TIGER

Journal Articles: 325 results
A New "Bottom-Up" Framework for Teaching Chemical Bonding  Tami Levy Nahum, Rachel Mamlok-Naaman, Avi Hofstein, and Leeor Kronik
This article presents a general framework for bonding that can be presented at different levels of sophistication depending on the student's level and needs. The pedagogical strategy for teaching this model is a "bottom-up" one, starting with basic principles and ending with specific properties.
Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Kronik, Leeor. J. Chem. Educ. 2008, 85, 1680.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Materials Science |
MO Theory |
Noncovalent Interactions
Ionic Blocks  Richard S. Sevcik, Rex Gamble, Elizabet Martinez, Linda D. Schultz, and Susan V. Alexander
"Ionic Blocks" is a teaching tool designed to help middle school students visualize the concepts of ions, ionic compounds, and stoichiometry. It can also assist high school students in reviewing their subject mastery.
Sevcik, Richard S.; Gamble, Rex; Martinez, Elizabet; Schultz, Linda D.; Alexander, Susan V. J. Chem. Educ. 2008, 85, 1631.
Ionic Bonding |
Nomenclature / Units / Symbols |
Nonmajor Courses |
Stoichiometry
On Capillary Rise and Nucleation  R. Prasad
A comparison of capillary rise and nucleation shows that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. This comparison may help to introduce nucleation with capillary rise, a topic familiar to students.
Prasad, R. J. Chem. Educ. 2008, 85, 1389.
Liquids |
Materials Science |
Metallurgy |
Solids
Polymeric, Metallic and Other Glasses in Introductory Chemistry  Stephen J. Hawkes
Polymeric, metallic, and other glasses and their importance are described in a manner suitable for introductory chemistry.
Hawkes, Stephen J. J. Chem. Educ. 2008, 85, 1377.
Consumer Chemistry |
Materials Science |
Phases / Phase Transitions / Diagrams |
Solids
Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise  Thomas H. Bindel
This laboratory allows students to examine relationships among the microscopicmacroscopicsymbolic levels using crystalline mineral samples and corresponding crystal models. The exercise also reinforces Lewis dot structures, VSEPR theory, and the identification of molecular and coordination geometries.
Bindel, Thomas H. J. Chem. Educ. 2008, 85, 822.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling |
Solids |
VSEPR Theory |
Lewis Structures |
Physical Properties
Determination of the Formula of a Hydrate: A Greener Alternative  Marc A. Klingshirn, Allison F. Wyatt, Robert M. Hanson, and Gary O. Spessard
This article describes how the principles of green chemistry were applied to a first-semester, general chemistry courses, specifically in relation to the determination of the formula of a copper hydrate salt that changes color when dehydrated and is easily rehydrated with steam.
Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O. J. Chem. Educ. 2008, 85, 819.
Gravimetric Analysis |
Green Chemistry |
Solids |
Stoichiometry
Reply to More on CIO and Related Radicals  Mark Kobrak and Warren Hirsch
We thank Prof. Jensen for bringing Dr. Linnetts work on oxygenhalogen diatomics to our attention. We were not aware that quartet theory had been applied in this way.
Kobrak, Mark; Hirsch, Warren. J. Chem. Educ. 2008, 85, 783.
Ionic Bonding
More on ClO and Related Radicals  William B. Jensen
The novel Lewis structure for the ClO radical and other related 13e isoelectronic species presented by Hirsch and Kobrak is identical to that proposed by Linnett over 40 years ago for the same species on the basis of his well-known double-quartet approach to Lewis structures.
Jensen, William B. J. Chem. Educ. 2008, 85, 783.
Ionic Bonding |
Lewis Structures |
Free Radicals
A-DNA and B-DNA: Comparing Their Historical X-ray Fiber Diffraction Images  Amand A. Lucas
This paper provides a comparative explanation of the structural content of the diffraction diagrams of A-DNA and B-DNA that facilitated the discovery of the double-helical structure of DNA by Watson and Crick in 1953. This analysis is supported a method that simulates both A-DNA and B-DNA X-ray images optically.
Lucas, Amand A. J. Chem. Educ. 2008, 85, 737.
Biophysical Chemistry |
Conformational Analysis |
Crystals / Crystallography |
X-ray Crystallography |
Nucleic Acids / DNA / RNA
Using Two-Dimensional Colloidal Crystals To Understand Crystallography   Stephanie A. Bosse and Nikolaus M. Loening
Describes a simple experiment that uses micrometer-sized latex spheres to form two-dimensional colloidal crystals. Diffraction patterns formed by passing a laser beam through these crystals reveal their symmetry and allow the determination of the size of the particles that make up the crystal.
Bosse, Stephanie A.; Loening, Nikolaus M. J. Chem. Educ. 2008, 85, 93.
Colloids |
Crystals / Crystallography |
Lasers |
X-ray Crystallography
Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Close-Packed Structure  John A. Hawkins, Linda M. Soper, Jeffrey L. Rittenhouse, and Robert C. Rittenhouse
Examines the pedagogical advantages in presenting the primitive rhombohedral unit cell as a means of helping students to gain greater insight into the nature of the cubic close-packed structure.
Hawkins, John A.; Soper, Linda M.; Rittenhouse, Jeffrey L.; Rittenhouse, Robert C. J. Chem. Educ. 2008, 85, 90.
Crystals / Crystallography |
Metals |
Solids
Effects of a Cooperative Learning Strategy on Teaching and Learning Phases of Matter and One-Component Phase Diagrams  Kemal Doymus
Describes a study whose objective was to determine the effects of cooperative learning (using the jigsaw method) on students' achievement in a general chemistry course.
Doymus, Kemal. J. Chem. Educ. 2007, 84, 1857.
Gases |
Liquids |
Phases / Phase Transitions / Diagrams |
Solids
Stuffed Derivatives of Close-Packed Structures  Bodie E. Douglas
Examines a variety of stuffed silica crystal structures in terms of the close-packing of one set of atoms or ions (P sites) with other atoms or ions in tetrahedral (T) or octahedral (O) sites and filled or partially filled layers in the regular pattern, PTOT.
Douglas, Bodie E. J. Chem. Educ. 2007, 84, 1846.
Crystals / Crystallography |
Group Theory / Symmetry |
Materials Science |
Metals |
Solid State Chemistry |
Solids
Fabrication and Analysis of Photonic Crystals  Dean J. Campbell, Kylee E. Korte, and Younan Xia
Presents a set of laboratory experiments designed to explore aspects of nanoscale chemistry by constructing and spectroscopically analyzing thin films of photonic crystals. Topics covered include crystallization and diffraction.
Campbell, Dean J.; Korte, Kylee E.; Xia, Younan. J. Chem. Educ. 2007, 84, 1824.
Crystals / Crystallography |
X-ray Crystallography
Lewis Structure Representation of Free Radicals Similar to ClO  Warren Hirsch and Mark Kobrak
An unconventional Lewis structure is proposed to explain the properties of the free radical ClO and a series of its isoelectronic analogues, particularly trends in the spin density of these species.
Hirsch, Warren; Kobrak, Mark. J. Chem. Educ. 2007, 84, 1360.
Atmospheric Chemistry |
Computational Chemistry |
Covalent Bonding |
Free Radicals |
Lewis Structures |
Molecular Modeling |
MO Theory |
Valence Bond Theory
The Mechanism of Covalent Bonding: Analysis within the Hückel Model of Electronic Structure  Sture Nordholm, Andreas Bäck, and George B. Bacskay
Hckel molecular orbital theory is shown to be uniquely useful in understanding and interpreting the mechanism of covalent bonding. Using the Hckel model it can be demonstrated that the dynamical character of the molecular orbitals is related simultaneously to the covalent bonding mechanism and to the degree of delocalization of the electron dynamics.
Nordholm, Sture; Bäck, Andreas; Bacskay, George B. J. Chem. Educ. 2007, 84, 1201.
Covalent Bonding |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Calcium Carbonate  Jay A. Young
The hazards of calcium carbonate are discussed.
Young, Jay A. J. Chem. Educ. 2007, 84, 1102.
Ionic Bonding |
Laboratory Management
Predicting the Stability of Hypervalent Molecules  Tracy A. Mitchell, Debbie Finocchio, and Jeremy Kua
In this exercise, students use concepts in thermochemistry such as bond energy, ionization potentials, and electron affinities to predict the relative stability of two hypervalent molecules (PF5 and PH5) relative to their respective non-hypervalent counterparts.
Mitchell, Tracy A.; Finocchio, Debbie; Kua, Jeremy. J. Chem. Educ. 2007, 84, 629.
Computational Chemistry |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Molecular Modeling |
Calorimetry / Thermochemistry |
Molecular Properties / Structure
Known-to-Unknown Approach To Teach about Coulomb's Law  P. K. Thamburaj
Analogies from life experiences help students understand the relationships between the quantities involved in Coulomb's law, which in turn help them understand the influence of charge and ionic size on lattice energy, melting points, and solubility of ionic solids.
Thamburaj, P. K. J. Chem. Educ. 2007, 84, 438.
Ion Exchange |
Physical Properties |
Ionic Bonding
Effectiveness of a MORE Laboratory Module in Prompting Students To Revise Their Molecular-Level Ideas about Solutions  Lydia T. Tien, Melonie A. Teichert, and Dawn Rickey
This study investigates the effectiveness of a ModelObserveReflectExplain (MORE) laboratory module in prompting three different populations of general chemistry students to revise their molecular-level ideas regarding chemical compounds dissolved in water.
Tien, Lydia T.; Teichert, Melonie A.; Rickey, Dawn. J. Chem. Educ. 2007, 84, 175.
Aqueous Solution Chemistry |
Conductivity |
Ionic Bonding |
Solutions / Solvents
Titration of a Solid Acid Monitored By X-Ray Diffraction  Keenan E. Dungey and Paul Epstein
Presents a solid-state laboratory in which students react fixed amounts of zirconium phosphate with increasing equivalents of NaOH(aq). From X-ray diffraction patterns, students calculate the interplanar spacings before and after the reaction. The spacings increase until the molar equivalence point is reached, indicating incorporation of the sodium ion into the crystal.
Dungey, Keenan E.; Epstein, Paul. J. Chem. Educ. 2007, 84, 122.
Acids / Bases |
Crystals / Crystallography |
Materials Science |
Solid State Chemistry |
X-ray Crystallography |
Titration / Volumetric Analysis
Let Us Give Lewis Acid–Base Theory the Priority It Deserves  Alan A. Shaffer
The Lewis concept is simple yet powerful in its scope, and can be used to help beginning students understand reaction mechanisms more fully. However, traditional approaches to acid-base reactions at the introductory level ignores Lewis acid-base theory completely, focusing instead on proton transfer described by the Br?nsted-Lowry concept.
Shaffer, Alan A. J. Chem. Educ. 2006, 83, 1746.
Acids / Bases |
Lewis Acids / Bases |
Lewis Structures |
Mechanisms of Reactions |
Molecular Properties / Structure |
VSEPR Theory |
Covalent Bonding |
Brønsted-Lowry Acids / Bases
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Powder Diffraction Simulated by a Polycrystalline Film of Spherical Colloids  Dean J. Campbell and Younan Xia
This article describes a simple way to demonstrate powder diffraction in a classroom setting using a dry film of spherical colloids on a glass substrate.
Campbell, Dean. J.; Xia, Younan. J. Chem. Educ. 2006, 83, 1638.
Crystals / Crystallography |
Mathematics / Symbolic Mathematics |
X-ray Crystallography |
Materials Science
Classifying Matter: A Physical Model Using Paper Clips  Bob Blake, Lynn Hogue, and Jerry L. Sarquis
By using colored paper clips, students can represent pure substances, mixtures, elements, and compounds and then discuss their similarities and differences. This model is advantageous for the beginning student who would not know enough about the detailed composition of simple materials like milk, brass, sand, and air to classify them properly.
Blake, Bob; Hogue, Lynn; Sarquis, Jerry L. J. Chem. Educ. 2006, 83, 1317.
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Solids |
Student-Centered Learning
More on the Nature of Resonance  Robert C. Kerber
The author continues to find the use of delocalization preferable to resonance.
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 1291.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Resonance Theory |
Nomenclature / Units / Symbols
More on the Nature of Resonance  William B. Jensen
Supplements a recent article on the interpretation of resonance theory with three additional observationsone historical and two conceptual.
Jensen, William B. J. Chem. Educ. 2006, 83, 1290.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
A Demonstration of Refractive Index Matching Using Isopropyl Alcohol and MgF2  Frederick C. Sauls
Isopropyl alcohol and magnesium fluoride have nearly identical refractive indices; thus a chip of MgF2 disappears when immersed in isopropanol.
Sauls, Frederick C. J. Chem. Educ. 2006, 83, 1170.
Mathematics / Symbolic Mathematics |
Physical Properties |
Solids |
Materials Science
Valence, Oxidation Number, and Formal Charge: Three Related but Fundamentally Different Concepts  Gerard Parkin
The purpose of this article is to clarify the terms valence, oxidation number, coordination number, formal charge, and number of bonds and illustrate how the valence of an atom in a molecule provides a much more meaningful criterion for establishing the chemical reasonableness of a molecule than does the oxidation number.
Parkin, Gerard. J. Chem. Educ. 2006, 83, 791.
Coordination Compounds |
Covalent Bonding |
Lewis Structures |
Oxidation State |
Nomenclature / Units / Symbols
Demonstrating Void Space in Solids: A Simple Demonstration To Challenge a Powerful Misconception  Mary Whitfield
The concept of bridging analogies is used in a simple demonstration to illustrate the substantial quantity of empty space that remains when solid spheres are packed together. The same demonstration also shows that the percentage of empty space is independent of particle size.
Whitfield, Mary. J. Chem. Educ. 2006, 83, 749.
Atomic Properties / Structure |
Materials Science |
Solids
The Discovery and Development of Cisplatin  Rebecca A. Alderden, Matthew D. Hall, and Trevor W. Hambley
Cisplatin is currently one of the most widely used anticancer drugs in the world. The unlikely events surrounding the discovery of its anticancer activity, subsequent introduction into the clinic, and the continuing research into platinum compounds is the subject of this review.
