral unit cell as a means of helping students to gain greater insight into the nature of the cubic close-packed structure.
Hawkins, John A.; Soper, Linda M.; Rittenhouse, Jeffrey L.; Rittenhouse, Robert C. J. Chem. Educ. 2008, 85, 90.
Crystals / Crystallography |
Metals |
Solids
Effects of a Cooperative Learning Strategy on Teaching and Learning Phases of Matter and One-Component Phase Diagrams  Kemal Doymus
Describes a study whose objective was to determine the effects of cooperative learning (using the jigsaw method) on students' achievement in a general chemistry course.
Doymus, Kemal. J. Chem. Educ. 2007, 84, 1857.
Gases |
Liquids |
Phases / Phase Transitions / Diagrams |
Solids
Stuffed Derivatives of Close-Packed Structures  Bodie E. Douglas
Examines a variety of stuffed silica crystal structures in terms of the close-packing of one set of atoms or ions (P sites) with other atoms or ions in tetrahedral (T) or octahedral (O) sites and filled or partially filled layers in the regular pattern, PTOT.
Douglas, Bodie E. J. Chem. Educ. 2007, 84, 1846.
Crystals / Crystallography |
Group Theory / Symmetry |
Materials Science |
Metals |
Solid State Chemistry |
Solids
Benchtop Nanoscale Patterning Using Soft Lithography  Viswanathan Meenakshi, Yelizaveta Babayan, and Teri W. Odom
This paper outlines several nanoscale patterning experiments designed to use readily available and inexpensive materials such as compact discs, glass microscope slides, and curable polymers, and supplemented by an online video lab manual. These labs allow students to generate polymeric and metallic structures with feature sizes as small as 110 nm.
Meenakshi, Viswanathan; Babayan, Yelizaveta; Odom, Teri W. J. Chem. Educ. 2007, 84, 1795.
Materials Science |
Nanotechnology
Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes  Benjamin M. Hutchins, Thomas T. Morgan, Miné G. Ucak-Astarlioglu, and Mary Elizabeth Williams
Visually observed fluorescent colors of quantum dots in conjunction with spectroscopic data show students the additive emission of such mixtures; while some appear to emit white light, their fluorescence peaks remain spectroscopically resolved.
Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Miné G.; Williams, Mary Elizabeth. J. Chem. Educ. 2007, 84, 1301.
Dyes / Pigments |
Fluorescence Spectroscopy |
Materials Science |
Nanotechnology |
Photochemistry |
Qualitative Analysis |
Spectroscopy |
UV-Vis Spectroscopy
Modifying Optical Properties of ZnO Films by Forming Zn1-xCoxO Solid Solutions via Spray Pyrolysis  Anne K. Bentley, Gabriela C. Weaver, Cianán B. Russell, William L. Fornes, Kyoung-Shin Choi, and Susan M. Shih
Presents a simple experiment demonstrating the presence of an energy band gap in a semiconductor and its relationship to the material's composition through observed color and UVvis absorption.
Bentley, Anne K.; Weaver, Gabriela C.; Russell, Cianán B.; Fornes, William L.; Choi, Kyoung-Shin; Shih, Susan M. J. Chem. Educ. 2007, 84, 1183.
Materials Science |
Semiconductors |
Solid State Chemistry |
UV-Vis Spectroscopy
Preparation of CdS Nanoparticles by First-Year Undergraduates  Kurt Winkelmann, Thomas Noviello, and Steven Brooks
First-year undergraduate students prepare bulk and nanometer-sized cadmium sulfide clusters within water-in-oil micelles and calculate particle size using the effective mass model.
Winkelmann, Kurt; Noviello, Thomas; Brooks, Steven. J. Chem. Educ. 2007, 84, 709.
Colloids |
Materials Science |
Nanotechnology |
Micelles |
Semiconductors |
UV-Vis Spectroscopy
Hydrophilic Inorganic Macro-Ions in Solution: Unprecedented Self-Assembly Emerging from Historical "Blue Waters"  Tianbo Liu, Ekkehard Diemann, and Achim Müller
The behavior of supramolecular structures in solution is different from that of simple ions, polymers, surfactant micelles, and colloids. New research involving polyoxometalates, which are fully hydrophilic but tend to self-associate into macro-ionic structures, may change our understanding of inorganic ionic solutions.
Liu, Tianbo; Diemann, Ekkehard; Müller, Achim. J. Chem. Educ. 2007, 84, 526.
Aqueous Solution Chemistry |
Colloids |
Materials Science |
Nanotechnology |
Solutions / Solvents |
Spectroscopy |
Lasers |
Physical Properties
Chemical Nanotechnology: A Liberal Arts Approach to a Basic Course in Emerging Interdisciplinary Science and Technology  Lon A. Porter, Jr.
This course focuses on the basic science behind the major research initiatives in nanotechnology, while revisiting the origins of the field and spotlighting current advances. Students are also challenged to consider the political, economical, environmental, and ethical concerns relating to nanotechnology and its potential impact on modern society.
Porter, Lon A., Jr. J. Chem. Educ. 2007, 84, 259.
Applications of Chemistry |
Materials Science |
Nanotechnology |
Nonmajor Courses |
Surface Science
Introducing New Learning Tools into a Standard Classroom: A Multi-Tool Approach to Integrating Fuel-Cell Concepts into Introductory College Chemistry   Matthew J. DAmato, Kenneth W. Lux, Kenneth A. Walz, Holly Walter Kerby, and Barbara Anderegg
Describes an approach to deliver the science and engineering concepts involved in fuel-cell technology to the introductory college chemistry classroom using traditional lectures, multimedia learning objects, and a lab activity to enhance student learning in a hands-on, interactive manner.
DAmato, Matthew J.; Lux, Kenneth W.; Walz, Kenneth A.; Kerby, Holly Walter; Anderegg, Barbara. J. Chem. Educ. 2007, 84, 248.
Electrochemistry |
Materials Science |
Nanotechnology |
Oxidation / Reduction |
Membranes
Titration of a Solid Acid Monitored By X-Ray Diffraction  Keenan E. Dungey and Paul Epstein
Presents a solid-state laboratory in which students react fixed amounts of zirconium phosphate with increasing equivalents of NaOH(aq). From X-ray diffraction patterns, students calculate the interplanar spacings before and after the reaction. The spacings increase until the molar equivalence point is reached, indicating incorporation of the sodium ion into the crystal.
Dungey, Keenan E.; Epstein, Paul. J. Chem. Educ. 2007, 84, 122.
Acids / Bases |
Crystals / Crystallography |
Materials Science |
Solid State Chemistry |
X-ray Crystallography |
Titration / Volumetric Analysis
Powder Diffraction Simulated by a Polycrystalline Film of Spherical Colloids  Dean J. Campbell and Younan Xia
This article describes a simple way to demonstrate powder diffraction in a classroom setting using a dry film of spherical colloids on a glass substrate.
Campbell, Dean. J.; Xia, Younan. J. Chem. Educ. 2006, 83, 1638.
Crystals / Crystallography |
Mathematics / Symbolic Mathematics |
X-ray Crystallography |
Materials Science
Chemical Bonding Makes a Difference!  Mary Harris
This report describes a PowerPoint presentation that shows how a small difference in bonding can result in a drastic change in the properties of a material.
Harris, Mary. J. Chem. Educ. 2006, 83, 1435.
Enrichment / Review Materials |
Materials Science |
Polymerization |
Carbohydrates
Polymers: Cornerstones of Construction  John P. Droske and Charles E. Carraher, Jr.
This report summarizes the application of natural and synthetic polymers as building materials.
Droske, John P.; Carraher, Charles E., Jr. J. Chem. Educ. 2006, 83, 1428.
Materials Science |
Applications of Chemistry
Classifying Matter: A Physical Model Using Paper Clips  Bob Blake, Lynn Hogue, and Jerry L. Sarquis
By using colored paper clips, students can represent pure substances, mixtures, elements, and compounds and then discuss their similarities and differences. This model is advantageous for the beginning student who would not know enough about the detailed composition of simple materials like milk, brass, sand, and air to classify them properly.
Blake, Bob; Hogue, Lynn; Sarquis, Jerry L. J. Chem. Educ. 2006, 83, 1317.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Solids |
Student-Centered Learning
A Demonstration of Refractive Index Matching Using Isopropyl Alcohol and MgF2  Frederick C. Sauls
Isopropyl alcohol and magnesium fluoride have nearly identical refractive indices; thus a chip of MgF2 disappears when immersed in isopropanol.
Sauls, Frederick C. J. Chem. Educ. 2006, 83, 1170.