Alderden, Rebecca A.; Hall, Matthew D.; Hambley, Trevor W. J. Chem. Educ. 2006, 83, 728.
Bioinorganic Chemistry |
Coordination Compounds |
Drugs / Pharmaceuticals |
Medicinal Chemistry |
Metallic Bonding |
Oxidation State |
Synthesis
What Happens When Chemical Compounds Are Added to Water? An Introduction to the Model–Observe–Reflect–Explain (MORE) Thinking Frame  Adam C. Mattox, Barbara A. Reisner, and Dawn Rickey
This article describes a laboratory designed to help students understand how different compounds behave when dissolved in water, and introduces the modelobservereflectexplain (MORE) thinking frame, an instructional tool that encourages students to connect macroscopic observations with their understanding of the behavior of particles at the molecular level.
Mattox, Adam C.; Reisner, Barbara A.; Rickey, Dawn. J. Chem. Educ. 2006, 83, 622.
Aqueous Solution Chemistry |
Conductivity |
Ionic Bonding |
Solutions / Solvents |
Stoichiometry
If It's Resonance, What Is Resonating?  Robert C. Kerber
This article reviews the origin of the terminology associated with the use of more than one Lewis-type structure to describe delocalized bonding in molecules and how the original usage has evolved to reduce confusion
Kerber, Robert C. . J. Chem. Educ. 2006, 83, 223.
Aromatic Compounds |
Covalent Bonding |
Molecular Properties / Structure |
Nomenclature / Units / Symbols |
Resonance Theory
Filling in the Hexagonal Close-Packed Unit Cell  Robert C. Rittenhouse, Linda M. Soper, and Jeffrey L. Rittenhouse
The illustrations of the hcp unit cell that are used in textbooks at all levels and also in crystallography and solid-state reference works are incomplete, in that they fail to include fractions of middle layer atomic spheres with centers lying outside of the unit cell.
Rittenhouse, Robert C.; Soper, Linda M.; Rittenhouse, Jeffrey L. J. Chem. Educ. 2006, 83, 175.
Crystals / Crystallography |
Metals |
Solids
The Nature of Hydrogen Bonding  Emeric Schultz
Students use toy connecting blocks and Velcro to investigate weak intermolecular interactions, specifically hydrogen bonds.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 400A.
Noncovalent Interactions |
Hydrogen Bonding |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Covalent Bonding |
Molecular Modeling |
Molecular Properties / Structure
Sedimentation Time Measurements of Soil Particles by Light Scattering and Determination of Chromium, Lead, and Iron in Soil Samples via ICP  Patricia Metthe Todebush and Franz M. Geiger
In this two-part general chemistry laboratory activity, students study soil samples from home and from campus. In part one, the samples are placed in water and the suspended colloid fraction is separated using filtration, followed by a determination of colloid sedimentation rates via light scattering. In part two, the solid phase of the soil samples is dissolved in acid and analyzed for chromium, lead, and iron using an inductively coupled plasma spectrometer. The experiment can be expanded to include arsenic. Through these experiments students can draw conclusions about the physical and chemical behavior of solid components in soil, paying particular attention to their propensity for transporting and chemically transforming pollutants in the environment.
Todebush, Patricia Metthe; Geiger, Franz M. J. Chem. Educ. 2005, 82, 1542.
Colloids |
Geochemistry |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Solids |
Surface Science |
Metals
Sherlock Holmes and the Case of the Raven and the Ambassador's Wife: An Inquiry-Based Murder Mystery  Nathaniel Grove and Stacey Lowery Bretz
In the accompanying investigation, students help Sherlock Holmes solve the poisoning death of Holly Bernard-Schneider, the wife of the German ambassador to England. Hints are placed throughout the story to help students in their choice of experiments. These experiments include flame tests, qualitative analysis, molar mass determination using freezing point depression, and identification of crystal shapes. Though intended for use as a culminating activity, the unit can be easily modified to be used as separate modules throughout the course of the year.
Grove, Nathaniel; Bretz, Stacey Lowery. J. Chem. Educ. 2005, 82, 1532.
Crystals / Crystallography |
Qualitative Analysis |
Physical Properties |
Solutions / Solvents |
Student-Centered Learning
Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy. An Experiment for the Physical Chemistry Laboratory  Madalena S. C. Dionísio, Hermínio P. Diogo, J. P. S. Farinha, and Joaquim J. Moura-Ramos
In this article we present a laboratory experiment for an undergraduate physical chemistry course. The purpose of this experiment is the study of molecular mobility in a crystal using the technique of dielectric relaxation spectroscopy. The experiment illustrates important physical chemistry concepts. The background of the experimental technique deals with the concepts of orientational and induced polarization and frequency-dependent relative permittivity (or dielectric constant). The kinetic concepts of temperature-dependent relaxation time, activation energy, and activation entropy are involved in the concept of molecular mobility.
Dionísio, Madalena S. C.; Diogo, Hermínio P.; Farinha, J. P. S.; Moura-Ramos, Joaquim J. J. Chem. Educ. 2005, 82, 1355.
Kinetics |
Phases / Phase Transitions / Diagrams |
Solids |
Crystals / Crystallography
Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment  Gerald R. Van Hecke, Kerry K. Karukstis, Hanhan Li, Hansford C. Hendargo, Andrew J. Cosand, and Marja M. Fox
This experiment features an investigative approach designed for the introductory science or engineering major and integrates concepts in the fields of chemistry, biology, and physics. Derived from faculty research interests, this novel experiment gives students the opportunity to draw conclusions from tests performed to illustrate the connection between molecular structure and macroscopic properties. The chemical synthesis of the compounds studied further enhances the connection between molecular structure and macroscopic physical properties. The results of two separate physical measurements, refractometry and absorption spectroscopy, are combined to calculate a microscopic, but very practical, property of chiral nematic liquidsthe pitch of the helix formed in the liquid crystalline phase.
Van Hecke, Gerald R.; Karukstis, Kerry K.; Li, Hanhan; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M. J. Chem. Educ. 2005, 82, 1349.
Chirality / Optical Activity |
Crystals / Crystallography |
Molecular Properties / Structure |
UV-Vis Spectroscopy |
Acids / Bases |
Esters |
Physical Properties |
Physical Properties
Chemistry of Moth Repellents  Gabriel Pinto
A real-life example consisting of the study of the different substances used as moth repellents is presented to introduce students to miscellaneous topics such as sublimation, intermolecular forces, insecticides, and the effect of moths on clothes. A set of questions about the most common moth repellents, well known to students, is used to motivate them to understand several everday phenomena through chemistry concepts.
Pinto, Gabriel. J. Chem. Educ. 2005, 82, 1321.
Noncovalent Interactions |
Applications of Chemistry |
Phases / Phase Transitions / Diagrams |
Solids |
Physical Properties |
Consumer Chemistry
Valence, Covalence, Hypervalence, Oxidation State, and Coordination Number  Derek W. Smith
It is argued that the terms valence, covalence, hypervalence, oxidation state, and coordination number are often confused and misused in the literature. It is recommended that use of the term valence, and its associated terminology, should be restricted to simple molecular main group substances and to some oxoacids and derivatives, but avoided in both main group and transition element coordination chemistry.
Smith, Derek W. J. Chem. Educ. 2005, 82, 1202.
Coordination Compounds |
Covalent Bonding |
Main-Group Elements |
Oxidation State
Conceptual Considerations in Molecular Science  Donald T. Sawyer
The undergraduate curriculum and associated textbooks include several significant misconceptions.
Sawyer, Donald T. J. Chem. Educ. 2005, 82, 985.
Catalysis |
Covalent Bonding |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Reactions |
Reactive Intermediates |
Thermodynamics |
Water / Water Chemistry
Self-Assembled Colloidal Crystals: Visualizing Atomic Crystal Chemistry Using Microscopic Analogues of Inorganic Solids  Neal M. Abrams and Raymond E. Schaak
Monodisperse spherical colloids spontaneously crystallize into close-packed crystals, in analogy to the simple crystal structures of many of the elements. Since colloids are orders of magnitude larger than atoms, students can directly observe crystal structure and behavior in a microscope using colloidal crystals. This laboratory exercise provides a modular series of materials science experiments appropriate for undergraduate chemistry and engineering majors. The individual modules include aspects of chemical synthesis (monodisperse SiO2 and polymer spheres), self-assembly (colloidal crystallization), and structural characterization through microscopy (optical and scanning electron microscopies) and optical spectroscopy (optical diffraction and UVvisible spectroscopy).
Abrams, Neal M.; Schaak, Raymond E. J. Chem. Educ. 2005, 82, 450.
Colloids |
Materials Science |
Solid State Chemistry |
Solids
Electronegativity and the Bond Triangle  Terry L. Meek and Leah D. Garner
The dependence of bond type on two parameters, electronegativity difference (??) and average electronegativity (?av), is examined. It is demonstrated that ionic character is governed by the partial charges of the bonded atoms, and metallic character by the HOMOLUMO band gap.
Meek, Terry L.; Garner, Leah D. J. Chem. Educ. 2005, 82, 325.
Atomic Properties / Structure |
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Main-Group Elements
Copper Metal from Malachite circa 4000 B.C.E.  Gordon T. Yee, Jeannine E. Eddleton, and Cris E. Johnson
The experiment starts with a naturally occurring ore, malachite, essentially pure Cu2CO3(OH)2, which is readily available at modest cost in bead form from jewelry stores. Using only a Bunsen burner, a porcelain crucible, and a charcoal briquette, the experiment demonstrates two steps in the ancient processing of copper ore: roasting and reduction. The product is a shiny copper metal bead that can then be hammered, polished, and shown to be electrically conductive.
Yee, Gordon T.; Eddleton, Jeannine E.; Johnson, Cris E. J. Chem. Educ. 2004, 81, 1777.
Metals |
Oxidation / Reduction |
Solids
Empirical Formulas and the Solid State: A Proposal  William B. Jensen
This brief article calls attention to the failure of most introductory textbooks to point out explicitly the fact that nonmolecular solids do not have molecular formulas and suggests some practical remedies for improving textbook coverage of this subject. The inadequacies of the terms "empirical formula" and "molecular formula" are also discussed, and the terms "relative compositional formula" and "absolute compositional formula" are proposed as more appropriate alternatives.
Jensen, William B. J. Chem. Educ. 2004, 81, 1772.
Solid State Chemistry |
Solids |
Stoichiometry |
Nomenclature / Units / Symbols
The Formula for Ammonia Monohydrate  Stephen J. Hawkes
The reality of NH4OH was argued in J. Chem. Educ. and elsewhere a decade ago. Further evidence is now available. My colleague Darrah Thomas has calculated the geometry and bond lengths of H5NO using Gaussian. The calculation was done using the D95 basis set and the B3LYP method.
Hawkes, Stephen J. J. Chem. Educ. 2004, 81, 1569.
Covalent Bonding
An Excel Spreadsheet for a One-Dimensional Fourier Map in X-ray Crystallography  William Clegg
A Microsoft Excel spreadsheet, available online and from the author, is described. It calculates and graphically displays a one-dimensional electron density for a crystal structure and provides a convenient visual aid in the teaching of X-ray crystallography, particularly at the undergraduate level.
Clegg, William. J. Chem. Educ. 2004, 81, 908.
Crystals / Crystallography |
Fourier Transform Techniques |
X-ray Crystallography
Exothermic Bond Breaking: A Persistent Misconception  William C. Galley
Surveys taken the past several years at the onset of an introductory physical chemistry course reveal that the vast majority of students believe that bond breaking is exothermic.
Galley, William C. J. Chem. Educ. 2004, 81, 523.
Covalent Bonding |
Calorimetry / Thermochemistry
Teaching Molecular Geometry with the VSEPR Model  Ronald J. Gillespie
The difficulties associated with the usual treatment of the VB and MO theories in connection with molecular geometry in beginning courses are discussed. It is recommended that the VB and MO theories should be presented only after the VSEPR model either in the general chemistry course or in a following course, particularly in the case of the MO theory, which is not really necessary for the first-year course.
Gillespie, Ronald J. J. Chem. Educ. 2004, 81, 298.
Covalent Bonding |
Molecular Properties / Structure |
Main-Group Elements |
Theoretical Chemistry |
VSEPR Theory |
MO Theory
Writing Electron Dot Structures   Kenneth R. Magnell
Drill with feedback for students learning to write electron dot structures.
Magnell, Kenneth R. J. Chem. Educ. 2003, 80, 711.
Covalent Bonding |
Lewis Structures |
Resonance Theory |
Enrichment / Review Materials
The Molecular Model Game  Stephanie A. Myers
Student teams must draw Lewis structures and build models of various molecules and polyatomic ions; different team members have different responsibilities.
Myers, Stephanie A. J. Chem. Educ. 2003, 80, 423.
Molecular Properties / Structure |
Covalent Bonding |
Lewis Structures |
VSEPR Theory |
Enrichment / Review Materials
Paper-and-Glue Unit Cell Models  James P. Birk and Ellen J. Yezierski
Templates for a variety of unit cells that can be copied, cut out, and assembled.
Birk, James P.; Yezierski, Ellen J. J. Chem. Educ. 2003, 80, 157.
Solid State Chemistry |
Solids |
Crystals / Crystallography |
Molecular Modeling
Salt Crystals—Science behind the Magic  Charles F. Davidson and Michael R. Slabaugh
Discussion of sodium chloride and factors that influence the shape of the crystals it forms.
Davidson, Charles F.; Slabaugh, Michael R. J. Chem. Educ. 2003, 80, 155.
Consumer Chemistry |
Crystals / Crystallography |
Descriptive Chemistry |
Solids
Periodic Table Live! 3rd Edition: Abstract of Special Issue 17  Nicholas B. Adelman, Jon L. Holmes, Jerrold J. Jacobsen, John W. Moore, Paul F. Schatz, Jaclyn Tweedale, Alton J. Banks, John C. Kotz, William R. Robinson, and Susan Young
CD-ROM containing an interactive journey through the periodic table; includes information about each element, biographies of discoverers, videos of reactions, sources and uses, macro and atomic properties, and crystalline structures.