Mathematics / Symbolic Mathematics |
Physical Properties |
Solids |
Materials Science
Demonstrating Void Space in Solids: A Simple Demonstration To Challenge a Powerful Misconception  Mary Whitfield
The concept of bridging analogies is used in a simple demonstration to illustrate the substantial quantity of empty space that remains when solid spheres are packed together. The same demonstration also shows that the percentage of empty space is independent of particle size.
Whitfield, Mary. J. Chem. Educ. 2006, 83, 749.
Atomic Properties / Structure |
Materials Science |
Solids
Calcium Phosphates and Human Beings  Sergey V. Dorozhkin
This article describes the general importance of calcium phosphates for human beings. The basic information on the structure and chemical properties of the biologically relevant calcium phosphates is summarized.
Dorozhkin, Sergey V. J. Chem. Educ. 2006, 83, 713.
Applications of Chemistry |
Bioinorganic Chemistry |
Biotechnology |
Materials Science |
Medicinal Chemistry |
Natural Products
An Introduction to Polymer Processing, Morphology, and Property Relationships through Thermal Analysis of Plastic PET Bottles. Exercises Designed to Introduce Students to Polymer Physical Properties  H. Darrell Iler, Eric Rutt, and Seth Althoff
Through thermal analyses of poly(ethylene terephthlate) (PET) bottles, students are introduced to the relationships between processing, morphology, and physical properties of polymer materials.
Iler, H. Darrell; Rutt, Eric; Althoff, Seth. J. Chem. Educ. 2006, 83, 439.
Applications of Chemistry |
Heat Capacity |
Instrumental Methods |
Materials Science |
Thermal Analysis
Chemical Characterization of Activated Carbon Fibers and Activated Carbons  J. M. Valente Nabais and P. J. M. Carrott
The main objective of this laboratory is the chemical characterization of carbon materials, mainly activated carbons and activated carbon fibers, using several methods to obtain the information without using expensive instruments.
Valente Nabais, J. M.; Carrott, P. J. M. J. Chem. Educ. 2006, 83, 436.
Acids / Bases |
Aqueous Solution Chemistry |
Materials Science |
Surface Science |
Titration / Volumetric Analysis
Intelligent Thermochromic Windows  Ivan P. Parkin and Troy D. Manning
This article covers the background and related science associated with a thermochromic window, a device that changes its reflectance and transmission properties at a specific critical temperature.
Parkin, Ivan P.; Manning, Troy D. J. Chem. Educ. 2006, 83, 393.
Materials Science |
Physical Properties |
Solid State Chemistry
Filling in the Hexagonal Close-Packed Unit Cell  Robert C. Rittenhouse, Linda M. Soper, and Jeffrey L. Rittenhouse
The illustrations of the hcp unit cell that are used in textbooks at all levels and also in crystallography and solid-state reference works are incomplete, in that they fail to include fractions of middle layer atomic spheres with centers lying outside of the unit cell.
Rittenhouse, Robert C.; Soper, Linda M.; Rittenhouse, Jeffrey L. J. Chem. Educ. 2006, 83, 175.
Crystals / Crystallography |
Metals |
Solids
Sedimentation Time Measurements of Soil Particles by Light Scattering and Determination of Chromium, Lead, and Iron in Soil Samples via ICP  Patricia Metthe Todebush and Franz M. Geiger
In this two-part general chemistry laboratory activity, students study soil samples from home and from campus. In part one, the samples are placed in water and the suspended colloid fraction is separated using filtration, followed by a determination of colloid sedimentation rates via light scattering. In part two, the solid phase of the soil samples is dissolved in acid and analyzed for chromium, lead, and iron using an inductively coupled plasma spectrometer. The experiment can be expanded to include arsenic. Through these experiments students can draw conclusions about the physical and chemical behavior of solid components in soil, paying particular attention to their propensity for transporting and chemically transforming pollutants in the environment.
Todebush, Patricia Metthe; Geiger, Franz M. J. Chem. Educ. 2005, 82, 1542.
Colloids |
Geochemistry |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Solids |
Surface Science |
Metals
Electropolymerized Conducting Polymer as Actuator and Sensor Device: An Undergraduate Electrochemical Laboratory Experiment  María T. Cortés and Juan C. Moreno
A trilayer formed by two conducting polymer films sandwiched around an adhesive polymer layer works as actuator and sensor simultaneously. This device can be bent up to 180 and it can be used as a sensing device of physical chemistry parameters such as cell temperature and electrolyte concentration. In this article, it is shown in a didactic way how to electrochemically synthesize ClO4-doped polypyrrole (PPy) films, how to fabricate a trilayer device, and how to evaluate its actuating and sensing capabilities. The required materials are simple and a complicated setup is not necessary.
Cortés, María T.; Moreno, Juan C. J. Chem. Educ. 2005, 82, 1372.
Electrochemistry |
Materials Science |
Undergraduate Research |
Polymerization |
Applications of Chemistry
Introduction to Photolithography: Preparation of Microscale Polymer Silhouettes  Kimberly L. Berkowski, Kyle N. Plunkett, Qing Yu, and Jeffrey S. Moore
In this experiment, a glass microscope slide acts as the microchip. Students can pattern this "microchip" by layering negative photoresist on the slide using a solution containing monomer, crosslinker, photoinitiator, and dye. The students then cover the photoresist with a photomask, which is the negative of a computer-generated image or text printed on transparency film, and illuminate it with UV light. The photoresist in the exposed area polymerizes into a polymer network with a shape dictated by the photomask. The versatility of this technique is exemplified by allowing each student to fabricate virtually any shape imaginable, including his or her silhouette.
Berkowski, Kimberly L.; Plunkett, Kyle N.; Yu, Qing; Moore, Jeffrey S. J. Chem. Educ. 2005, 82, 1365.
Materials Science |
Applications of Chemistry |
Free Radicals |
Polymerization
Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy. An Experiment for the Physical Chemistry Laboratory  Madalena S. C. Dionísio, Hermínio P. Diogo, J. P. S. Farinha, and Joaquim J. Moura-Ramos
In this article we present a laboratory experiment for an undergraduate physical chemistry course. The purpose of this experiment is the study of molecular mobility in a crystal using the technique of dielectric relaxation spectroscopy. The experiment illustrates important physical chemistry concepts. The background of the experimental technique deals with the concepts of orientational and induced polarization and frequency-dependent relative permittivity (or dielectric constant). The kinetic concepts of temperature-dependent relaxation time, activation energy, and activation entropy are involved in the concept of molecular mobility.
Dionísio, Madalena S. C.; Diogo, Hermínio P.; Farinha, J. P. S.; Moura-Ramos, Joaquim J. J. Chem. Educ. 2005, 82, 1355.
Kinetics |
Phases / Phase Transitions / Diagrams |
Solids |
Crystals / Crystallography
Chemistry of Moth Repellents  Gabriel Pinto
A real-life example consisting of the study of the different substances used as moth repellents is presented to introduce students to miscellaneous topics such as sublimation, intermolecular forces, insecticides, and the effect of moths on clothes. A set of questions about the most common moth repellents, well known to students, is used to motivate them to understand several everday phenomena through chemistry concepts.
Pinto, Gabriel. J. Chem. Educ. 2005, 82, 1321.
Noncovalent Interactions |
Applications of Chemistry |
Phases / Phase Transitions / Diagrams |
Solids |
Physical Properties |
Consumer Chemistry
Physical Chemistry at the Nanometer Scale  K. W. Hipps
An overview is provided of the Petroleum Research Fund sponsored summer school, "Physical Chemistry at the Nanometer Scale." Several articles resulting from the school (and printed in this issue) are introduced and placed in perspective from the standpoint of how they might be used in the undergraduate curriculum.
Hipps, K. W. J. Chem. Educ. 2005, 82, 693.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science
Self-Assembled Colloidal Crystals: Visualizing Atomic Crystal Chemistry Using Microscopic Analogues of Inorganic Solids  Neal M. Abrams and Raymond E. Schaak
Monodisperse spherical colloids spontaneously crystallize into close-packed crystals, in analogy to the simple crystal structures of many of the elements. Since colloids are orders of magnitude larger than atoms, students can directly observe crystal structure and behavior in a microscope using colloidal crystals. This laboratory exercise provides a modular series of materials science experiments appropriate for undergraduate chemistry and engineering majors. The individual modules include aspects of chemical synthesis (monodisperse SiO2 and polymer spheres), self-assembly (colloidal crystallization), and structural characterization through microscopy (optical and scanning electron microscopies) and optical spectroscopy (optical diffraction and UVvisible spectroscopy).
Abrams, Neal M.; Schaak, Raymond E. J. Chem. Educ. 2005, 82, 450.
Colloids |
Materials Science |
Solid State Chemistry |
Solids
Color My Nanoworld  Adam D. McFarland, Christy L. Haynes, Chad A. Mirkin, Richard P. Van Duyne, and Hilary A. Godwin
This activity begins with the synthesis of 13 nm-diameter gold nanoparticles by reduction of a gold salt. The students use the resulting nanoparticle solution to explore the size-dependent optical properties of gold nanoparticles.
McFarland, Adam D.; Haynes, Christy L.; Mirkin, Chad A.; Van Duyne, Richard P.; Godwin, Hilary A. J. Chem. Educ. 2004, 81, 544A.
Colloids |
Materials Science |
Nanotechnology |
UV-Vis Spectroscopy |
Metals
Copper Metal from Malachite circa 4000 B.C.E.  Gordon T. Yee, Jeannine E. Eddleton, and Cris E. Johnson
The experiment starts with a naturally occurring ore, malachite, essentially pure Cu2CO3(OH)2, which is readily available at modest cost in bead form from jewelry stores. Using only a Bunsen burner, a porcelain crucible, and a charcoal briquette, the experiment demonstrates two steps in the ancient processing of copper ore: roasting and reduction. The product is a shiny copper metal bead that can then be hammered, polished, and shown to be electrically conductive.
Yee, Gordon T.; Eddleton, Jeannine E.; Johnson, Cris E. J. Chem. Educ. 2004, 81, 1777.
Metals |
Oxidation / Reduction |
Solids
Empirical Formulas and the Solid State: A Proposal  William B. Jensen
This brief article calls attention to the failure of most introductory textbooks to point out explicitly the fact that nonmolecular solids do not have molecular formulas and suggests some practical remedies for improving textbook coverage of this subject. The inadequacies of the terms "empirical formula" and "molecular formula" are also discussed, and the terms "relative compositional formula" and "absolute compositional formula" are proposed as more appropriate alternatives.
Jensen, William B. J. Chem. Educ. 2004, 81, 1772.
Solid State Chemistry |
Solids |
Stoichiometry |
Nomenclature / Units / Symbols
Measuring Viscoelastic Deformation with an Optical Mouse  T. W. Ng
A simple demonstration of viscoelasticity can be carried out by attaching a weight to a polymer film and watching it extend over time. For accurate and quantifiable data on the deformation, an electronic displacement sensor should be incorporated. Most of such sensors are expensive. Here, an optical mouse was demonstrated to provide accurate data at low cost. The experiment was also devised in a manner to allow students to learn about viscoelastic deformation experientially.
Ng, T. W. J. Chem. Educ. 2004, 81, 1628.
Consumer Chemistry |
Laboratory Equipment / Apparatus |
Materials Science
Using Organic Light-Emitting Electrochemical Thin-Film Devices To Teach Materials Science  Hannah Sevian, Sean Müller, Hartmut Rudmann, and Michael F. Rubner
Light-emitting thin films provide an excellent opportunity to learn about principles of electrochemistry, spectroscopy, microscopic structure of the solid state, basic circuits, and engineering design. There is currently strong interest in academic and industrial engineering research centering on developing organic light-emitting devices for applications in flat panel displays. In this educational module, designed for high school or introductory undergraduate courses, students learn how to make a ruthenium-based thin-film device. In the process, they learn about the solid-state electrochemistry at work in the film, as well as the electroluminescence that results when current passes through the device.
Sevian, Hannah; Müller, Sean; Rudmann, Hartmut; Rubner, Michael F. J. Chem. Educ. 2004, 81, 1620.
Electrochemistry |
Photochemistry |
Materials Science |
Oxidation / Reduction |
Solid State Chemistry
Spectacular Pseudo-Exfoliation of an Exfoliated–Compressed Graphite  M. Comet, L. Schreyeck, S. Verdan, G. Burato, and H. Fuzellier
This kind of reaction has been called pseudo-exfoliation of carbonaceous material. This demonstration spectacularly illustrates the layered nature of graphite.
Comet, M.; Schreyeck, L.; Verdan, S.; Burato, G.; Fuzellier, H. J. Chem. Educ. 2004, 81, 819.
Materials Science |
Oxidation / Reduction |
Solid State Chemistry
Inorganic Fullerenes, Onions, and Tubes  Andrew P. E. York
Proposed applications for the inorganic fullerenes include electronic devices and storage media, probes and electron microscope tips, and nano-ball bearings and high temperature lubricants.
York, Andrew P. E. J. Chem. Educ. 2004, 81, 673.
Materials Science |
Nanotechnology |
Solid State Chemistry
Boron Clusters Come of Age  Russell N. Grimes
This article attempts to summarize the current state of the art, illustrated by examples selected to convey some of the excitement and possibilities for future exploitation of these remarkable compounds.
Grimes, Russell N. J. Chem. Educ. 2004, 81, 657.
Main-Group Elements |
Materials Science |
Organometallics
Magnetic Particle Technology. A Simple Preparation of Magnetic Composites for the Adsorption of Water Contaminants  Luiz C. A. Oliveira, Rachel V. R. A. Rios, José D. Fabris, Rochel M. Lago, and Karim Sapag
In this article a simple undergraduate laboratory experiment to produce magnetic adsorbents is described. These magnetic materials efficiently adsorb contaminants from water and can be easily removed from the medium by a simple magnetic separation process.
Oliveira, Luiz C.A.; Rios, Rachel V.R.A.; Fabris, José D.; Lago, Rochel M.; Sapag, Karim. J. Chem. Educ. 2004, 81, 248.
Green Chemistry |
Magnetic Properties |
Materials Science |
Separation Science |
Water / Water Chemistry
Challenges at the Molecular Frontier  John W. Moore
Discussion of report "Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering", regarding new frontiers in chemistry, the importance of helping the public and students to better understand the contributions of chemistry, and attracting the best students to the field.
Moore, John W. J. Chem. Educ. 2003, 80, 591.
Biotechnology |
Consumer Chemistry |
Materials Science |
Nanotechnology |
Administrative Issues
Keeping Current with Chemistry  John W. Moore
The importance of incorporating aspects of biochemistry and materials science into the undergraduate chemistry curriculum.
Moore, John W. J. Chem. Educ. 2003, 80, 463.
Professional Development |
Materials Science
The Chemical Adventures of Sherlock Holmes: The Blackwater Escape  Thomas G. Waddell and Thomas R. Rybolt
A chemical mystery involving electrochemistry and featuring Sherlock Holmes and Dr. Watson.
Waddell, Thomas G.; Rybolt, Thomas R. J. Chem. Educ. 2003, 80, 401.
Electrochemistry |
Materials Science |
Qualitative Analysis |
Oxidation / Reduction |
Enrichment / Review Materials |
Applications of Chemistry
A Photolithography Laboratory Experiment for General Chemistry Students   Adora M. Christenson, Gregory W. Corder, Thomas C. DeVore, and Brian H. Augustine
A photolithography laboratory experiment for general chemistry that introduces materials science and the production of microfabricated devices.
Christenson, Adora M.; Corder, Gregory W.; DeVore, Thomas C.; Augustine, Brian H. J. Chem. Educ. 2003, 80, 183.
Kinetics |
Materials Science |
Photochemistry |
Spectroscopy
Paper-and-Glue Unit Cell Models  James P. Birk and Ellen J. Yezierski
Templates for a variety of unit cells that can be copied, cut out, and assembled.
Birk, James P.; Yezierski, Ellen J. J. Chem. Educ. 2003, 80, 157.
Solid State Chemistry |
Solids |
Crystals / Crystallography |
Molecular Modeling
Salt Crystals—Science behind the Magic  Charles F. Davidson and Michael R. Slabaugh
Discussion of sodium chloride and factors that influence the shape of the crystals it forms.
Davidson, Charles F.; Slabaugh, Michael R. J. Chem. Educ. 2003, 80, 155.
Consumer Chemistry |
Crystals / Crystallography |
Descriptive Chemistry |
Solids
Is Salt Melting When It Dissolves in Water?  Alan Goodwin
Analysis of the chemical meaning of the terms melting and dissolving.
Goodwin, Alan. J. Chem. Educ. 2002, 79, 393.
Liquids |
Solids |
Phases / Phase Transitions / Diagrams
The Electrolytic Recovery of Copper from Brass. A Laboratory Simulation of an Industrial Application of Electrical Energy  Domenico Osella, Mauro Ravera, Cristina Soave, and Sonia Scorza
Procedure demonstrating the electrolytic purification of copper.
Osella, Domenico; Ravera, Mauro; Soave, Cristina; Scorza, Sonia. J. Chem. Educ. 2002, 79, 343.
Electrochemistry |
Materials Science |
Metals
Spontaneous Assembly of Soda Straws  D. J. Campbell, E. R. Freidinger, J. M. Hastings, and M. K. Querns
Demonstrating spontaneous assembly using soda straws.