Adelman, Nicholas B.; Holmes, Jon L.; Jacobsen, Jerrold J.; Moore, John W.; Schatz, Paul F.; Tweedale, Jaclyn; Banks, Alton J.; Kotz, John C.; Robinson, William R.; Young, Susan. J. Chem. Educ. 2002, 79, 1487.
Descriptive Chemistry |
Periodicity / Periodic Table |
Solid State Chemistry |
Atomic Properties / Structure |
Physical Properties |
Reactions |
Crystals / Crystallography
Triboluminescent Crystals from the Microwave Oven  Bruce W. Baldwin and David M. Wilhite
Procedure for producing triboluminescent crystals in a microwave oven.
Baldwin, Bruce W.; Wilhite, David M. J. Chem. Educ. 2002, 79, 1344.
Aromatic Compounds |
Crystals / Crystallography |
Synthesis |
Photochemistry
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
A Three-Dimensional Model for Water  J. L. H. Johnson and S. H. Yalkowsky
Using Molymod spheres and magnets to simulate the structure and properties of water and aqueous systems.
Johnson, J. L. H.; Yalkowsky, S. H. J. Chem. Educ. 2002, 79, 1088.
Aqueous Solution Chemistry |
Covalent Bonding |
Lipids |
Liquids |
Solutions / Solvents |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
An Evergreen: The Tetrahedral Bond Angle  Marten J. ten Hoor
Summary and analysis of derivations of the tetrahedral bond angle.
ten Hoor, Marten J. J. Chem. Educ. 2002, 79, 956.
Molecular Properties / Structure |
Covalent Bonding
How We Teach Molecular Structure to Freshmen  Michael O. Hurst
Examination of how textbooks discuss various aspects of molecular structure; conclusion that much of general chemistry is taught the way it is for historical and not pedagogical reasons.
Hurst, Michael O. J. Chem. Educ. 2002, 79, 763.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure |
Lewis Structures |
VSEPR Theory |
Valence Bond Theory |
MO Theory
Crystal Models Made from Clear Plastic Boxes and Their Use in Determining Avogadro's Number  Thomas H. Bindel
Construction and use of unit cell / crystal lattice models made from clear plastic boxes.
Bindel, Thomas H. J. Chem. Educ. 2002, 79, 468.
Crystals / Crystallography |
X-ray Crystallography |
Stoichiometry |
Molecular Modeling
Is Salt Melting When It Dissolves in Water?  Alan Goodwin
Analysis of the chemical meaning of the terms melting and dissolving.
Goodwin, Alan. J. Chem. Educ. 2002, 79, 393.
Liquids |
Solids |
Phases / Phase Transitions / Diagrams
The Role of Lewis Structures in Teaching Covalent Bonding  S. R. Logan
Difficulties with the Lewis theory of covalent bonding and upgrading it to the Molecular Orbital theory.
Logan, S. R. J. Chem. Educ. 2001, 78, 1457.
Covalent Bonding |
MO Theory |
Nonmajor Courses |
Learning Theories |
Lewis Structures |
Molecular Properties / Structure
An Investigation of the Value of Using Concept Maps in General Chemistry  Gayle Nicoll, Joseph S. Francisco, and Mary B. Nakhleh
Study of the degree to which students in introductory chemistry classes linked related concepts; comparisons of a class in which concept mapping was used and another in which it was not.
Nicoll, Gayle; Francisco, Joseph S.; Nakhleh, Mary B. J. Chem. Educ. 2001, 78, 1111.
Covalent Bonding |
Learning Theories
The Conductivity of Molten Materials  Monica E. Thomas, Audrey A. Cleveland, Rubin Battino, David A. Dolson, and Michael R. Hall
Demonstrating the conductivity of molten ionic compounds; includes apparatus for demonstrating conductivity and suggested list of selected test materials and their melting points.
Thomas, Monica E.; Cleveland, Audrey A.; Battino, Rubin; Dolson, David A.; Hall, Michael R. J. Chem. Educ. 2001, 78, 1052.
Conductivity |
Metals |
Ionic Bonding |
Physical Properties
Lewis Structures in General Chemistry: Agreement between Electron Density Calculations and Lewis Structures  Gordon H. Purser
The internuclear electron densities of a series of X-O bonds (where X = P, S, or Cl) are calculated using quantum mechanics and compared to Lewis structures for which the formal charges have been minimized; a direct relationship is found between the internuclear electron density and the bond order predicted from Lewis structures in which formal charges are minimized.
Purser, Gordon H. J. Chem. Educ. 2001, 78, 981.
Covalent Bonding |
Computational Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Quantum Chemistry
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
Fast Ionic Migration of Copper Chromate  Adolf Cortel
Among the many demonstrations of ionic migration in an electric field, the ones showing the migration of colored Cu+2 and CrO4-2 ions are popular. The demonstration described here introduces some modifications to allow a fast displacement of these ions.
Cortel, Adolf. J. Chem. Educ. 2001, 78, 207.
Covalent Bonding |
Electrophoresis |
Separation Science
JCE Classroom Activity: Out of "Thin Air": Exploring Phase Changes  John J. Vollmer
This Activity illustrates sublimation/deposition with para-dichlorobenzene (mothballs) and evaporation/condensation with water.
Vollmer, John J. J. Chem. Educ. 2000, 77, 488A.
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Physical Properties |
Solids |
Gases
Crystallization from a Supersaturated Solution of Sodium Acetate  Jamil Ahmad
An overhead projector demonstration is described, in which sodium acetate trihydrate crystallizes out from a supersaturated solution that has been poured on a transparency. When seeded with a crystal of the salt, crystallization starts, and its progress can be followed on the screen.
Ahmad, Jamil. J. Chem. Educ. 2000, 77, 1446.
Crystals / Crystallography |
Solutions / Solvents
A Picture Is Worth 1000 Words: The BLT in Teaching Crystal Structure  Arthur M. Lesk
In explaining descriptions of crystals, many authors have emphasized the idea that Nature makes crystals, but human beings draw unit cell boundaries. The accompanying figure contains a useful classroom demonstration to drive this point home.
Lesk, Arthur M. J. Chem. Educ. 2000, 77, 1423.
Crystals / Crystallography
A Chemical-Medical Mystery: Gold Jewelry and Black Marks on Skin  Barbara B. Kebbekus
Gold jewelry at times makes a black mark or smudge on skin. This may be caused by abrasive powders on the skin (e.g. zinc oxide) but the phenomenon may also be caused by other skin conditions, possibly the presence of chloride ion, acidity, or sulfur-containing amino acids.
Kebbekus, Barbara B. J. Chem. Educ. 2000, 77, 1298.
Bioorganic Chemistry |
Geochemistry |
Hormones |
Metals |
Solids |
Applications of Chemistry
Learning about Atoms, Molecules, and Chemical Bonds: A Case Study of Multiple-Model Use  William R. Robinson
A report from the journal Science Education focusing on the Harrison and Treagust article Learning about Atoms, Molecules, and Chemical Bonds: A Case Study.
Robinson, William R. J. Chem. Educ. 2000, 77, 1110.
Learning Theories |
Kinetic-Molecular Theory |
Molecular Modeling |
Covalent Bonding
Experimental Demonstration of Isomorphism  J. Kamenícek and M. Melichárek
The effect of isomorphism may be demonstrated in two ways, using alums: by preparation of mixed crystals with various ratios of components, and by deposition of the second phase on the surface of the initial crystal. The experiments are described.
Kamencek, Jir; Melichrek, M. J. Chem. Educ. 2000, 77, 623.
Crystals / Crystallography |
Solid State Chemistry
Cubic Unit Cell Construction Kit  Bruce Mattson
This article provides plans for the construction of a student-interactive cubic unit cell model kit. Plans allow for the kit to be constructed on any scale. The kit is used in classroom activities or by students working alone or in small groups to construct the entire family of cubic lattices.
Mattson, Bruce. J. Chem. Educ. 2000, 77, 622.
Coordination Compounds |
Crystals / Crystallography |
Descriptive Chemistry |
Solid State Chemistry |
Molecular Modeling
Ionic Crystals: A Simple and Safe Lecture Demonstration of the Preparation of NaI from Its Elements  Zelek S. Herman
A simple and safe classroom demonstration showing the production of sodium iodide (NaI) crystals from elemental sodium and elemental (molecular) iodine is presented. The demonstration, which is quite impressive, naturally fits into the discussion of ionic bonding and the alkali halide crystals.
Herman, Zelek S. J. Chem. Educ. 2000, 77, 619.
Crystals / Crystallography |
Thermodynamics |
Ionic Bonding |
Crystals / Crystallography
Kixium Monolayers: A Simple Alternative to the Bubble Raft Model for Close-Packed Spheres  Keenan E. Dungey
This model focuses on the two-dimensional sheets, which are spontaneously formed from cereal pieces. The structure of the cereal rafts can be presented with an overhead projector.
Dungey, Keenan E. J. Chem. Educ. 2000, 77, 618.
Crystals / Crystallography |
Materials Science |
Solid State Chemistry
Preparation and Analysis of Multiple Hydrates of Simple Salts  Richard W. Schaeffer, Benny Chan, Shireen R. Marshall, Brian Blasiole, Neetha Khan, Kendra L. Yoder, Melissa E. Trainer, and Claude H. Yoder
A laboratory project in which students prepare a series of hydrates of simple salts and then determine the extent of hydration of the product(s); provides a good introduction to the concepts of solubility, saturation, recrystallization, relative compound stability, and simple gravimetric analysis.
Schaeffer, Richard W.; Chan, Benny; Marshall, Shireen R.; Blasiole, Brian; Khan, Neetha; Yoder, Kendra L.; Trainer, Melissa E.; Yoder, Claude H. J. Chem. Educ. 2000, 77, 509.
Stoichiometry |
Qualitative Analysis |
Crystals / Crystallography |
Precipitation / Solubility |
Gravimetric Analysis |
Quantitative Analysis
Reply to Coulombic Models in Chemical Bonding  Smith, Derek W.
Coulombic vs molecular orbital models for explaining the molecular shapes of ionic molecules.
Smith, Derek W. J. Chem. Educ. 2000, 77, 445.
Ionic Bonding |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Coulombic Models in Chemical Bonding  Sacks, Lawrence J.
Coulombic vs molecular orbital models for explaining the molecular shapes of ionic molecules.
Sacks, Lawrence J. J. Chem. Educ. 2000, 77, 445.
Ionic Bonding |
Molecular Modeling |
Molecular Properties / Structure |
MO Theory
Correction to Using Overhead Projectors to Simulate X-ray Diffraction Experiments.  Dragojlovic, Veljko
Correction to Figure 1 [1999, 76, 1240-1241]
Dragojlovic, Veljko J. Chem. Educ. 2000, 77, 160.
Crystals / Crystallography |
X-ray Crystallography |
Molecular Properties / Structure
A Comment on Molecular Geometry   Frank J. Gomba
A method of determining the correct molecular geometry of simple molecules and ions with one central atom is proposed. While the usual method of determining the molecular geometry involves first drawing the Lewis structure, this method can be used without doing so. In fact, the Lewis structure need not be drawn at all. The Lewis structure may be drawn as the final step, with the geometry of the simple molecule or ion already established.
Gomba, Frank J. J. Chem. Educ. 1999, 76, 1732.
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
Using Overhead Projector to Simulate X-ray Diffraction Experiments  Veljko Dragojlovic
A demonstration to simulate X-ray diffraction experiments can be performed using an overhead projector. As a classroom activity, the spacing between the lines of a grating or, once the spacing is known, the wavelength of diffracted light can be calculated.
Dragojlovic, Veljko. J. Chem. Educ. 1999, 76, 1240.
Crystals / Crystallography |
Molecular Properties / Structure |
X-ray Crystallography
The Use of Molecular Modeling and VSEPR Theory in the Undergraduate Curriculum to Predict the Three-Dimensional Structure of Molecules  Brian W. Pfennig and Richard L. Frock
Despite the simplicity and elegance of the VSEPR model, however, students often have difficulty visualizing the three-dimensional shapes of molecules and learning the more subtle features of the model, such as the bond length and bond angle deviations from ideal geometry that accompany the presence of lone pair or multiple bond domains or that result from differences in the electronegativity of the bonded atoms, partial charges and molecular dipole moments, and site preferences in the trigonal bipyramidal electron geometry.
Pfennig, Brian W.; Frock, Richard L. J. Chem. Educ. 1999, 76, 1018.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
A Way To Predict the Relative Stabilities of Structural Isomers  John M. Lyon
This paper discusses a method to evaluate the relative stabilities of structural isomers of inorganic and organic compounds. The method uses a simple set of rules that can be applied with only a knowledge of the electron configuration of the atoms and the periodic trends in atomic size.
Lyon, John M. J. Chem. Educ. 1999, 76, 364.
Covalent Bonding |
Diastereomers |
Molecular Properties / Structure
The Crystallization Clinic-A TA Orientation Exercise  Marjorie Kandel
Our orientation exercise for TAs in the organic laboratories is a Crystallization Clinic, and the main feature is a contest. Each TA has a different unknown solid to recrystallize. The products are judged by the students in the organic lab courses. Beauty of the crystals is the single criterion. The contest serves to refresh the TAs' technique and to give them empathy with the beginning students.
Kandel, Marjorie. J. Chem. Educ. 1999, 76, 67.
TA Training / Orientation |
Learning Theories |
Crystals / Crystallography
The Gravity of the Situation  Damon Diemente
This article presents a few calculations demonstrating that gravitational attraction between atoms is many orders of magnitude weaker than the gravitational attraction between Earth and an atom, and that the gravitational attraction between two ions is many orders of magnitude weaker than the electromagnetic attraction between them.
Diemente, Damon. J. Chem. Educ. 1999, 76, 55.
Atomic Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
Solid State Resources CD-ROM: Abstract of Special Issue 12, 2nd Edition   George C. Lisensky , Joey M. Blackwell, and Arthur B. Ellis
The Solid State Resources CD-ROM for Mac OS and Windows compatible computers has been updated with a new HTML interface and video identical to that published in the General Chemistry Collection, 2nd Edition. This includes both new video and improved versions of some of the movies on the original Solid State Resources CD.