Campbell, D. J.; Freidinger, E. R.; Hastings, J. M.; Querns, M. K. J. Chem. Educ. 2002, 79, 201.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Thermodynamics
LEDs Are Diodes  George C. Lisensky, S. Michael Condren, Cynthia G. Widstrand, Jonathan Breitzer, and Arthur B. Ellis
Comparison of incandescent bulbs with LEDs powered by AC and DC voltages; shows that LEDs are diodes and illustrates the relative energies of different wavelengths of light.
Lisensky, George C.; Condren, S. Michael; Widstrand, Cynthia G.; Breitzer, Jonathan; Ellis, Arthur B. J. Chem. Educ. 2001, 78, 1664A.
Atomic Properties / Structure |
Materials Science |
Nanotechnology |
Solid State Chemistry |
Applications of Chemistry
LEDs: New Lamps for Old and a Paradigm for Ongoing Curriculum Modernization  S. Michael Condren, George C. Lisensky, Arthur B. Ellis, Karen J. Nordell, Thomas F. Kuech, and Steve Stockman
Summary of the key points of a white paper on LEDs as potential replacements for a significant fraction of vehicle, display, home, and workplace lighting, with substantial safety and environmental conserving benefits.
Condren, S. Michael; Lisensky, George C.; Ellis, Arthur B.; Nordell, Karen J.; Kuech, Thomas F.; Stockman, Steve. J. Chem. Educ. 2001, 78, 1033.
Materials Science |
Nanotechnology |
Semiconductors |
Solid State Chemistry |
Applications of Chemistry
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
JCE Classroom Activity: Out of "Thin Air": Exploring Phase Changes  John J. Vollmer
This Activity illustrates sublimation/deposition with para-dichlorobenzene (mothballs) and evaporation/condensation with water.
Vollmer, John J. J. Chem. Educ. 2000, 77, 488A.
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Physical Properties |
Solids |
Gases
A Chemical-Medical Mystery: Gold Jewelry and Black Marks on Skin  Barbara B. Kebbekus
Gold jewelry at times makes a black mark or smudge on skin. This may be caused by abrasive powders on the skin (e.g. zinc oxide) but the phenomenon may also be caused by other skin conditions, possibly the presence of chloride ion, acidity, or sulfur-containing amino acids.
Kebbekus, Barbara B. J. Chem. Educ. 2000, 77, 1298.
Bioorganic Chemistry |
Geochemistry |
Hormones |
Metals |
Solids |
Applications of Chemistry
Interactive Nano-Visualization of Materials over the Internet  Eddie W. Ong, Anshuman Razdan, Antonio A. Garcia, Vincent Pizziconi, B. L. Ramakrishna, and William S. Glaunsinger
By employing a direct visual approach to learning, the Interactive Nano-Visualization in Science and Engineering Education (IN-VSEE) project endeavors to remove many of the conventional barriers that hinder effective teaching and learning by empowering learners with Internet access to revolutionary scanning probe microscopes (SPMs) that can image materials at resolutions down to the atomic scale.
Ong, Eddie W.; Razdan, Anshuman; Garcia, Antonio A.; Pizziconi, Vincent; Ramakrishna, B. L.; Glaunsinger, William S. J. Chem. Educ. 2000, 77, 1114.
Kinetic-Molecular Theory |
Materials Science |
Nanotechnology
Kixium Monolayers: A Simple Alternative to the Bubble Raft Model for Close-Packed Spheres  Keenan E. Dungey
This model focuses on the two-dimensional sheets, which are spontaneously formed from cereal pieces. The structure of the cereal rafts can be presented with an overhead projector.
Dungey, Keenan E. J. Chem. Educ. 2000, 77, 618.
Crystals / Crystallography |
Materials Science |
Solid State Chemistry
Cleaning Up with Chemistry: Investigating the Action of Zeolite in Laundry Detergent  
In this activity, you will investigate the properties of one ingredient, aluminosilicate. The particular aluminosilicate used in powdered laundry detergent is sodium zeolite A. In this activity, you will extract sodium zeolite A from powdered laundry detergent and examine its properties.
J. Chem. Educ. 1999, 76, 1416A.
Materials Science |
Consumer Chemistry |
Applications of Chemistry |
Separation Science |
Water / Water Chemistry |
Ion Exchange
Thermochromism in Commercial Products  Mary Anne White and Monique LeBlanc
Many commercial products change color with a change of temperature. How do they do it? The processes responsible for the two major categories of commercial thermochromic coloring agents are presented, along with a description of applications of thermochromic materials.
White, Mary Anne; LeBlanc, Monique. J. Chem. Educ. 1999, 76, 1201.
Acids / Bases |
Consumer Chemistry |
Materials Science |
Applications of Chemistry
Preparation and Properties of an Aqueous Ferrofluid  Patricia Enzel, Nicholas B. Adelman, Katie J. Beckman, Dean J. Campbell, Arthur B. Ellis, and George C. Lisensky
This paper describes a simple synthesis of an aqueous-based ferrofluid that may be used in an introductory science or engineering laboratory. This paper also describes a method for repelling both oil- and water-based ferrofluid from solid surfaces that would otherwise be stained by the fluid. Finally, a demonstration of the interaction between ferrofluid and magnetic fields, in which ferrofluid is induced to leap upward by a stack of magnets, is described.
Enzel, Patricia; Adelman, Nicholas B.; Beckman, Katie J.; Campbell, Dean J.; Ellis, Arthur B.; Lisensky, George C. J. Chem. Educ. 1999, 76, 943.
Materials Science |
Magnetic Properties |
Nanotechnology |
Stoichiometry |
Colloids
Both Nylon and PET Fibers Burn Continuously under Atmospheric Conditions  Shouei Fujishige, Nagako Maebashi, and Mizue Miyauchi
In contrast to the descriptions in many textbooks, it was confirmed by taking two series of photographs that both nylon and PET fibers burn continuously even after the ignition flame has been removed. The photographs also show that a small spherical fire ball forms and occasionally leaves from the flame.
Fujishige, Shouei; Maebashi, Nagako; Miyauchi, Mizue. J. Chem. Educ. 1999, 76, 793.
Consumer Chemistry |
Materials Science |
Gases |
Laboratory Management
Pushing the Rainbow: Frontiers in Color Chemistry; Light and Color in Chemistry; Report on Two American Chemical Society Presidential Events  Nancy S. Gettys
On Sunday March 21, 1999, the 217th ACS National Meeting in Anaheim, California sponsored two Presidential Events, "Pushing the Rainbow: Frontiers in Color Chemistry" and "Light and Color in Chemistry". The events included 10 exceptional and very different speakers who explored various aspects of the importance of light and color in chemistry and chemistry teaching, in other sciences, and in art and human culture.
Gettys, Nancy S. J. Chem. Educ. 1999, 76, 737.
Conferences |
Photochemistry |
Materials Science |
Applications of Chemistry
Solid State Resources CD-ROM: Abstract of Special Issue 12, 2nd Edition   George C. Lisensky , Joey M. Blackwell, and Arthur B. Ellis
The Solid State Resources CD-ROM for Mac OS and Windows compatible computers has been updated with a new HTML interface and video identical to that published in the General Chemistry Collection, 2nd Edition. This includes both new video and improved versions of some of the movies on the original Solid State Resources CD.
Lisensky, George C.; Blackwell, Joey M.; Ellis, Arthur B. J. Chem. Educ. 1998, 75, 1351.
Materials Science |
Solids
Chemical Etching of Group III - V Semiconductors  Najah J. Kadhim, Stuart H. Laurie, and D. Mukherjee
This article reviews the chemical etchants used for the treatment of GaAs and others III - V. Semiconductors, the factors involved in their mechanism and the many potential pitfalls, arwillan defects associated with them.
Kadhim, Najah J.; Laurie, Stuart H.; Mukherjee, D. J. Chem. Educ. 1998, 75, 840.
Materials Science |
Surface Science |
Physical Properties
The ThermobileTM: A Nitinol-Based Scientific Toy  George B. Kauffman and Isaac Mayo
The "memory metal" Thermobile toy is highlighted.
Kauffman, George B.; Mayo, Isaac. J. Chem. Educ. 1998, 75, 313.
Materials Science |
Metals |
Applications of Chemistry
Solid State Structures (Abstract of Volume 5D, Number 2)  Ludwig A. Mayer
Solid State Structures is a collection of image files that allows the user to display, rotate, and examine individually a large collection of 3-D structure models.
Mayer, Ludwig A. J. Chem. Educ. 1997, 74, 1144.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
A Window on the Solid State: Part I: Structures of Metals; Part II: Unit Cells of Metals; Part III: Structures of Ionic Solids; Part IV: Unit Cells of Ionic Solids (Abstract of Volume 5D, Number 2)  William R. Robinson and Joan F. Tejchma
A Window on the Solid State helps students understand and instructors present the structural features of solids. The package provides a tour of the structures commonly used to introduce features of the solid state.
Robinson, William R.; Tejchma, Joan F. J. Chem. Educ. 1997, 74, 1143.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
Elements of Curriculum Reform: Putting Solids in the Foundation  Arthur B. Ellis
Until recently, solids were a relatively small part of the chemistry curriculum. Helping to close this particular gap between the research and educational enterprises was the objective of the Ad Hoc Committee for Solid-State Instructional Materials, formed in 1990.
Ellis, Arthur B. J. Chem. Educ. 1997, 74, 1033.
Materials Science |
Solid State Chemistry |
Nanotechnology |
Magnetic Properties
A Refrigerator Magnet Analog of Scanning-Probe Microscopy  Julie K. Lorenz, Joel A. Olson, Dean J. Campbell, George C. Lisensky, and Arthur B. Ellis
The magnetic interactions between a flexible-sheet refrigerator magnet and a probe tip cut from the same magnet is used as a macroscopic analog of scanning probe microscopies.
Lorenz, Julie K.; Olson, Joel A.; Campbell, Dean J.; Lisensky, George C.; Ellis, Arthur B. J. Chem. Educ. 1997, 74, 1032A.
Surface Science |
Materials Science |
Atomic Properties / Structure |
Nanotechnology |
Magnetic Properties
A Simple Laboratory Demonstration of Electrochromism  Bertil Forslund
A laboratory exercise in which students are asked to construct an electrochromic cell, consisting of a thin, transparent layer of WO3 on a glass plate with a thin, transparent, and conducting surface coating of doped SnO2.
Forslund, Bertil. J. Chem. Educ. 1997, 74, 962.
Electrochemistry |
Materials Science |
Solid State Chemistry
An Inexpensive Kit for Constructing Models of Crystals  Michael Laing
This simple kit comprises five trays, each of 25 square wells, and a lid. It can be used to construct primitive cubic, FCC, BCC, diamond, zinc blende, NaCl, CsCl, rutile, fluorite, perovskite structures. The trays are square tissue culture Petri dishes (multiwell plates). Atoms are represented by glass marbles.
Laing, Michael. J. Chem. Educ. 1997, 74, 795.
Crystals / Crystallography |
Materials Science |
Solid State Chemistry |
Molecular Properties / Structure
Easy Filling of Capillaries in an Inert Atmosphere  Francisco J. Arnáiz
The procedure described in this article offers a simpler way to charge capillaries or tubes in an inert atmosphere using inexpensive materials.
Arnaiz, Francisco J. J. Chem. Educ. 1996, 73, A102.
Microscale Lab |
Solids |
Laboratory Equipment / Apparatus |
Laboratory Management
Air Stream-Assisted Sublimation on a Microscale: A Rapid Procedure Suitable for Sophomore Laboratory  Prem D. Sattsangi
Using familiar apparatus, such as a 3-mL reaction vial, an air condenser, a stream of clean air/nitrogen/argon, an aluminum heating block and a hot plate, several compounds in the microscale amounts (50 mg), with its melting points ranging from 50-240 C, have been successfully sublimed in 40 minutes.
Sattsangi, Prem D. J. Chem. Educ. 1996, 73, A3.
Microscale Lab |
Separation Science |
Phases / Phase Transitions / Diagrams |
Solids |
Physical Properties
Report on the WPI Conference: General Chemistry and Materials Science: The Interrelationships  Herbert Beall
Of the recent accomplishments of chemistry, some of the most spectacular have been in the area of materials. Materials receive surprisingly little attention as examples of chemical phenomena in fundamental chemistry classes, which are still built largely on the behavior of gases and liquids.
Beall, Herbert. J. Chem. Educ. 1996, 73, 756.
Conferences |
Materials Science
Solid State Resources CD  George C. Lisensky and Arthur B. Ellis
The Solid State Resource CD-ROM is intended to help instructors to integrate materials science examples into introductory chemistry courses.
Lisensky, G. C.; Ellis, A. B. . J. Chem. Educ. 1996, 73, 667.
Solid State Chemistry |
Materials Science
Polymer Science Pilot Program   Mary L. Maier
The Polymer Science Pilot Program consists of a sequence of experiences with polymers, designed to focus upon the ways in which these materials resemble and/or compare with nonpolymers in physical properties, versatility, and function.
Mary L. Maier. J. Chem. Educ. 1996, 73, 643.
Polymerization |
Physical Properties |
Materials Science
Materials in Today's World (Thrower, Peter A.)  Johnson, Brian J.
Text aimed at developing chemistry concepts through the perspective of materials science.
Johnson, Brian J. J. Chem. Educ. 1995, 72, A124.
Materials Science |
Nonmajor Courses
Solid State Resources CD  George C. Lisensky and Arthur B. Ellis
Description of the Solid State Resources CD-ROM.
Lisensky, G. C.; Ellis, A. B. . J. Chem. Educ. 1995, 72, 918.
Solids
A General Chemistry Course that Focuses on the Emerging Chemical Sciences  Owens, P. M.
Outline of topics considered in a materials, life, and environmental interdisciplinary general science course at the U.S. Military Academy.
Owens, P. M. J. Chem. Educ. 1995, 72, 528.
Materials Science
Polymers and Material Science: A Course for Nonscience Majors   Anderson, Janet S.
In an effort to provide a more appropriate science experience for nonscience majors, a course was designed to introduce them to polymer chemistry and properties.
Anderson, Janet S. J. Chem. Educ. 1994, 71, 1044.
Nonmajor Courses |
Materials Science
A Simple "Back of the Envelope" Method for Estimating the Densities and Molecular Volumes of Liquids and Solids  Girolami, Gregory S.
The method described for the estimation of densities and molecular volumes are surprisingly accurate and very simple.
Girolami, Gregory S. J. Chem. Educ. 1994, 71, 962.
Physical Properties |
Liquids |
Solids
Materials Chemistry Case Study Approach to Facilitate Learning the Fundamentals of Chemistry: Introductory College and Secondary Level  Shultz, Mary Jane
Award in the Course and Curriculum Development (CCD) program for FY1994.
Shultz, Mary Jane J. Chem. Educ. 1994, 71, 507.
Materials Science
Solid State Structures for MacMolecule  Mayer, Ludwig A.
Provides an effective visualization of extended structure solids.
Mayer, Ludwig A. J. Chem. Educ. 1994, 71, 421.
Solid State Chemistry |
Solids |
Molecular Modeling |
Molecular Properties / Structure
Nickel-Titanium Memory Metal: A "Smart" Material Exhibiting a Solid-State Phase Change and Superelasticity  Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C.
Several simple experiments that illustrate the shape-memory, mechanical, and acoustical properties of Nitinol.
Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C. J. Chem. Educ. 1994, 71, 334.
Solid State Chemistry |
Phases / Phase Transitions / Diagrams |
Materials Science |
Applications of Chemistry
A Window on the Solid-State  Robinson, William R.
"Part I: Structures of Metals" introduces the four basic structural types found in metals. "Part II: Unit Cells of Metals" discusses how to use a unit cell to describe a two-dimensional structure.
Robinson, William R. J. Chem. Educ. 1994, 71, 300.
Solid State Chemistry |
Solids |
Metals
Introducing chemistry to chemical engineering students   Bottani, Eduardo Jorge
Description of changes introduced to a general chemistry course for chemical engineering students.
Bottani, Eduardo Jorge J. Chem. Educ. 1993, 70, 935.
Quantum Chemistry |
Materials Science
Rolling happy and unhappy balls and their coefficients of friction   Nicholson, Lois
Writer brings to attention some misinformation a previous author had communicated in an attempt to explain the popular demonstration using "happy" and "unhappy" balls made of Neoprene and Polynorborene.
Nicholson, Lois J. Chem. Educ. 1993, 70, 867.
Materials Science
Experiments illustrating metal-insulator transitions in solids  Keller, Steven W.; Mallouk, Thomas E.
Experiments and demonstrations to expose undergraduate students to electronic properties of solids.
Keller, Steven W.; Mallouk, Thomas E. J. Chem. Educ. 1993, 70, 855.
Crystals / Crystallography |
Semiconductors |
MO Theory |
Materials Science
Investigating protective coatings for steel   Runyan, Tom; Herrmann, Mary
Learning about corrosion chemistry provides students with authentic inquiry experience as well as an opportunity to learn relevant and applicable content.
Runyan, Tom; Herrmann, Mary J. Chem. Educ. 1993, 70, 843.