Lisensky, George C.; Blackwell, Joey M.; Ellis, Arthur B. J. Chem. Educ. 1998, 75, 1351.
Materials Science |
Solids
An Alternative Framework for Chemical Bonding  William R. Robinson
Recent, qualitative research in science education has uncovered many nave or incorrect ideas about aspects of science commonly held by students and others at all levels. This article discusses how misconceptions can cluster and compound.
Robinson, William R. J. Chem. Educ. 1998, 75, 1074.
Covalent Bonding |
Ionic Bonding
Demonstrations on Paramagnetism with an Electronic Balance  Adolf Cortel
The demonstration shows the paramagnetism of common inorganic compounds by measuring the force with which they are attracted by a magnet over the plate of an electronic balance.
Cortel, Adolf. J. Chem. Educ. 1998, 75, 61.
Magnetic Properties |
Atomic Properties / Structure |
Covalent Bonding
Solid State Structures (Abstract of Volume 5D, Number 2)  Ludwig A. Mayer
Solid State Structures is a collection of image files that allows the user to display, rotate, and examine individually a large collection of 3-D structure models.
Mayer, Ludwig A. J. Chem. Educ. 1997, 74, 1144.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
A Window on the Solid State: Part I: Structures of Metals; Part II: Unit Cells of Metals; Part III: Structures of Ionic Solids; Part IV: Unit Cells of Ionic Solids (Abstract of Volume 5D, Number 2)  William R. Robinson and Joan F. Tejchma
A Window on the Solid State helps students understand and instructors present the structural features of solids. The package provides a tour of the structures commonly used to introduce features of the solid state.
Robinson, William R.; Tejchma, Joan F. J. Chem. Educ. 1997, 74, 1143.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
An Inexpensive Kit for Constructing Models of Crystals  Michael Laing
This simple kit comprises five trays, each of 25 square wells, and a lid. It can be used to construct primitive cubic, FCC, BCC, diamond, zinc blende, NaCl, CsCl, rutile, fluorite, perovskite structures. The trays are square tissue culture Petri dishes (multiwell plates). Atoms are represented by glass marbles.
Laing, Michael. J. Chem. Educ. 1997, 74, 795.
Crystals / Crystallography |
Materials Science |
Solid State Chemistry |
Molecular Properties / Structure
Use of Pom Pons To Illustrate Cubic Crystal Structures  Susan G. Cady
Transposing the textbook illustrations into three dimensional structures is difficult for some students. This transitions is easier if a three dimensional model is available for examination. Several 3D models are cited. A quick to assemble, inexpensive, colorful, and durable alternative to these models and styrofoam balls is the use of olefin pom pons.
Cady, Susan G. J. Chem. Educ. 1997, 74, 794.
Molecular Properties / Structure |
Crystals / Crystallography |
Molecular Modeling
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Easy Filling of Capillaries in an Inert Atmosphere  Francisco J. Arnáiz
The procedure described in this article offers a simpler way to charge capillaries or tubes in an inert atmosphere using inexpensive materials.
Arnaiz, Francisco J. J. Chem. Educ. 1996, 73, A102.
Microscale Lab |
Solids |
Laboratory Equipment / Apparatus |
Laboratory Management
Air Stream-Assisted Sublimation on a Microscale: A Rapid Procedure Suitable for Sophomore Laboratory  Prem D. Sattsangi
Using familiar apparatus, such as a 3-mL reaction vial, an air condenser, a stream of clean air/nitrogen/argon, an aluminum heating block and a hot plate, several compounds in the microscale amounts (50 mg), with its melting points ranging from 50-240 C, have been successfully sublimed in 40 minutes.
Sattsangi, Prem D. J. Chem. Educ. 1996, 73, A3.
Microscale Lab |
Separation Science |
Phases / Phase Transitions / Diagrams |
Solids |
Physical Properties
Using Physics Principles in the Teaching of Chemistry  Warren Gulden
Chemistry and physics may be separate subjects, but that should not prohibit the use of physics in a chemistry course. When this is done, students can use traditional physics principles or laws for the purpose of understanding chemistry better.
Gulden, Warren. J. Chem. Educ. 1996, 73, 771.
Ionic Bonding |
Physical Properties |
Electrochemistry |
Hydrogen Bonding
Ionization Energies, Electronegativity, Polar Bonds, and Partial Charges  James N. Spencer, Richard S. Moog, and Ronald J. Gillespie
Ionization energies obtained experimentally from photoelectron spectroscopy provide a convenient and simple method for obtaining electronegativity values that correlate well with the standard methods of Pauling, Allred, and Rochow.
James N. Spencer, Richard S. Moog, and Ronald J. Gillespie. J. Chem. Educ. 1996, 73, 627.
Covalent Bonding |
Atomic Properties / Structure |
Spectroscopy
Bonding and Molecular Geometry without Orbitals- The Electron Domain Model  Ronald J. Gillespie, James N. Spencer, and Richard S. Moog
An alternative to the conventional valence bond approach to bonding and geometry-the electron domain model-is presented. This approach avoids some of the problems with the standard approach and presents fewer difficulties for the student, while still providing a physical basis for the VSEPR model and a link to the valence bond model.
Ronald J. Gillespie, James N. Spencer, and Richard S. Moog. J. Chem. Educ. 1996, 73, 622.
Atomic Properties / Structure |
Covalent Bonding |
Molecular Properties / Structure |
VSEPR Theory
Why Don't Water and Oil Mix?  Katia Pravia and David F. Maynard
To develop an understanding of the molecular interactions of polar and nonpolar molecules, we have developed two simple and extremely useful overhead projection demonstrations that help students conceptualize the solubility rules.
Katia Pravia and David F. Maynard. J. Chem. Educ. 1996, 73, 497.
Hydrogen Bonding |
Covalent Bonding |
Precipitation / Solubility |
Molecular Properties / Structure
Salts are Mostly Not Ionized  Stephen J. Hawkes
The popular assumption that all salts are totally ionized in aqueous solution is false. Moreover, it is approximated only by alkali metal salts and by salts of alkaline earth metals with high atomic numbers.
Hawkes, Stephen J. J. Chem. Educ. 1996, 73, 421.
Ionic Bonding |
Metals |
Solutions / Solvents
Crystallization of Supersaturated Sodium Acetate and the Temperature Dependence of the Autoionization Constant of Water  Joseph A. Pergler, Ronald O. Ragsdale, and Thomas G. Richmond
A procedure to qualitatively demonstrate the variation of the autoionization constant of water with temperature.
Pergler, Joseph A.; Ragsdale, Ronald O.; Richmond, Thomas G. J. Chem. Educ. 1995, 72, 1027.
Crystals / Crystallography |
Aqueous Solution Chemistry |
Solutions / Solvents |
Acids / Bases |
Precipitation / Solubility |
Water / Water Chemistry
Solid State Resources CD  George C. Lisensky and Arthur B. Ellis
Description of the Solid State Resources CD-ROM.
Lisensky, G. C.; Ellis, A. B. . J. Chem. Educ. 1995, 72, 918.
Solids
Lewis Structures of Oxygen Compounds of 3p-5p Nonmetals  Darel K. Straub
Procedure for writing Lewis structures of oxygen compounds of 3p-5p nonmetals.
Straub, Darel K. J. Chem. Educ. 1995, 72, 889.
Lewis Structures |
Molecular Properties / Structure |
Covalent Bonding |
Main-Group Elements
A Window on the Solid State  William R. Robinson and Christopher P. Saari
Student tutorial and lecture demonstration software illustrating the structures and unit cells of metals.
Robinson, W. R. . J. Chem. Educ. 1995, 72, 814.
Metals |
Crystals / Crystallography |
Solid State Chemistry
Demonstrating a Lack of Reactivity Using a Teflon-Coated Pan  Thomas G. Richmond
Demonstration to illustrate a lack of chemical activity using a Teflon-coated pan.
Richmond, Thomas G.; Krause, Paul F. J. Chem. Educ. 1995, 72, 731.
Reactions |
Covalent Bonding
An Introductory Infrared Spectroscopy Experiment   Kenneth R. Hess, Wendy D. Smith, Marcus W. Thomsen, and Claude H. Yoder
An activity designed to introduce IR spectroscopy as a structure-determining technique to introductory chemistry students.
Hess, Kenneth R.; Smith, Wendy D.; Thomsen, Marcus W.; Yoder, Claude H. J. Chem. Educ. 1995, 72, 655.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
The Chemical Bond Studied by IR Spectroscopy in Introductory Chemistry: An Exercise in Cooperative Learning  Janet S. Anderson, David M. Hayes, and T. C. Werner
Activity that enables introductory chemistry students to run their own IR spectra using a FTIR spectrophotometer as part of learning about the dynamical nature of the chemical bond.
Anderson, Janet S.; Hayes, David M.; Werner, T. C. J. Chem. Educ. 1995, 72, 653.
IR Spectroscopy |
Covalent Bonding |
Molecular Properties / Structure
Common Textbook and Teaching Misrepresentations of Lewis Structures   Laila Suidan, Jay K. Badenhoop, Eric D. Glendening, and Frank Weinhold
Clarifying leading Lewis structures using computational software.
Suidan, Laila; Badenhoop, Jay K.; Glendening, Eric D.; Weinhold, Frank. J. Chem. Educ. 1995, 72, 583.
Lewis Structures |
Covalent Bonding |
Quantum Chemistry |
Molecular Properties / Structure
Lewis Structures of Boron Compounds Involving Multiple Bonding  Straub, Darel K.
Considers evidence for multiple bonding in boron compounds and supposed exceptions to the octet rule.
Straub, Darel K. J. Chem. Educ. 1995, 72, 494.
Lewis Structures |
Covalent Bonding
Bond Energy Data Summarized  Kildahl, Nicholas K.
A periodic table that summarizes a variety of bond energy information.
Kildahl, Nicholas K. J. Chem. Educ. 1995, 72, 423.
Periodicity / Periodic Table |
Covalent Bonding |
Ionic Bonding
A Quantitative van Arkel Diagram  Jensen, William B.
Using van Arkel diagrams to schematically represent relationships between ionic, covalent, and metallic bonds.
Jensen, William B. J. Chem. Educ. 1995, 72, 395.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Cubic and Related Structures of Many Types of Crystals: A Single Illuminated Model  Rich, Ronald L.
Instructions for constructing a three-dimensional, lighted model to illustrate the positions of atoms in many different crystalline structures.
Rich, Ronald L. J. Chem. Educ. 1995, 72, 172.
Crystals / Crystallography |
Laboratory Equipment / Apparatus |
Geochemistry |
Molecular Modeling |
Molecular Properties / Structure
Better Crystal for Crystal Analysis  Ali, Saqib; Danish, M.; Mazhar, M.
Technique for quickly and successfully growing air-sensitive crystals.
Ali, Saqib; Danish, M.; Mazhar, M. J. Chem. Educ. 1995, 72, 61.
Crystals / Crystallography |
Laboratory Management
Tetrahedral Geometry Made Simple  Woolf, A. A.
Technique for evaluating the geometry of tetrahedral close packing using right-angled triangles and trigonometry.
Woolf, A. A. J. Chem. Educ. 1995, 72, 19.
Molecular Properties / Structure |
Crystals / Crystallography
A Simple "Back of the Envelope" Method for Estimating the Densities and Molecular Volumes of Liquids and Solids  Girolami, Gregory S.
The method described for the estimation of densities and molecular volumes are surprisingly accurate and very simple.
Girolami, Gregory S. J. Chem. Educ. 1994, 71, 962.
Physical Properties |
Liquids |
Solids
Solid State Structures for MacMolecule  Mayer, Ludwig A.
Provides an effective visualization of extended structure solids.
Mayer, Ludwig A. J. Chem. Educ. 1994, 71, 421.
Solid State Chemistry |
Solids |
Molecular Modeling |
Molecular Properties / Structure
A Window on the Solid-State  Robinson, William R.
"Part I: Structures of Metals" introduces the four basic structural types found in metals. "Part II: Unit Cells of Metals" discusses how to use a unit cell to describe a two-dimensional structure.
Robinson, William R. J. Chem. Educ. 1994, 71, 300.
Solid State Chemistry |
Solids |
Metals
Mechanical Properties of Metals: Experiments with Steel, Copper, Tin, Zinc, and Soap Bubbles  Geselbracht, Margaret J.; Ellis, Arthur B.; Penn, Rona L.; Lisensky, George C.; Stone, Donald S.
Annealing, hardening, and tempering of metals; using bubbles to model the crystalline structure of metals.
Geselbracht, Margaret J.; Ellis, Arthur B.; Penn, Rona L.; Lisensky, George C.; Stone, Donald S. J. Chem. Educ. 1994, 71, 254.
Physical Properties |
Metals |
Crystals / Crystallography
Visualization of the Abstract in General Chemistry  Paselk, Richard A.
A series of software programs for beginning chemistry, including a series of modules addressing the fundamental phenomena associated with bonding, the microscopic phenomena underlying commonly observed systems, and a reference periodic table.
Paselk, Richard A. J. Chem. Educ. 1994, 71, 225.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Periodicity / Periodic Table
Classifying Substances by Electrical Character: An Alternative to Classifying by Bond Type  Nelson, P. G.
An alternative classification of substances based on their electrical properties.
Nelson, P. G. J. Chem. Educ. 1994, 71, 24.
Conductivity |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Semiconductors
Photon-initiated hydrogen-chlorine reaction: A student experiment at the microscale level   Egolf, Leanne M.; Keiser, Joseph T.
This lab offers a way to integrate the principles of thermodynamics and kinetics as well as other valuable instrumental methods.
Egolf, Leanne M.; Keiser, Joseph T. J. Chem. Educ. 1993, 70, A208.
Covalent Bonding |
Ionic Bonding |
Electrochemistry |
Free Radicals |
Microscale Lab |
Thermodynamics |
Kinetics
Experiments illustrating metal-insulator transitions in solids  Keller, Steven W.; Mallouk, Thomas E.
Experiments and demonstrations to expose undergraduate students to electronic properties of solids.
Keller, Steven W.; Mallouk, Thomas E. J. Chem. Educ. 1993, 70, 855.
Crystals / Crystallography |
Semiconductors |
MO Theory |
Materials Science
The Caltech chemistry animation project   Lewis, Nathan S.
Animations are being produced on subjects such as: atomic and molecular orbitals, lattices, VSPER, nucleophilic substitution, stereochemistry, sigma and pi bonding, and many more.
Lewis, Nathan S. J. Chem. Educ. 1993, 70, 739.
Stereochemistry |
Atomic Properties / Structure |
Molecular Modeling |
MO Theory |
Crystals / Crystallography
Electronegativity and bond type: I. Tripartate separation  Sproul, Gordon D.
As a unifying concept of bonding, electronegativity has been widely applied but gets only a limited treatment in most general chemistry texts.
Sproul, Gordon D. J. Chem. Educ. 1993, 70, 531.
Ionic Bonding |
Covalent Bonding |
Electrochemistry
Transformation of chemistry experiments into real world contexts   Bayer, Richard; Hudson, Bud; Schneider, Jane
Some background on the importance of using lasers to teach concepts in general chemistry and examples of demonstrations under development.
Bayer, Richard; Hudson, Bud; Schneider, Jane J. Chem. Educ. 1993, 70, 323.
Lasers |
Chirality / Optical Activity |
Covalent Bonding
The importance of understanding structure   Galasso, Frank
Solid state chemistry and its link with atomic structure is a topic that is still being neglected in students' education., despite the interesting scientific discoveries and developments that will likely be relevant in students' lives and possible careers.
Galasso, Frank J. Chem. Educ. 1993, 70, 287.
Solid State Chemistry |
Materials Science |
Solids |
Physical Properties
Inexpensive laboratory experiments on crystal growth of water soluble substances in gel media   Rastogi, R. P.; Das, Ishwar; Pushkarna, Anal; Sharma, Archana; Jaiswal, Kiran; Chand, Sudha
The authors describe their investigation into a variety of systems that exhibit different types of morphology when allowed to grow in thin films of solutions containing a denser matrix such as agar-agar or PVA polymer.
Rastogi, R. P.; Das, Ishwar; Pushkarna, Anal; Sharma, Archana; Jaiswal, Kiran; Chand, Sudha J. Chem. Educ. 1992, 69, A47.
Crystals / Crystallography
The microscale organic laboratory: A very simple method of filtration and recrystallization   Laporterie, A.
The following inexpensive system can be used to perform filtration, washing and crystallization without the loss of product in an organic lab.
Laporterie, A. J. Chem. Educ. 1992, 69, A42.
Microscale Lab |
Laboratory Equipment / Apparatus |
Crystals / Crystallography
A spontaneous exothermic reaction between two solids: A safe demonstration  Scott, Earle S.
Reaction between equal masses of hydroxylamine hydrochloride and sodium nitrite.
Scott, Earle S. J. Chem. Educ. 1992, 69, 1028.
Solids |
Calorimetry / Thermochemistry |
Reactions
Conducting midshipmen - A classroom activity modeling extended bonding in solids  Lomax, Joseph F.
Using the electron-hopping model (analogous to people sitting in chairs) to explain electron movement and conductivity in insulators, semiconductors, and metals.
Lomax, Joseph F. J. Chem. Educ. 1992, 69, 794.
Solids |
Solid State Chemistry |
Conductivity |
Metals |
Semiconductors
The nature of the chemical bond - 1992  Pauling, Linus
Commentary on errors in an earlier article on the nature of the chemical bond.
Pauling, Linus J. Chem. Educ. 1992, 69, 519.
Covalent Bonding |
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Who's in charge?   Perry, William D.; Vogel, Glenn C.
This paper attempts to clarify what chemists mean when they talk about ionic charges, partial charges, oxidation numbers, and formal charges.
Perry, William D.; Vogel, Glenn C. J. Chem. Educ. 1992, 69, 222.
Ionic Bonding |
Oxidation State
Microstate  York, Richard
Microstate allows experimentation with a simulated crystal that is viewed as a set of loosely coupled harmonic oscillators.
York, Richard J. Chem. Educ. 1992, 69, 130.
Crystals / Crystallography |
Thermodynamics
A demonstration of hexagonal close-packed and cubic close-packed crystal structures   Foote, John D.; Blanck, Harvey F.
The advantage of the models in this demonstration is that they are not static, they show dynamically that spheres prefer HCP and CCP arrangements.
Foote, John D.; Blanck, Harvey F. J. Chem. Educ. 1991, 68, 777.
Crystals / Crystallography |
Solids
Diffraction of a laser light by a memory chip   Klier, Kamil; Taylor, J. Ashley
A way of demonstrating the relationship between structure and diffraction.
Klier, Kamil; Taylor, J. Ashley J. Chem. Educ. 1991, 68, 155.
X-ray Crystallography |
Solids |
Solid State Chemistry |
Surface Science |
Materials Science
Direct visualization of Bragg diffraction with a He-Ne laser and an ordered suspension of charged microspheres  Spencer, Bertrand H.; Zare, Richard N.
Bragg diffraction from colloidal crystals proves to be an excellent teaching tool. Only modest equipment and lab skill are needed to produce a diffraction pattern to provide students with an in-depth understanding of what ordered structure is and how it can be probed by diffraction techniques.
Spencer, Bertrand H.; Zare, Richard N. J. Chem. Educ. 1991, 68, 97.
X-ray Crystallography |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
The optical transform: Simulating diffraction experiments in introductory courses  Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B.
Using optical transforms to prepare slides with patterns that will diffract red and green visible light from a laser.
Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B. J. Chem. Educ. 1991, 68, 91.
X-ray Crystallography |
Molecular Properties / Structure |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
ATOMS - Atomic Structure Display (Dowty, Eric)  Jacobson, Robert A.
The intent of this program is to provide a ready means of displaying structures of molecules, polymers and/or crystals.
Jacobson, Robert A. J. Chem. Educ. 1990, 67, A163.
Molecular Properties / Structure |
Crystals / Crystallography
The growth of large single crystals  Baer, Carl D.
It is possible to obtain a wide range of nicely formed crystals utilizing solution methods and commonly available materials and apparatus.
Baer, Carl D. J. Chem. Educ. 1990, 67, 410.
Crystals / Crystallography |
Solutions / Solvents
Magnetic marbles as teaching aids  Hill, John W.
Magnetic marbles are valuable teaching aids for teachers who have steel chalkboards in their classroom.
Hill, John W. J. Chem. Educ. 1990, 67, 320.
Atomic Properties / Structure |
Covalent Bonding |
Ion Exchange
Chemistry according to ROF (Fee, Richard)  Radcliffe, George; Mackenzie, Norma N.
Two reviews on a software package that consists of 68 programs on 17 disks plus an administrative disk geared toward acquainting students with fundamental chemistry content. For instance, acids and bases, significant figures, electron configuration, chemical structures, bonding, phases, and more.
Radcliffe, George; Mackenzie, Norma N. J. Chem. Educ. 1988, 65, A239.
Chemometrics |
Atomic Properties / Structure |
Equilibrium |
Periodicity / Periodic Table |
Periodicity / Periodic Table |
Stoichiometry |
Physical Properties |
Acids / Bases |
Covalent Bonding
How to use crystallographic information in teaching first-year chemistry   Bevan, D. J. M.; Taylor, M. R.; Rossi, M.
These authors describe material appropriate for inclusion in a first-year chemistry lecture course. This article stresses how basic chemical principles have been derived from crystallographic results. A potential instructor need not have crystallographic training to incorporate these lectures.
Bevan, D. J. M.; Taylor, M. R.; Rossi, M. J. Chem. Educ. 1988, 65, 477.
X-ray Crystallography |
Crystals / Crystallography |
Molecular Properties / Structure
A colorful demonstration to simulate orbital hybridization  Emerson, David W.
A simple, colorful demonstration involving nothing more than several beakers of colored water can speed up student comprehension of hybrid orbitals at the introductory level.
Emerson, David W. J. Chem. Educ. 1988, 65, 454.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
A very rapidly growing silicate crystal  Phillips, Donald B.
The extremely rapid growth of this crystal is made even more dramatic when shown by an overhead projector.
Phillips, Donald B. J. Chem. Educ. 1988, 65, 453.
Crystals / Crystallography
A multi-topic problem for general chemistry   Burness, James H.
A 'marathon' problem which requires specific knowledge in several areas while requiring that the student recognize how these areas are related.
Burness, James H. J. Chem. Educ. 1988, 65, 145.
Stoichiometry |
Transport Properties |
Electrolytic / Galvanic Cells / Potentials |
Crystals / Crystallography
Preparation of a simple thermochromic solid  Van Oort, Michiel J. M.
An easy, dramatic, and effective laboratory introduction to solid-solid phase transitions, thermochromism, and color changes associated with changes in ligand coordination suitable for undergraduate students in physical and general chemistry.
Van Oort, Michiel J. M. J. Chem. Educ. 1988, 65, 84.
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Coordination Compounds |
Metals |
Thermodynamics
Fractal structures obtained by electrodeposition of silver at an air-water interface  Ligon, Woodfin V., Jr.
Growing dendritic crystals of silver
Ligon, Woodfin V., Jr. J. Chem. Educ. 1987, 64, 1053.
Electrochemistry |
Crystals / Crystallography
The chemical bond  DeKock, Roger L.
Overview of the chemical bond; considers ionic bonds, covalent bonds, Lewis electron dot structures, polar molecules and hydrogen bonds, and bonding in solid-state elements.
DeKock, Roger L. J. Chem. Educ. 1987, 64, 934.
Ionic Bonding |
Covalent Bonding |
Hydrogen Bonding |
Solid State Chemistry |
Lewis Structures |
Molecular Properties / Structure
Physical and chemical properties  Boschmann, Erwin
A series of overhead demonstrations regarding physical and chemical properties.
Boschmann, Erwin J. Chem. Educ. 1987, 64, 891.
Physical Properties |
Liquids |
Precipitation / Solubility |
Magnetic Properties |
Kinetic-Molecular Theory |
Crystals / Crystallography |
Gases
Rock candy in a cellophane bag: A demonstration of pervaporation  Ciereszko, Leon S.
Growing large crystals in a dialysis bag.
Ciereszko, Leon S. J. Chem. Educ. 1987, 64, 804.
Consumer Chemistry |
Crystals / Crystallography
Allotropes and polymorphs  Sharma, B. D.
Definitions and examples of allotropes and polymorphs.
Sharma, B. D. J. Chem. Educ. 1987, 64, 404.
Nomenclature / Units / Symbols |
Crystals / Crystallography |
Molecular Properties / Structure
Using NASA and the space program to help high school and college students learn chemistry. Part II. The current state of chemistry in the space program  Kelter, Paul B.; Snyder, William E.; Buchar, Constance S.
Examples and classroom applications in the areas of spectroscopy, materials processing, and electrochemistry.
Kelter, Paul B.; Snyder, William E.; Buchar, Constance S. J. Chem. Educ. 1987, 64, 228.
Astrochemistry |
Spectroscopy |
Materials Science |
Electrochemistry |
Crystals / Crystallography
No rabbit ears on water. The structure of the water molecule: What should we tell the students?  Laing, Michael
Analysis of the bonding found in water and how it results in the observed geometry of the water molecule.
Laing, Michael J. Chem. Educ. 1987, 64, 124.
Molecular Properties / Structure |
MO Theory |
Covalent Bonding
The density of solids  Hill, William D, Jr.
Supplement to and application of this experiment.
Hill, William D, Jr. J. Chem. Educ. 1987, 64, 92.
Solids |
Physical Properties
Is the theoretical emperor really wearing any clothes?   Sanderson, R. T.
The author asserts that general chemistry material both pushes material of doubtful value and omits material that is useful to many.
Sanderson, R. T. J. Chem. Educ. 1986, 63, 845.
Theoretical Chemistry |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Calculation of Madelung constants in the first year chemistry course  Elert, Mark; Koubek, Edward
76. Bits and pieces, 31. A computer program aids in understanding the nature of the Madelung constants.
Elert, Mark; Koubek, Edward J. Chem. Educ. 1986, 63, 840.
Crystals / Crystallography |
Chemometrics
Teaching an introductory course in qualitative analysis in order to enhance learning general chemistry  Shamai, Ruth; Stavy, Ruth
These two authors have found that qualitative analysis is an excellent way for concrete operational thinkers to become formal thinkers.
Shamai, Ruth; Stavy, Ruth J. Chem. Educ. 1986, 63, 707.
Qualitative Analysis |
Learning Theories |
Metals |
Ionic Bonding
Coulombic models in chemical bonding. II. Dipole moments of binary hydrides  Sacks, Lawrence J.
A discussion of Coulumbic models and their aid in understanding chemical bonding.
Sacks, Lawrence J. J. Chem. Educ. 1986, 63, 373.
Electrochemistry |
Molecular Properties / Structure |
Covalent Bonding |
Noncovalent Interactions
Crystal model kits for use in the general chemistry laboratory  Kildahl, Nicholas K.; Berka, Ladislav, H.; Bodner, George M.
This paper describes dynamic crystal models which were developed independently at the Worcester Polytech institute and Purdue University.
Kildahl, Nicholas K.; Berka, Ladislav, H.; Bodner, George M. J. Chem. Educ. 1986, 63, 62.
Crystals / Crystallography |
Solids |
Solid State Chemistry
Competition analogy  Felty, Wayne L.
Using football competition as an analogy for bond polarity.
Felty, Wayne L. J. Chem. Educ. 1985, 62, 869.
Covalent Bonding |
Atomic Properties / Structure
A model to illustrate the brittleness of ionic and metallic crystals  Birk, James P.
Uses magnetic strips to explain the difference in brittleness between ionic and metallic solids.
Birk, James P. J. Chem. Educ. 1985, 62, 667.
Ionic Bonding |
Metallic Bonding |
Metals |
Physical Properties |
Crystals / Crystallography
Crystal growth in gels  Suib, Steven L.
Several experiments involving crystal growth in aqueous silicate gels (PbI2, Cu, HgI2, and calcite).
Suib, Steven L. J. Chem. Educ. 1985, 62, 81.
Crystals / Crystallography
Polar Covalence (Sanderson, R. T.)  Sturgeon, George D.