Oxidation / Reduction |
Acids / Bases |
Metals |
Applications of Chemistry |
Consumer Chemistry |
Materials Science
Solid state chemistry: Taught as a comprehensive university course for chemistry students  Boldyreva, Elena V.
While the importance of solid state chemistry for both fundamental chemical science and for modern technology is recognized, there are hardly any comprehensive courses offered for non-specialist students. This author relates her experience in offering such a course.
Boldyreva, Elena V. J. Chem. Educ. 1993, 70, 551.
Solid State Chemistry |
Materials Science
A simple and reliable chemical preparation of YBa2Cu3O7-x superconductors: An experiment in high temperature superconductivity for an advanced undergraduate laboratory  Djurovich, Peter I.; Watts, Richard J.
The popular kits used to engage students in sythetic procedures contain pedagogical flaws. This article presents an alternative to the so-called "shake and bake" kits.
Djurovich, Peter I.; Watts, Richard J. J. Chem. Educ. 1993, 70, 497.
Semiconductors |
Materials Science |
Solid State Chemistry |
Superconductivity
The importance of understanding structure   Galasso, Frank
Solid state chemistry and its link with atomic structure is a topic that is still being neglected in students' education., despite the interesting scientific discoveries and developments that will likely be relevant in students' lives and possible careers.
Galasso, Frank J. Chem. Educ. 1993, 70, 287.
Solid State Chemistry |
Materials Science |
Solids |
Physical Properties
A spontaneous exothermic reaction between two solids: A safe demonstration  Scott, Earle S.
Reaction between equal masses of hydroxylamine hydrochloride and sodium nitrite.
Scott, Earle S. J. Chem. Educ. 1992, 69, 1028.
Solids |
Calorimetry / Thermochemistry |
Reactions
Materials chemistry companion to general chemistry: An update  Ellis, Arthur B.; Geselbracht, Margret J.; Greenblatt, Martha; Lisensky, George C.; Robinson, William R.; Whittingham, M. Stanley
Writing of A Materials Chemistry Companion to General Chemistry, a reference for teachers that correlates standard chemistry topics with particular kinds of materials and their applications; includes exercises, demonstrations, and experiments.
Ellis, Arthur B.; Geselbracht, Margret J.; Greenblatt, Martha; Lisensky, George C.; Robinson, William R.; Whittingham, M. Stanley J. Chem. Educ. 1992, 69, 1015.
Materials Science
Incorporating polymeric materials topics into the undergraduate chemistry core curriculum  Droske, John P.
Fourteen lecture "snapshots" and sixteen new polymer experiments developed for incorporation into the general chemistry course.
Droske, John P. J. Chem. Educ. 1992, 69, 1014.
Materials Science |
Polymerization
Conducting midshipmen - A classroom activity modeling extended bonding in solids  Lomax, Joseph F.
Using the electron-hopping model (analogous to people sitting in chairs) to explain electron movement and conductivity in insulators, semiconductors, and metals.
Lomax, Joseph F. J. Chem. Educ. 1992, 69, 794.
Solids |
Solid State Chemistry |
Conductivity |
Metals |
Semiconductors
A demonstration of hexagonal close-packed and cubic close-packed crystal structures   Foote, John D.; Blanck, Harvey F.
The advantage of the models in this demonstration is that they are not static, they show dynamically that spheres prefer HCP and CCP arrangements.
Foote, John D.; Blanck, Harvey F. J. Chem. Educ. 1991, 68, 777.
Crystals / Crystallography |
Solids
Diffraction of a laser light by a memory chip   Klier, Kamil; Taylor, J. Ashley
A way of demonstrating the relationship between structure and diffraction.
Klier, Kamil; Taylor, J. Ashley J. Chem. Educ. 1991, 68, 155.
X-ray Crystallography |
Solids |
Solid State Chemistry |
Surface Science |
Materials Science
Direct visualization of Bragg diffraction with a He-Ne laser and an ordered suspension of charged microspheres  Spencer, Bertrand H.; Zare, Richard N.
Bragg diffraction from colloidal crystals proves to be an excellent teaching tool. Only modest equipment and lab skill are needed to produce a diffraction pattern to provide students with an in-depth understanding of what ordered structure is and how it can be probed by diffraction techniques.
Spencer, Bertrand H.; Zare, Richard N. J. Chem. Educ. 1991, 68, 97.
X-ray Crystallography |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
The optical transform: Simulating diffraction experiments in introductory courses  Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B.
Using optical transforms to prepare slides with patterns that will diffract red and green visible light from a laser.
Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B. J. Chem. Educ. 1991, 68, 91.
X-ray Crystallography |
Molecular Properties / Structure |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
Using NASA and the space program to help high school and college students learn chemistry. Part II. The current state of chemistry in the space program  Kelter, Paul B.; Snyder, William E.; Buchar, Constance S.
Examples and classroom applications in the areas of spectroscopy, materials processing, and electrochemistry.
Kelter, Paul B.; Snyder, William E.; Buchar, Constance S. J. Chem. Educ. 1987, 64, 228.
Astrochemistry |
Spectroscopy |
Materials Science |
Electrochemistry |
Crystals / Crystallography
The density of solids  Hill, William D, Jr.
Supplement to and application of this experiment.
Hill, William D, Jr. J. Chem. Educ. 1987, 64, 92.
Solids |
Physical Properties
Crystal model kits for use in the general chemistry laboratory  Kildahl, Nicholas K.; Berka, Ladislav, H.; Bodner, George M.
This paper describes dynamic crystal models which were developed independently at the Worcester Polytech institute and Purdue University.
Kildahl, Nicholas K.; Berka, Ladislav, H.; Bodner, George M. J. Chem. Educ. 1986, 63, 62.
Crystals / Crystallography |
Solids |
Solid State Chemistry
Composition of gas hydrates. New answers to an old problem  Cady, George H.
The author provides a discussion on nonstoichiometric crystalline solids as they deserve attention in elementary chemistry courses because they are interesting and increasingly important. Laboratory activities are included.
Cady, George H. J. Chem. Educ. 1983, 60, 915.
Stoichiometry |
Solids |
Crystals / Crystallography
Le Châtelier's principle: the effect of temperature on the solubility of solids in liquids  Brice, L. K.
The purpose of this article is to provide a rigorous but straightforward thermodynamic treatment of the temperature dependence of solubility of solids in liquids that is suitable for presentation at the undergraduate level. The present discussion may suggest how to approach the qualitative aspects of the subject for freshman.
Brice, L. K. J. Chem. Educ. 1983, 60, 387.
Thermodynamics |
Liquids |
Solids |
Chemometrics |
Equilibrium
An effective demonstration of some properties of real vapors  Metsger, D. Scott
The apparatus described in this article has been found by the authors to be the most effective in vividly illustrating the behavior of a nearly ideal gas to first year chemistry students.
Metsger, D. Scott J. Chem. Educ. 1983, 60, 67.
Laboratory Equipment / Apparatus |
Gases |
Physical Properties |
Solids
Entropy and its role in introductory chemistry  Bickford, Franklin R.
The concept of entropy as it applies to phase changes.
Bickford, Franklin R. J. Chem. Educ. 1982, 59, 317.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Solids |
Liquids |
Gases
The chemistry of coatings   Griffith, James R.
Nature and humankind both produce spectacular coatings. These discussions of coating can contribute valuable chemistry lessons to the introductory curriculum.
Griffith, James R. J. Chem. Educ. 1981, 58, 956.
Applications of Chemistry |
Natural Products |
Materials Science
An experiment oriented approach to teaching the kinetic molecular theory  Wiseman, Frank L., Jr.
A series of experiments designed to illustrate the kinetic molecular theory and the differences between solids, liquids, and gases.
Wiseman, Frank L., Jr. J. Chem. Educ. 1979, 56, 233.
Kinetic-Molecular Theory |
Gases |
Solids |
Liquids |
Nonmajor Courses
Some structural principles for introductory chemistry  Wells, A. F.
Unit cells in repeating patterns and descriptions of simple structures.
Wells, A. F. J. Chem. Educ. 1977, 54, 273.
Solids |
Crystals / Crystallography
Lighter flint chemistry  Hentz, F. C., Jr.; Long, G. G.
The author describes an inquiry investigation into the composition of a lighter flint.
Hentz, F. C., Jr.; Long, G. G. J. Chem. Educ. 1976, 53, 651.
Materials Science |
Quantitative Analysis |
Qualitative Analysis
Freshman-level chemistry shapes the nuclear power industry  Plumb, Robert C.; Bridgman, W. B.; Wilbur, Leslie C.
Applying the modeling of a crystalline lattice to the changes occurring in a nuclear reactor.
Plumb, Robert C.; Bridgman, W. B.; Wilbur, Leslie C. J. Chem. Educ. 1975, 52, 523.