Sturgeon, George D. J. Chem. Educ. 1984, 61, A327.
Covalent Bonding
Chemical bonding simulation  Pankuch, Brian J.
54. Bits and pieces, 21. A computerized simulation that allows students to build molecules from specific atoms using concepts of VSEPR theory and electronegativity.
Pankuch, Brian J. J. Chem. Educ. 1984, 61, 791.
VSEPR Theory |
Covalent Bonding
Models to depict hybridization of atomic orbitals  Stubblefield, C. T.
Six models of hybridization: linear, trigonal, tetrahedral, planar, trigonal bipyrimidal, and octahedral.
Stubblefield, C. T. J. Chem. Educ. 1984, 61, 158.
Atomic Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Coordination Compounds
Composition of gas hydrates. New answers to an old problem  Cady, George H.
The author provides a discussion on nonstoichiometric crystalline solids as they deserve attention in elementary chemistry courses because they are interesting and increasingly important. Laboratory activities are included.
Cady, George H. J. Chem. Educ. 1983, 60, 915.
Stoichiometry |
Solids |
Crystals / Crystallography
Association of ions and fractional crystallization: a general chemistry experiment  Scaife, Charles W. J.; Dubs, Richard L.
The experiment in this article has been used in laboratories for non science majors and for inorganic chemistry. In both cases students attain a good understanding of what it taking place, how the various procedures affect actual concentrations of ions present, and why particular salts crystallize under certain conditions whereas others do not.
Scaife, Charles W. J.; Dubs, Richard L. J. Chem. Educ. 1983, 60, 418.
Crystals / Crystallography |
Solutions / Solvents
Electron-dot structures of O2 and NO: Ignored gems from the work of J. W. Linnett  Levy, Jack B.
The presented treatment makes it easier for students to make predictive models with electron-dot structures.
Levy, Jack B. J. Chem. Educ. 1983, 60, 404.
Lewis Structures |
MO Theory |
Covalent Bonding
Le Châtelier's principle: the effect of temperature on the solubility of solids in liquids  Brice, L. K.
The purpose of this article is to provide a rigorous but straightforward thermodynamic treatment of the temperature dependence of solubility of solids in liquids that is suitable for presentation at the undergraduate level. The present discussion may suggest how to approach the qualitative aspects of the subject for freshman.
Brice, L. K. J. Chem. Educ. 1983, 60, 387.
Thermodynamics |
Liquids |
Solids |
Chemometrics |
Equilibrium
An effective demonstration of some properties of real vapors  Metsger, D. Scott
The apparatus described in this article has been found by the authors to be the most effective in vividly illustrating the behavior of a nearly ideal gas to first year chemistry students.
Metsger, D. Scott J. Chem. Educ. 1983, 60, 67.
Laboratory Equipment / Apparatus |
Gases |
Physical Properties |
Solids
Crystal systems and general chemistry  Sharma, B. D.
Definitions of each crystal system from the point of minimum symmetry inherent in each crystal system.
Sharma, B. D. J. Chem. Educ. 1982, 59, 742.
Crystals / Crystallography
Some simple AX and AX2 structures  Wells, A. F.
Examines three of the simplest crystalline structures, that of sodium chloride, rutile, and fluorite.
Wells, A. F. J. Chem. Educ. 1982, 59, 630.
Molecular Properties / Structure |
Molecular Modeling |
Crystals / Crystallography
A needed replacement for the customary description of chemical bonding  Sanderson, R. T.
Description of and encouragement to use an alternative to the covalent / ionic model for chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1982, 59, 376.
Covalent Bonding |
Ionic Bonding
Entropy and its role in introductory chemistry  Bickford, Franklin R.
The concept of entropy as it applies to phase changes.
Bickford, Franklin R. J. Chem. Educ. 1982, 59, 317.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Solids |
Liquids |
Gases
The Nature of the Chemical Bond, Review 2 (Pauling, Linus)  Morlan, Gordon E.
Classic book on the valence-bond theory of chemical bonding.
Morlan, Gordon E. J. Chem. Educ. 1982, 59, 261.
Covalent Bonding
The Nature of the Chemical Bond, Review 1 (Pauling, Linus)  Roe, Robert, Jr.
Classic book on the valence-bond theory of chemical bonding.
Roe, Robert, Jr. J. Chem. Educ. 1982, 59, 260.
Covalent Bonding
Graphic display of molecular structures from crystallographic data  Keat, Rodney
25. Bits and pieces, 9. PROJECT-X is a program that translates X-ray crystallographic data into orthographic projections.
Keat, Rodney J. Chem. Educ. 1982, 59, 128.
Molecular Properties / Structure |
Crystals / Crystallography |
Molecular Modeling
Lemon meringue pie  Smith, Douglas D.
The chemistry and physics of lemon meringue pie.
Smith, Douglas D. J. Chem. Educ. 1982, 59, 60.
Gases |
Ionic Bonding |
Hydrogen Bonding |
Proteins / Peptides
"Holey" crystals!   Feinstein, H. I.
Nonstoichiometric compounds have a range of composition, often exhibit unusual color, luster, fluorescence, and semi-conductance. This makes them fascinating compounds for student study.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 638.
Stoichiometry |
Semiconductors |
Crystals / Crystallography |
Physical Properties |
Isotopes
Tetrahedral bonding in CH4. An alternative explanation  Rees, Thomas
Using the VSEPR theory to conduct a thought experiment regarding the bonding and structure of methane.
Rees, Thomas J. Chem. Educ. 1980, 57, 899.
Molecular Properties / Structure |
Covalent Bonding |
VSEPR Theory
Crystals and X-rays: A demonstration  Julian, Maureen M.
A lecture hall demonstration on crystals and X-rays using a mirror ball.
Julian, Maureen M. J. Chem. Educ. 1980, 57, 737.
X-ray Crystallography |
Crystals / Crystallography
Bent-bond models using framework molecular models  Sund, Eldon H.; Suggs, Mark W.
Using tubing to represent double and triple bonds.
Sund, Eldon H.; Suggs, Mark W. J. Chem. Educ. 1980, 57, 638.
Molecular Modeling |
Alkenes |
Alkynes |
Covalent Bonding
A 3-dimensional animated videocassette on the unit cell  Gelder, J. I.; Liu, C. F.; O'Donnell, T. J.
This 7.5 minute videocassette introduces the macroscopic properties of crystals as they relate to the regularity of the crystalline lattice and shows the relationship between the extended lattice and the cubic cell.
Gelder, J. I.; Liu, C. F.; O'Donnell, T. J. J. Chem. Educ. 1980, 57, 590.
Crystals / Crystallography
Bent bonds and multiple bonds  Robinson, Edward A.; Gillespie, Ronald J.
Considers carbon-carbon multiple bonds in terms of the bent bond model first proposed by Pauling in 1931.
Robinson, Edward A.; Gillespie, Ronald J. J. Chem. Educ. 1980, 57, 329.
Covalent Bonding |
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Alkynes
Crystallization of sodium acetate  Hiegel, Gene A.
Procedure for preparing a supersaturated solution of sodium acetate and crystallizing it.
Hiegel, Gene A. J. Chem. Educ. 1980, 57, 152.
Crystals / Crystallography |
Solutions / Solvents |
Aqueous Solution Chemistry |
Precipitation / Solubility
Prospects and retrospects in chemical education  Pauling, Linus
Pauling provides suggestions for what concepts to focus on in an elementary chemistry course.
Pauling, Linus J. Chem. Educ. 1980, 57, 38.
Covalent Bonding |
Descriptive Chemistry |
Molecular Properties / Structure
Travelling Waves of Chemical Activity in the Zaikin-Zhabotinskii-Winfree Reagent  Field, Richard J; Winfree, Arthur T.
An overhead projector demonstration.
Field, Richard J; Winfree, Arthur T. J. Chem. Educ. 1979, 56, 754.
Crystals / Crystallography |
Solutions / Solvents |
Aqueous Solution Chemistry |
Precipitation / Solubility
Physical and chemical properties and bonding of metallic elements  Myers, R. Thomas
137. Common textbook errors concerning the physical and chemical properties, conductivity and bonding of metals.
Myers, R. Thomas J. Chem. Educ. 1979, 56, 712.
Physical Properties |
Metallic Bonding |
Metals |
Covalent Bonding
Electronegativity, bond energy, and chemical reactivity  Myers, R. Thomas
The Pauling electronegativity concept can be used to help rationalize several kinds of chemical reactions.
Myers, R. Thomas J. Chem. Educ. 1979, 56, 711.
Atomic Properties / Structure |
Covalent Bonding |
Reactions
The chemistry of glass  Kolb, Doris; Kolb, Kenneth E.
Definition of glass, natural glass, the early history of glass, the composition of different types of glass, chemically modified glasses, and modern glass forming.
Kolb, Doris; Kolb, Kenneth E. J. Chem. Educ. 1979, 56, 604.
Applications of Chemistry |
Crystals / Crystallography
Bond free energies  Amador, Alberto
Provides standard free energies for the formation of common single and multiple bonds.
Amador, Alberto J. Chem. Educ. 1979, 56, 453.
Covalent Bonding |
Thermodynamics
Loosely-bound diatomic molecules  Balfour, W. J.
Over the past decade, careful spectroscopic studies have established the existence of bound rare gas and alkaline earth diatomic molecules.
Balfour, W. J. J. Chem. Educ. 1979, 56, 452.
Covalent Bonding |
Molecular Properties / Structure
A model to illustrate the infinite nature of a crystalline compound  Kennard, C. H. L.
A model to illustrate the infinite and periodic nature of face-centered cubic crystalline compounds.
Kennard, C. H. L. J. Chem. Educ. 1979, 56, 238.
Molecular Modeling |
Crystals / Crystallography
An experiment oriented approach to teaching the kinetic molecular theory  Wiseman, Frank L., Jr.
A series of experiments designed to illustrate the kinetic molecular theory and the differences between solids, liquids, and gases.
Wiseman, Frank L., Jr. J. Chem. Educ. 1979, 56, 233.
Kinetic-Molecular Theory |
Gases |
Solids |
Liquids |
Nonmajor Courses
Lecture projectable atomic orbital cross-sections and bonding interactions  Shepherd, Rex E.
Models using small Styrofoam balls and slinky toys improve student understanding of covalent bonds.
Shepherd, Rex E. J. Chem. Educ. 1978, 55, 317.
Atomic Properties / Structure |
Covalent Bonding |
MO Theory |
Molecular Modeling
Growing salt crystals  Smith, Douglas D.
Tips for growing large crystals of NaCl.
Smith, Douglas D. J. Chem. Educ. 1977, 54, 552.
Crystals / Crystallography
Chemical symbolism and the solid state. A proposal  Jensen, William B.
A proposed symbolism for representing the solid state.
Jensen, William B. J. Chem. Educ. 1977, 54, 277.
Solid State Chemistry |
Crystals / Crystallography
Some structural principles for introductory chemistry  Wells, A. F.
Unit cells in repeating patterns and descriptions of simple structures.
Wells, A. F. J. Chem. Educ. 1977, 54, 273.
Solids |
Crystals / Crystallography
Chemical aspects of Bohr's 1913 theory  Kragh, Helge
The chemical content of Bohr's 1913 theory has generally been neglected in the treatises on the history of chemistry; this paper regards Bohr as a theoretical chemist and discusses the chemical aspects of his atomic theory.
Kragh, Helge J. Chem. Educ. 1977, 54, 208.
Periodicity / Periodic Table |
Atomic Properties / Structure |
Molecular Properties / Structure |
Covalent Bonding |
Theoretical Chemistry
Freshman-level chemistry shapes the nuclear power industry  Plumb, Robert C.; Bridgman, W. B.; Wilbur, Leslie C.
Applying the modeling of a crystalline lattice to the changes occurring in a nuclear reactor.
Plumb, Robert C.; Bridgman, W. B.; Wilbur, Leslie C. J. Chem. Educ. 1975, 52, 523.
Crystals / Crystallography |
Molecular Modeling |
Solids |
Solid State Chemistry |
Nuclear / Radiochemistry |
Applications of Chemistry
Solid state labs: The bubble raft  McCormick, P. D.
Method for producing bubble rafts and experiments for using them to demonstrate the properties of crystals.
McCormick, P. D. J. Chem. Educ. 1975, 52, 521.
Solids |
Solid State Chemistry |
Crystals / Crystallography
Unit cells  Olsen, Robert C.; Tobiason, Fred L.
An easy way to construct of have students construct a unit cell in three dimensions.
Olsen, Robert C.; Tobiason, Fred L. J. Chem. Educ. 1975, 52, 509.
Solids |
Molecular Modeling |
Crystals / Crystallography
Construction of a tetrahedron packing model: A puzzle in structural chemistry  Schweikert, William W.
Proposes the assembly of a tetrahedrally shaped packing model as a game or puzzle for students.
Schweikert, William W. J. Chem. Educ. 1975, 52, 501.
Crystals / Crystallography |
Molecular Modeling |
Solids
Demonstrations for high school chemistry  Castka, Joseph F.
A sequence of demonstrations that may serve to initiate and maintain student interest in the development of acid-base theories and bond strength.
Castka, Joseph F. J. Chem. Educ. 1975, 52, 394.
Acids / Bases |
Covalent Bonding |
Lewis Acids / Bases |
Brønsted-Lowry Acids / Bases
Keep chemistry simple!  Pearson, W. B.
High borides are an excellent example of simplistic geometry.
Pearson, W. B. J. Chem. Educ. 1975, 52, 391.
Crystals / Crystallography
The failings of the law of definite proportions  Suchow, Lawrence
Inorganic solids often violate the law of definite proportions.
Suchow, Lawrence J. Chem. Educ. 1975, 52, 367.
Stoichiometry |
Solids |
Transition Elements |
Metals
Simple tensile testing  McCormick, P. D.
Describes a simple tensiometer capable of giving good approximations to Young's Modulus.
McCormick, P. D. J. Chem. Educ. 1975, 52, 242.
Materials Science |
Solids
Brass  McCormick, P. D.
A spectacular illustration of a diffusion process in solid copper - transforming a copper penny into brass (or "gold") using NaOH and zinc.
McCormick, P. D. J. Chem. Educ. 1975, 52, 102.
Metals |
Solids
An inexpensive method to produce plastic models of solids  Salmon, J. F. S. J.; Polley, C. A.
Method for using moulage to produce plastic models of solids.
Salmon, J. F. S. J.; Polley, C. A. J. Chem. Educ. 1973, 50, 726.
Solids |
Molecular Modeling |
Solid State Chemistry
The Cooper structure - A simple model to illustrate the tetrahedral geometry of sp3 bonding  Walker, Ruth A.
A cut out model illustrating the tetrahedral geometry of sp3 bonding.
Walker, Ruth A. J. Chem. Educ. 1973, 50, 703.
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding
Models for simple, close-packed crystal structures  Mann, A. W.
This paper describes some simple crystallographic models made from styrofoam balls.
Mann, A. W. J. Chem. Educ. 1973, 50, 652.
Molecular Modeling |
Crystals / Crystallography |
Solids
A simple demonstration of O2 paramagnetism. A macroscopically observable difference between VB and MO approaches to bonding theory  Saban, G. H.; Moran, T. F.
A simple apparatus to demonstrate the paramagnetic behavior of oxygen.
Saban, G. H.; Moran, T. F. J. Chem. Educ. 1973, 50, 217.
Molecular Properties / Structure |
Magnetic Properties |
MO Theory |
Covalent Bonding
Strength of chemical bonds  Christian, Jerry D.
Demonstrating the strength of chemical bonds by scaling a molecule up to a macroscopic size.
Christian, Jerry D. J. Chem. Educ. 1973, 50, 176.
Covalent Bonding |
Molecular Properties / Structure |
Metallic Bonding
Auto windows - Strong but self-destructing  Stookey, S. D.
Auto windowglass illustrates the principles of metastable equilibrium.
Stookey, S. D. J. Chem. Educ. 1973, 50, 131.
Applications of Chemistry |
Solids |
Equilibrium
Lecture demonstration of a phase transition in a solid  Kennedy, John H.; Chen, Fred
The solid-solid phase transition between two different allotropes of silver iodide.
Kennedy, John H.; Chen, Fred J. Chem. Educ. 1973, 50, 109.
Phases / Phase Transitions / Diagrams |
Solids |
Physical Properties
Rapid crystal growth and supersaturation demonstrated with guanidine trichloroacetate  Young, Keith E.
A solution of guanidine trichloroacetate quickly produces long, needle-like crystals when a seed crystal is added.
Young, Keith E. J. Chem. Educ. 1972, 49, A644.
Crystals / Crystallography |
Precipitation / Solubility
Quartz geodes  Plumb, Robert C.; Krauskopf, Konrad B.
Discusses the geochemistry behind the natural formation of quartz geodes.
Plumb, Robert C.; Krauskopf, Konrad B. J. Chem. Educ. 1972, 49, 763.
Precipitation / Solubility |
Geochemistry |
Crystals / Crystallography
Demonstration of close-packing phenomena  Birnbaum, Edward R.
Relies in layers of styrofoam balls and an overhead projector for illustrating close-packed structure.
Birnbaum, Edward R. J. Chem. Educ. 1972, 49, 674.
Crystals / Crystallography |
Solids
Demonstration of 2-dimensional crystal lattice  Morrison, James D.; Driscoll, Jerry A.
A laser passing through wire cloth produces a characteristic interference pattern.
Morrison, James D.; Driscoll, Jerry A. J. Chem. Educ. 1972, 49, 558.
Crystals / Crystallography |
Solids
Density gradients in chemistry teaching  Miller, P. J.
Outlines experiments in which a density gradient may be used to advantage, including the analysis of organic compounds, aqueous solutions, binary mixtures of organic compounds, solids, and solvent extractions.
Miller, P. J. J. Chem. Educ. 1972, 49, 278.
Aqueous Solution Chemistry |
Solids |
Physical Properties |
Solutions / Solvents
An introduction to principles of the solid state. Extrinsic semiconductors  Weller, Paul F.
Includes a previous analogy is extended to cover n- and p-type semiconductors and discussions of the concepts of donors and acceptors, donor and acceptor activation energies and the corresponding charge carrier production at various temperatures, and the effects of the presence of both donors and acceptors.
Weller, Paul F. J. Chem. Educ. 1971, 48, 831.
Solid State Chemistry |
Solids |
Semiconductors
Heat of hydration  Dannhauser, Walter
A commonly published experiment can be expanded so that students may obtain the enthalpy of the reaction between anhydrous salts and water.
Dannhauser, Walter J. Chem. Educ. 1971, 48, 329.
Thermodynamics |
Crystals / Crystallography |
Water / Water Chemistry |
Noncovalent Interactions
Miscellaneous  Alyea, Hubert N.
13 demonstrations, including electrophoresis, electrolysis, corrosion inhibition, endothermic and exothermic reactions, crystals and crystallization, reactions with sodium, and the kinetics of H2O2 decomposition.
Alyea, Hubert N. J. Chem. Educ. 1970, 47, A387.
Electrophoresis |
Dyes / Pigments |
Electrochemistry |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Reactions |
Crystals / Crystallography |
Kinetics
Benzoic acid tree  Chen, Philip S.
Benzaldehyde undergoes autoxidation to benzoic acid by air, particularly upon exposure to light; the white benzoic acid is caused to form a crystalline tree on twisted pipe cleaners.
Chen, Philip S. J. Chem. Educ. 1970, 47, A119.
Carboxylic Acids |
Acids / Bases |
Crystals / Crystallography |
Oxidation / Reduction |
Aldehydes / Ketones
Solubility and the chemistry of the covalent bond: More on DDT - A substituted alkyl halide  Hill, John W.
Discusses applications of the insolubility of DDT in water and its solubility in covalent fatty tissues.
Hill, John W. J. Chem. Educ. 1970, 47, 634.
Covalent Bonding |
Precipitation / Solubility |
Agricultural Chemistry |
Applications of Chemistry |
Molecular Properties / Structure
Sealed tube experiments  Campbell, J. A.
Lists and briefly describes a large set of "sealed tube experiments," each of which requires less than five minutes to set-up and clean-up, requires less than five minutes to run, provides dramatic results observable by a large class, and illustrates important chemical concepts.
Campbell, J. A. J. Chem. Educ. 1970, 47, 273.
Thermodynamics |
Crystals / Crystallography |
Solids |
Liquids |
Gases |
Rate Law |
Equilibrium
The electron-pair repulsion model for molecular geometry  Gmespie, R. J.
Reviews the electron-pair repulsion model for molecular geometry and examines three-centered bonds, cluster compounds, bonding among the transition elements, and exceptions to VSEPR rules.
Gmespie, R. J. J. Chem. Educ. 1970, 47, 18.
Molecular Properties / Structure |
Covalent Bonding |
MO Theory |
VSEPR Theory |
Transition Elements
Ionic versus covalent bonding  Goldish, Dorothy M.
Ionic sodium chloride dissolves in water but covalent benzyl chloride does not.
Goldish, Dorothy M. J. Chem. Educ. 1969, 46, A497.
Ionic Bonding |
Covalent Bonding |
Aqueous Solution Chemistry |
Precipitation / Solubility
Construction and use of atomic and molecular models (Bassow, H.)  Martins, George

Martins, George J. Chem. Educ. 1969, 46, 623.
Molecular Properties / Structure |
Molecular Modeling |
Crystals / Crystallography
A three-dimensional model of dendritic structure  Olsen, Robert C.
A simple procedure for growing dendritic crystals in a gel that may serve as a model of dendritic structure.
Olsen, Robert C. J. Chem. Educ. 1969, 46, 496.
Crystals / Crystallography |
Solids
The structure of solid aluminum chloride  Bigelow, M. Jerome
Many general chemistry textbooks have been vague or mistaken with regards to the structure of solid aluminum chloride.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 495.
Solids
Wooden models of asymmetric structures  Nye, Martin J.
Wooden blocks are cut to represent molecules of a pair of enantiomers, and are constructed so that they may be readily stacked together to show crystal structure.
Nye, Martin J. J. Chem. Educ. 1969, 46, 175.
Molecular Modeling |
Molecular Properties / Structure |
Enantiomers |
Crystals / Crystallography
Group VI. The sulfur family. A. Members: S, Se, Te. B. Elemental sulfur  Alyea, Hubert N.; Rogers, Crosby U.
Sulfur from H2S + SO2, rhombic and prismatic sulfur.
Alyea, Hubert N.; Rogers, Crosby U. J. Chem. Educ. 1968, 45, A836.
Crystals / Crystallography
Carbon and its inorganic compounds. A. Carbon   Alyea, Hubert N.; Frick, Charlotte; Colo, August J.
Demonstrations include to crystalline structure of diamond vs. graphite and the absorption of tars, dyes, ammonia, and benzene on carbon.
Alyea, Hubert N.; Frick, Charlotte; Colo, August J. J. Chem. Educ. 1968, 45, A225.
Crystals / Crystallography |
Gases
Molecular geometry: Bonded versus nonbonded interactions  Bartell, L. S.
Proposes simplified computational models to facilitate a comparison between the relative roles of bonded and nonbonded interactions in directed valence.
Bartell, L. S. J. Chem. Educ. 1968, 45, 754.
Molecular Properties / Structure |
VSEPR Theory |
Molecular Modeling |
Covalent Bonding |
Noncovalent Interactions |
Valence Bond Theory |
MO Theory
Pictorial representation of the Fourier method of x-ray crystallography  Waser, Jurg
It is possible to gain an understanding of the Fourier method with the aid of diagrams.
Waser, Jurg J. Chem. Educ. 1968, 45, 446.
Fourier Transform Techniques |
X-ray Crystallography |
Crystals / Crystallography
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
Bond energies in the interpretation of descriptive chemistry  Howald, Reed A.
Most of the discrepancy between bond energies and bond dissociation energies is eliminated by the inclusion of pi bonding effects and using bond energies referred to as hypothetical "valence state" atoms in those cases where spin pairing provides substantial stabilization for the free atom.
Howald, Reed A. J. Chem. Educ. 1968, 45, 163.
Descriptive Chemistry |
Covalent Bonding
Structure units: Aids in the interpretation of chemical reactions  Strong, Laurence E.
the proposal to define structure units as generators of the various properties of a substance has a considerable advantage over the usual definition of a structure unit as the endpoint of some prescribed scheme of subdivision.
Strong, Laurence E. J. Chem. Educ. 1968, 45, 51.
Learning Theories |
Molecular Properties / Structure |
Solids |
Liquids |
Gases
Atomic structure. Radioactivity (continued)   Alyea, Hubert N.
Formation of the complex Cu(NH3)4++ as an example of coordinate covalent bonding and hydrogen bonding as evidenced by viscosity.
Alyea, Hubert N. J. Chem. Educ. 1967, 44, A599.
Coordination Compounds |
Covalent Bonding |
Hydrogen Bonding |
Liquids
Crystal models  Olsen, Robert C.
This short note illustrates a model designed to demonstrate the number of particles in a crystal that can be assigned to a unit cell.
Olsen, Robert C. J. Chem. Educ. 1967, 44, 728.
Crystals / Crystallography |
Molecular Modeling |
Solids |
Metals |
Metallic Bonding
The nature of " ionic" solids: The coordinated polymeric model  Sanderson, R. T.
The author discusses and questions the validity of considering some solids as purely ionic and offers the coordinated polymeric model as a plausible alternative.
Sanderson, R. T. J. Chem. Educ. 1967, 44, 516.
Solids |
Ionic Bonding
Some simple models for the double quartet approach  Zipp, Arden P.
Pipe cleaners are used to construct simple models for the double quartet or electronic repulsion theory.
Zipp, Arden P. J. Chem. Educ. 1967, 44, 494.
Molecular Modeling |
Covalent Bonding
The teaching of crystal geometry in the introductory course  Livingston, R. L.
It is the purpose of this paper to outline an approach to the teaching of crystal structure at the elementary level that will prepare the student for more advanced work in this field or that could be used as the beginning in a more advanced course.
Livingston, R. L. J. Chem. Educ. 1967, 44, 376.
Crystals / Crystallography |
Solids
The electron repulsion theory of the chemical bond. I. New models of atomic structure  Luder, W. F.
Describes the electron repulsion theory of electron configuration and applies it to representative elements.
Luder, W. F. J. Chem. Educ. 1967, 44, 206.
Atomic Properties / Structure |
Covalent Bonding |
Metals
Models illustrating d orbitals involved in multiple bonding  Barrett, Edward J.
Describes the use of Framework Molecular Orbital Models to illustrate the d orbitals involved in multiple bonding
Barrett, Edward J. J. Chem. Educ. 1967, 44, 146.
Atomic Properties / Structure |
Molecular Modeling |
Covalent Bonding
States of matter (Continued). D. Solid state  Owens, Charles; Klug, Evangeline B; Wnukowski, Lucian J.; Cooper, Edwin H.; Klug, Evangeline B.; Jackman, Kenneth; Alyea, Hubert N.; Young, James A.
Demonstrations include writing with alum crystals, the rate of crystallization and crystal size, purification by crystallization, growing salol crystals in a polarizer, growing crystal blossoms, the melting point of eutectic (salol + benzophenone) and butectic (p-toluidine + a-naphthol), sublimation of organic substances (methyl oxalate), and the pseudo-sublimation of naphthalene.
Owens, Charles; Klug, Evangeline B; Wnukowski, Lucian J.; Cooper, Edwin H.; Klug, Evangeline B.; Jackman, Kenneth; Alyea, Hubert N.; Young, James A. J. Chem. Educ. 1966, 43, A241.
Crystals / Crystallography |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Solids
Energy B. Heat energy   Klug, Evangeline B.; Hornbeck, Leroy G.; Alyea, Hubert N.
Demonstrations of the heat of crystallization (sodium acetate and Na2S2O3[5H2O]), heat of formation (ZnCl2), heat of hydration (CaO and CuSO4), heat of neutralization, heat of solvation (alcohols), evaporation of ether and methyl chloride, and heat of solution (NH4NO3).