Crystals / Crystallography |
Molecular Modeling |
Solids |
Solid State Chemistry |
Nuclear / Radiochemistry |
Applications of Chemistry
Solid state labs: The bubble raft  McCormick, P. D.
Method for producing bubble rafts and experiments for using them to demonstrate the properties of crystals.
McCormick, P. D. J. Chem. Educ. 1975, 52, 521.
Solids |
Solid State Chemistry |
Crystals / Crystallography
Unit cells  Olsen, Robert C.; Tobiason, Fred L.
An easy way to construct of have students construct a unit cell in three dimensions.
Olsen, Robert C.; Tobiason, Fred L. J. Chem. Educ. 1975, 52, 509.
Solids |
Molecular Modeling |
Crystals / Crystallography
Construction of a tetrahedron packing model: A puzzle in structural chemistry  Schweikert, William W.
Proposes the assembly of a tetrahedrally shaped packing model as a game or puzzle for students.
Schweikert, William W. J. Chem. Educ. 1975, 52, 501.
Crystals / Crystallography |
Molecular Modeling |
Solids
The failings of the law of definite proportions  Suchow, Lawrence
Inorganic solids often violate the law of definite proportions.
Suchow, Lawrence J. Chem. Educ. 1975, 52, 367.
Stoichiometry |
Solids |
Transition Elements |
Metals
Simple tensile testing  McCormick, P. D.
Describes a simple tensiometer capable of giving good approximations to Young's Modulus.
McCormick, P. D. J. Chem. Educ. 1975, 52, 242.
Materials Science |
Solids
Brass  McCormick, P. D.
A spectacular illustration of a diffusion process in solid copper - transforming a copper penny into brass (or "gold") using NaOH and zinc.
McCormick, P. D. J. Chem. Educ. 1975, 52, 102.
Metals |
Solids
An inexpensive method to produce plastic models of solids  Salmon, J. F. S. J.; Polley, C. A.
Method for using moulage to produce plastic models of solids.
Salmon, J. F. S. J.; Polley, C. A. J. Chem. Educ. 1973, 50, 726.
Solids |
Molecular Modeling |
Solid State Chemistry
Models for simple, close-packed crystal structures  Mann, A. W.
This paper describes some simple crystallographic models made from styrofoam balls.
Mann, A. W. J. Chem. Educ. 1973, 50, 652.
Molecular Modeling |
Crystals / Crystallography |
Solids
A course for engineering and science students. Materials science in freshman chemistry  Companion, A.; Schug, K.
Description of a materials science in freshman chemistry.
Companion, A.; Schug, K. J. Chem. Educ. 1973, 50, 618.
Materials Science
Auto windows - Strong but self-destructing  Stookey, S. D.
Auto windowglass illustrates the principles of metastable equilibrium.
Stookey, S. D. J. Chem. Educ. 1973, 50, 131.
Applications of Chemistry |
Solids |
Equilibrium
Lecture demonstration of a phase transition in a solid  Kennedy, John H.; Chen, Fred
The solid-solid phase transition between two different allotropes of silver iodide.
Kennedy, John H.; Chen, Fred J. Chem. Educ. 1973, 50, 109.
Phases / Phase Transitions / Diagrams |
Solids |
Physical Properties
Demonstration of close-packing phenomena  Birnbaum, Edward R.
Relies in layers of styrofoam balls and an overhead projector for illustrating close-packed structure.
Birnbaum, Edward R. J. Chem. Educ. 1972, 49, 674.
Crystals / Crystallography |
Solids
Demonstration of 2-dimensional crystal lattice  Morrison, James D.; Driscoll, Jerry A.
A laser passing through wire cloth produces a characteristic interference pattern.
Morrison, James D.; Driscoll, Jerry A. J. Chem. Educ. 1972, 49, 558.
Crystals / Crystallography |
Solids
Density gradients in chemistry teaching  Miller, P. J.
Outlines experiments in which a density gradient may be used to advantage, including the analysis of organic compounds, aqueous solutions, binary mixtures of organic compounds, solids, and solvent extractions.
Miller, P. J. J. Chem. Educ. 1972, 49, 278.
Aqueous Solution Chemistry |
Solids |
Physical Properties |
Solutions / Solvents
An introduction to principles of the solid state. Extrinsic semiconductors  Weller, Paul F.
Includes a previous analogy is extended to cover n- and p-type semiconductors and discussions of the concepts of donors and acceptors, donor and acceptor activation energies and the corresponding charge carrier production at various temperatures, and the effects of the presence of both donors and acceptors.
Weller, Paul F. J. Chem. Educ. 1971, 48, 831.
Solid State Chemistry |
Solids |
Semiconductors
Sealed tube experiments  Campbell, J. A.
Lists and briefly describes a large set of "sealed tube experiments," each of which requires less than five minutes to set-up and clean-up, requires less than five minutes to run, provides dramatic results observable by a large class, and illustrates important chemical concepts.
Campbell, J. A. J. Chem. Educ. 1970, 47, 273.
Thermodynamics |
Crystals / Crystallography |
Solids |
Liquids |
Gases |
Rate Law |
Equilibrium
A three-dimensional model of dendritic structure  Olsen, Robert C.
A simple procedure for growing dendritic crystals in a gel that may serve as a model of dendritic structure.
Olsen, Robert C. J. Chem. Educ. 1969, 46, 496.
Crystals / Crystallography |
Solids
The structure of solid aluminum chloride  Bigelow, M. Jerome
Many general chemistry textbooks have been vague or mistaken with regards to the structure of solid aluminum chloride.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 495.
Solids
Structure units: Aids in the interpretation of chemical reactions  Strong, Laurence E.
the proposal to define structure units as generators of the various properties of a substance has a considerable advantage over the usual definition of a structure unit as the endpoint of some prescribed scheme of subdivision.
Strong, Laurence E. J. Chem. Educ. 1968, 45, 51.
Learning Theories |
Molecular Properties / Structure |
Solids |
Liquids |
Gases
Crystal models  Olsen, Robert C.
This short note illustrates a model designed to demonstrate the number of particles in a crystal that can be assigned to a unit cell.
Olsen, Robert C. J. Chem. Educ. 1967, 44, 728.
Crystals / Crystallography |
Molecular Modeling |
Solids |
Metals |
Metallic Bonding
The nature of " ionic" solids: The coordinated polymeric model  Sanderson, R. T.
The author discusses and questions the validity of considering some solids as purely ionic and offers the coordinated polymeric model as a plausible alternative.
Sanderson, R. T. J. Chem. Educ. 1967, 44, 516.
Solids |
Ionic Bonding
The teaching of crystal geometry in the introductory course  Livingston, R. L.
It is the purpose of this paper to outline an approach to the teaching of crystal structure at the elementary level that will prepare the student for more advanced work in this field or that could be used as the beginning in a more advanced course.
Livingston, R. L. J. Chem. Educ. 1967, 44, 376.
Crystals / Crystallography |
Solids
States of matter (Continued). D. Solid state  Owens, Charles; Klug, Evangeline B; Wnukowski, Lucian J.; Cooper, Edwin H.; Klug, Evangeline B.; Jackman, Kenneth; Alyea, Hubert N.; Young, James A.
Demonstrations include writing with alum crystals, the rate of crystallization and crystal size, purification by crystallization, growing salol crystals in a polarizer, growing crystal blossoms, the melting point of eutectic (salol + benzophenone) and butectic (p-toluidine + a-naphthol), sublimation of organic substances (methyl oxalate), and the pseudo-sublimation of naphthalene.
Owens, Charles; Klug, Evangeline B; Wnukowski, Lucian J.; Cooper, Edwin H.; Klug, Evangeline B.; Jackman, Kenneth; Alyea, Hubert N.; Young, James A. J. Chem. Educ. 1966, 43, A241.
Crystals / Crystallography |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Solids
Hard sphere simulation of statistical mechanical behavior of molecules  Plumb, Robert C.
Describes the design and use of a demonstration device to illustrate the kinetic behavior of gases, liquids, and solids.
Plumb, Robert C. J. Chem. Educ. 1966, 43, 648.
Statistical Mechanics |
Gases |
Liquids |
Solids |
Kinetic-Molecular Theory |
Equilibrium |
Phases / Phase Transitions / Diagrams
Manometric apparatus for vapor and solution studies  Taha, Ahmed A.; Grigsby, Ronald D.; Johnson, James R.; Christian, Sherril D.; Affsprung, Harold E.
Presents a device that can be sued to obtain vapor density and PVT measurements, vapor pressures of solutions and liquids, dew-point pressures and compositions, solubilities of gases in liquids, solubilities of slightly-miscible liquids, equilibrium constants for association reactions in solutions, interactions of vapors and gases with solids, and gas and vapor viscosities.
Taha, Ahmed A.; Grigsby, Ronald D.; Johnson, James R.; Christian, Sherril D.; Affsprung, Harold E. J. Chem. Educ. 1966, 43, 432.
Laboratory Equipment / Apparatus |
Physical Properties |
Solutions / Solvents |
Gases |
Liquids |
Solids
Crystals: Their Role in Nature and in Science (Bunn, Charles)  Templeton, David H.

Templeton, David H. J. Chem. Educ. 1965, 42, A550.
Solids |
Crystals / Crystallography
Enthalpies of formation of solid salts  Neidig, H. A.; Yingling, R. T.
This investigation introduces the student to several important areas of thermochemistry, including enthalpies of neutralization, enthalpies of dissolution, enthalpies of formation, and Hess' Law.
Neidig, H. A.; Yingling, R. T. J. Chem. Educ. 1965, 42, 474.
Thermodynamics |
Solids |
Calorimetry / Thermochemistry |
Precipitation / Solubility |
Acids / Bases |
Aqueous Solution Chemistry
8-Hydroxyquinaldine crystals  Phillips, J. P.; Faller, J. W.
The crystallization of 8-hydroxyquinaldine by the natural; evaporation of a saturated benzene solution at room temperature produces very large crystals.
Phillips, J. P.; Faller, J. W. J. Chem. Educ. 1965, 42, 328.
Crystals / Crystallography |
Solids
The direct reactions of solids  Feigl, F.
Provides suggestions for student research based on an earlier article published in the Journal.
Feigl, F. J. Chem. Educ. 1963, 40, A135.
Undergraduate Research |
Reactions |
Solids
Some models of close packing  Sime, Rodney J.
Presents models constructed from styrofoam balls and connected with toothpicks.
Sime, Rodney J. J. Chem. Educ. 1963, 40, 61.
Crystals / Crystallography |
Solids |
Molecular Modeling
Standard ionic crystal structures  Gehman, William G.
Examines the topics of cubic and hexagonal closest packed atom lattices; interstice lattices; standard crystal structures of type MaXb; standard CCP and HCP crystal structures; and deviations from ideal closest packing.
Gehman, William G. J. Chem. Educ. 1963, 40, 54.
Crystals / Crystallography |
Solids |
Molecular Modeling |
Solid State Chemistry
Flow of glass under its own weight  Dingledy, David
A common misconception of the nature of glass found in general chemistry texts is that ordinary glass will flow under its own weight at room temperatures.
Dingledy, David J. Chem. Educ. 1962, 39, 84.
Solids
Paper-made crystal models  Komuro, Yasuyuki; Sone, Kozo
Three-dimensional models of a number of simple ionic crystals are constructed from a box and pieces of cellophane.
Komuro, Yasuyuki; Sone, Kozo J. Chem. Educ. 1961, 38, 580.
Crystals / Crystallography |
Solids
A constant temperature reaction vessel for the thermal decomposition of solids  Prout, E. G.; Herley, P. J.
Describes an apparatus suitable for studying the thermal decomposition of potassium permanganate in high vacuum.
Prout, E. G.; Herley, P. J. J. Chem. Educ. 1960, 37, 643.
Laboratory Equipment / Apparatus |
Solids |
Rate Law |
Kinetics
Kinetic molecular theory from a jukebox  Easley, W. K.; Powers, Glenn F.
Uses dancers to various styles of music as an analogy for differences between the atomic and molecular motions in solids, liquids, and gases.
Easley, W. K.; Powers, Glenn F. J. Chem. Educ. 1960, 37, 302.
Kinetic-Molecular Theory |
Solids |
Liquids |
Gases
Inexpensive and convenient method for powdering solids for melting point determinations  Pinkus, A. G; Waldrop, P. G.
Recently a new mulling technique for preparing samples for infrared spectra was reported which makes use of ground glass plates.
Pinkus, A. G; Waldrop, P. G. J. Chem. Educ. 1959, 36, 618.
Laboratory Equipment / Apparatus |
Solids |
Physical Properties
Hollow lantern slides illustrating crystal structure  Kenney, Malcolm E.; Skinner, Selby M.
The structure of simple crystals can be illustrated by enclosing a layer of bearing balls in a hollow lantern slide and projecting the shadow pattern.
Kenney, Malcolm E.; Skinner, Selby M. J. Chem. Educ. 1959, 36, 495.
Crystals / Crystallography |
Solids
Crystal models  Slabaugh, W. H.
Describes the production of crystal models made of Plexiglass.
Slabaugh, W. H. J. Chem. Educ. 1959, 36, 288.
Crystals / Crystallography |
Solids
Chemical geometryApplication to salts  Gibb, Thomas R. P., Jr.; Winnerman, Anne
It is the purpose of this article to illustrate how one may delve rather deeply into some aspects of crystal structure that are of special interest chemically without becoming involved in the symbology and semantic complexities of conventional crystallography.
Gibb, Thomas R. P., Jr.; Winnerman, Anne J. Chem. Educ. 1958, 35, 578.
Crystals / Crystallography |
Solids
Permanent packing type crystal models  Kenney, Malcolm E.
Crystal models made of styrofoam balls are more durable if packed in clear plastic boxes.
Kenney, Malcolm E. J. Chem. Educ. 1958, 35, 513.
Crystals / Crystallography |
Solids |
Molecular Modeling
Face-centered cube and cubical close-packing  Barnett, E. De Barry
Instructions for the construction of simple models designed to illustrate the face-centered cube and cubical close-packing.
Barnett, E. De Barry J. Chem. Educ. 1958, 35, 186.
Crystals / Crystallography |
Solids
Letters to the editor  Fisher, D. Jerome
The author comments on definitions of crystal systems.
Fisher, D. Jerome J. Chem. Educ. 1957, 34, 259.
Crystals / Crystallography |
Solids
Textbook errors: Guest column. XII: The lubricating properties of graphite  Lavrakas, Vasilis
The presentation of the correct lamellar structure of graphite is generally followed in textbooks by an erroneous statement that the lubricating properties of graphite are due to the easy slippage between layers.
Lavrakas, Vasilis J. Chem. Educ. 1957, 34, 240.
Solids |
Gases
A new type of crystal model  Westbrook, J. H.; DeVries, R. C.
Describes the design and construction of a crystal model in which the positions of atoms are represented by colored lights that can be lit to illustrate various structures.
Westbrook, J. H.; DeVries, R. C. J. Chem. Educ. 1957, 34, 220.
Crystals / Crystallography |
Solids |
Molecular Modeling
Some simple solid models  Campbell, J. A.
Describes the use of hard spheres to illustrate a variety of concepts with respect solids, including closest packing and the effects of temperature and alloying.
Campbell, J. A. J. Chem. Educ. 1957, 34, 210.
Solids |
Crystals / Crystallography |
Molecular Modeling
Construction of crystal models from styrofoam spheres  Gibb, Thomas R. P., Jr.; Bassow, Herbert
Presents a method for constructing crystal models from styrofoam spheres using a specialized aluminum jig.
Gibb, Thomas R. P., Jr.; Bassow, Herbert J. Chem. Educ. 1957, 34, 99.
Crystals / Crystallography |
Molecular Modeling |
Solids
Textbook errors: X. The classification of crystals  Mysels, Karol J.
The classification of crystals into several systems (e.g., cubic, tetragonal, orthorombic) is generally based in textbooks on a consideration of crystal axes, particularly their relative lengths and direction; this approach usually gives correct assignments but occasionally leads to an error.
Mysels, Karol J. J. Chem. Educ. 1957, 34, 40.
Crystals / Crystallography |
Solids
Growing crystals: A survey of laboratory methods  Fehlner, Francis P.
The purpose of this article is to provide basic information and readily available references for anyone wishing to begin the production of crystals.
Fehlner, Francis P. J. Chem. Educ. 1956, 33, 449.
Crystals / Crystallography |
Solids
Demonstration of dynamic nature of ions using I131  Blake, Richard F.
This demonstration presents visual evidence of the ionic nature of solid salts and the dynamic equilibrium existing between dissolved and undissolved ions.
Blake, Richard F. J. Chem. Educ. 1956, 33, 354.
Isotopes |
Aqueous Solution Chemistry |
Solids |
Precipitation / Solubility |
Equilibrium
Recent history of the notion of a chemical species  Bulloff, Jack J.
Quantum and nuclear chemistry have challenged the doctrine that chemical elements are homogeneous entities while studies of the structure and stoichiometry of solids invite a change in our ideas of definite proportions in chemical combinations.
Bulloff, Jack J. J. Chem. Educ. 1953, 30, 78.
Nuclear / Radiochemistry |
Isotopes |
Stoichiometry |
Solids