Klug, Evangeline B.; Hornbeck, Leroy G.; Alyea, Hubert N. J. Chem. Educ. 1966, 43, A1079.
Reactions |
Calorimetry / Thermochemistry |
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Precipitation / Solubility
Hard sphere simulation of statistical mechanical behavior of molecules  Plumb, Robert C.
Describes the design and use of a demonstration device to illustrate the kinetic behavior of gases, liquids, and solids.
Plumb, Robert C. J. Chem. Educ. 1966, 43, 648.
Statistical Mechanics |
Gases |
Liquids |
Solids |
Kinetic-Molecular Theory |
Equilibrium |
Phases / Phase Transitions / Diagrams
Manometric apparatus for vapor and solution studies  Taha, Ahmed A.; Grigsby, Ronald D.; Johnson, James R.; Christian, Sherril D.; Affsprung, Harold E.
Presents a device that can be sued to obtain vapor density and PVT measurements, vapor pressures of solutions and liquids, dew-point pressures and compositions, solubilities of gases in liquids, solubilities of slightly-miscible liquids, equilibrium constants for association reactions in solutions, interactions of vapors and gases with solids, and gas and vapor viscosities.
Taha, Ahmed A.; Grigsby, Ronald D.; Johnson, James R.; Christian, Sherril D.; Affsprung, Harold E. J. Chem. Educ. 1966, 43, 432.
Laboratory Equipment / Apparatus |
Physical Properties |
Solutions / Solvents |
Gases |
Liquids |
Solids
IV - Isoelectronic systems  Bent, Henry A.
A detailed consideration of the principles of isoelectric systems.
Bent, Henry A. J. Chem. Educ. 1966, 43, 170.
Gases |
Nonmetals |
Covalent Bonding
Crystals: Their Role in Nature and in Science (Bunn, Charles)  Templeton, David H.

Templeton, David H. J. Chem. Educ. 1965, 42, A550.
Solids |
Crystals / Crystallography
General chemistry exercise using atomic and molecular orbital models  Walker, Ruth A.
Styrofoam balls and pipecleaners are used to construct models designed to convey an understanding of the three-dimensionality of the electron distribution in the ground state atom and the effect of bonding on this distribution.
Walker, Ruth A. J. Chem. Educ. 1965, 42, 672.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
III - Bond energies  Benson, Sidney W.
Examines bond dissociation energies , methods for measuring such energies, some representative values of such energies, structural aspects of bond dissociation energies, and bond energies in ionized species.
Benson, Sidney W. J. Chem. Educ. 1965, 42, 502.
Covalent Bonding
Enthalpies of formation of solid salts  Neidig, H. A.; Yingling, R. T.
This investigation introduces the student to several important areas of thermochemistry, including enthalpies of neutralization, enthalpies of dissolution, enthalpies of formation, and Hess' Law.
Neidig, H. A.; Yingling, R. T. J. Chem. Educ. 1965, 42, 474.
Thermodynamics |
Solids |
Calorimetry / Thermochemistry |
Precipitation / Solubility |
Acids / Bases |
Aqueous Solution Chemistry
Relationship of enthalpy of solution, solvation energy, and crystal energy  Neidig, H. A., Yingling, R. T.
The primary objectives of this investigation are to relate enthalpy of solution, solvation energy, and crystal energy using Hess' Law and to acquaint students with Born-Haber type energy cycles.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 473.
Thermodynamics |
Solutions / Solvents |
Crystals / Crystallography |
Calorimetry / Thermochemistry
Experiments on metal amine salts  Haight, G. P., Jr.
Tetrammine monaquo copper(II) sulfate is prepared and studied qualitatively and quantitatively.
Haight, G. P., Jr. J. Chem. Educ. 1965, 42, 468.
Metals |
Covalent Bonding |
Hydrogen Bonding |
Qualitative Analysis |
Quantitative Analysis
8-Hydroxyquinaldine crystals  Phillips, J. P.; Faller, J. W.
The crystallization of 8-hydroxyquinaldine by the natural; evaporation of a saturated benzene solution at room temperature produces very large crystals.
Phillips, J. P.; Faller, J. W. J. Chem. Educ. 1965, 42, 328.
Crystals / Crystallography |
Solids
Tangent-sphere models of molecules. III. Chemical implications of inner-shell electrons  Bent, Henry A.
While a study of atomic core sizes might seem to hold little promise of offering interesting insights into the main body of chemical theory, it is demonstrated here that from such a study emerges a picture of chemical bonding that encompasses as particular cases covalent, ionic, and metallic bonds.
Bent, Henry A. J. Chem. Educ. 1965, 42, 302.
Atomic Properties / Structure |
Molecular Properties / Structure |
Molecular Modeling |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Miniature scale models  Beevers, C. A.
Describes examples of molecular models constructed from steel rods and methyl methacrylate balls.
Beevers, C. A. J. Chem. Educ. 1965, 42, 273.
Molecular Modeling |
Crystals / Crystallography
Lattice energy and chemical prediction: Use of the Kapustinskii equations and the Born-Haber cycle  Moody, G. J.; Thomas, J. D. R.
It is clear that the Kapustinskii method of estimating the lattice energy from ionic radii, together with subsequent application of the Born-Haber cycle, has proved to be extremely useful in inorganic chemistry.
Moody, G. J.; Thomas, J. D. R. J. Chem. Educ. 1965, 42, 204.
Crystals / Crystallography |
Crystal Field / Ligand Field Theory
An atomic and molecular orbital models kit  Stone, A. Harris; Siegelman, Irwin
The models presented here allows one to see the overlap that constitutes covalent bonds.
Stone, A. Harris; Siegelman, Irwin J. Chem. Educ. 1964, 41, 395.
Atomic Properties / Structure |
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
The chemistry of the noble gases  Hyman, Herbert H.
Summarizes the chemistry of the noble gases and their bond-forming abilities.
Hyman, Herbert H. J. Chem. Educ. 1964, 41, 174.
Gases |
Main-Group Elements |
Covalent Bonding
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Demonstration notes: Monoclinic sulfur crystals  Skyle, Sture
Suggests turpentine as a solvent for sulfur from which the sulfur may be recrystallized in the prismatic or monoclinic form.
Skyle, Sture J. Chem. Educ. 1963, 40, A477.
Crystals / Crystallography
The direct reactions of solids  Feigl, F.
Provides suggestions for student research based on an earlier article published in the Journal.
Feigl, F. J. Chem. Educ. 1963, 40, A135.
Undergraduate Research |
Reactions |
Solids
A classical electrostatic view of chemical forces  Jaffe, H. H.
This paper reviews the different types of forces involved in the formation of chemical compounds, solids and liquids.
Jaffe, H. H. J. Chem. Educ. 1963, 40, 649.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Noncovalent Interactions
Tangent-sphere models of molecules. II. Uses in Teaching  Bent, Henry A.
Tangent-sphere models can be used to represent highly strained bonds and multicentered bonds, atoms with expanded and contracted octets, inter- and intramolecular interactions, and the effects of electronegative groups, lone pairs, and multiple bonds on molecular geometry, bond properties, and chemical reactivity.
Bent, Henry A. J. Chem. Educ. 1963, 40, 523.
Molecular Properties / Structure |
Covalent Bonding
Crystals, minerals and chemistry  McConnell, Duncan; Verhoek, Frank H.
Considers stoichiometry and isomorphism, isomorphic substitutions, coupled substitution, the substitution of anions, and oxygen atoms per unit cell.
McConnell, Duncan; Verhoek, Frank H. J. Chem. Educ. 1963, 40, 512.
Crystals / Crystallography |
Geochemistry |
Stoichiometry
Chemical bonding and the geometry of molecules (Ryschkewitsch, George E.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1963, 40, 441.
Molecular Properties / Structure |
Covalent Bonding
Relationship of exothermicities of compounds to chemical bonding  Siegel, Bernard
The sign and magnitude of the standard heat of formation of a chemical compound is often used incorrectly to characterize its relative stability compared to other compounds.
Siegel, Bernard J. Chem. Educ. 1963, 40, 308.
Calorimetry / Thermochemistry |
Covalent Bonding
The valence-shell electron-pair repulsion (VSEPR) theory of directed valency  Gillespie, R. J.
Presents the valence-shell electron-pair repulsion (VSEPR) theory of directed valency and its use to determine molecular shapes, bond angles, and bond lengths.
Gillespie, R. J. J. Chem. Educ. 1963, 40, 295.
VSEPR Theory |
Molecular Properties / Structure |
Covalent Bonding
Intrinsic bond energies  Siegel, S.; Siegel, B.
Examines intrinsic bond energies drawn from spectroscopic data and focusses on beryllium hydride as an example.
Siegel, S.; Siegel, B. J. Chem. Educ. 1963, 40, 143.
Covalent Bonding |
Molecular Properties / Structure
Non-existent compounds  Dasent, W. E.
The purpose of this review is to examine compounds that do not violate the rules of valence but which are nevertheless characterized by a high degree of instability, and to consider why these structures are unstable or non-existent.
Dasent, W. E. J. Chem. Educ. 1963, 40, 130.
Molecular Properties / Structure |
Covalent Bonding
Letters to the editor  Cockburn, B. L.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Cockburn, B. L. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Letters to the editor  Snatzke, G.
Provides a mathematical treatment demonstrating the equivalence of all four C-H bonds in methane.
Snatzke, G. J. Chem. Educ. 1963, 40, 94.
Covalent Bonding |
Molecular Properties / Structure
Some models of close packing  Sime, Rodney J.
Presents models constructed from styrofoam balls and connected with toothpicks.
Sime, Rodney J. J. Chem. Educ. 1963, 40, 61.
Crystals / Crystallography |
Solids |
Molecular Modeling
Standard ionic crystal structures  Gehman, William G.
Examines the topics of cubic and hexagonal closest packed atom lattices; interstice lattices; standard crystal structures of type MaXb; standard CCP and HCP crystal structures; and deviations from ideal closest packing.
Gehman, William G. J. Chem. Educ. 1963, 40, 54.
Crystals / Crystallography |
Solids |
Molecular Modeling |
Solid State Chemistry
Acids, Bases, and the Chemistry of the Covalent Bond (VanderWerf, Calvin A.)  Eblin, Lawrence P.

Eblin, Lawrence P. J. Chem. Educ. 1962, 39, 273.
Acids / Bases |
Covalent Bonding
Demonstrations of simple bonding using magnets  Baker, Wilbur L.
Demonstrates a variety of bonding using iron washers, magnets, and steel balls.
Baker, Wilbur L. J. Chem. Educ. 1962, 39, 131.
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Flow of glass under its own weight  Dingledy, David
A common misconception of the nature of glass found in general chemistry texts is that ordinary glass will flow under its own weight at room temperatures.
Dingledy, David J. Chem. Educ. 1962, 39, 84.
Solids
Models illustrating types of orbitals and bonding  Baker, Wilbur L.
A short note on a model of ethylene that clarifies the nature of bonding in the molecule.
Baker, Wilbur L. J. Chem. Educ. 1961, 38, 606.
Molecular Modeling |
Alkenes |
Covalent Bonding
Paper-made crystal models  Komuro, Yasuyuki; Sone, Kozo
Three-dimensional models of a number of simple ionic crystals are constructed from a box and pieces of cellophane.
Komuro, Yasuyuki; Sone, Kozo J. Chem. Educ. 1961, 38, 580.
Crystals / Crystallography |
Solids
Vibrating molecular models: Frequency shifts in strained ring double bonds  Colthup, Norman B.
Describes the study of the general effect of double bond-single bond interaction using vibrating molecular models.
Colthup, Norman B. J. Chem. Educ. 1961, 38, 394.
Molecular Modeling |
Covalent Bonding
Principles of chemical bonding  Sanderson, R. T.
Develops, through 25 statements, the basic principles of chemical bonding.
Sanderson, R. T. J. Chem. Educ. 1961, 38, 382.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure
A constant temperature reaction vessel for the thermal decomposition of solids  Prout, E. G.; Herley, P. J.
Describes an apparatus suitable for studying the thermal decomposition of potassium permanganate in high vacuum.
Prout, E. G.; Herley, P. J. J. Chem. Educ. 1960, 37, 643.
Laboratory Equipment / Apparatus |
Solids |
Rate Law |
Kinetics
Letters (the author replies)  Thompson, H. Bradford
The author acknowledges minor errors in an earlier published article.
Thompson, H. Bradford J. Chem. Educ. 1960, 37, 438.
Atomic Properties / Structure |
Covalent Bonding
Letters  Cohen, Irwin
Points out minor errors in an earlier published article.
Cohen, Irwin J. Chem. Educ. 1960, 37, 438.
Atomic Properties / Structure |
Covalent Bonding
Kinetic molecular theory from a jukebox  Easley, W. K.; Powers, Glenn F.
Uses dancers to various styles of music as an analogy for differences between the atomic and molecular motions in solids, liquids, and gases.
Easley, W. K.; Powers, Glenn F. J. Chem. Educ. 1960, 37, 302.
Kinetic-Molecular Theory |
Solids |
Liquids |
Gases
Dynamic projector display for atomic orbitals and the covalent bond  Thompson, H. Bradford
An overhead projector is used to display the combination of simple atomic orbitals to form hybrid and molecular orbitals.
Thompson, H. Bradford J. Chem. Educ. 1960, 37, 118.
Atomic Properties / Structure |
Covalent Bonding
Inexpensive and convenient method for powdering solids for melting point determinations  Pinkus, A. G; Waldrop, P. G.
Recently a new mulling technique for preparing samples for infrared spectra was reported which makes use of ground glass plates.
Pinkus, A. G; Waldrop, P. G. J. Chem. Educ. 1959, 36, 618.
Laboratory Equipment / Apparatus |
Solids |
Physical Properties
Molecular models: A general chemistry exercise  Pierce, James B.
Students are provided a list of bond angles, covalent radii, and van der Waals radii, and sufficient polystyrene spheres, and then asked to construct models of molecules and ions.
Pierce, James B. J. Chem. Educ. 1959, 36, 595.
Molecular Modeling |
Molecular Properties / Structure |
Covalent Bonding
Models for demonstrating electronegativity and "partial charge"  Sanderson, R. T.
Describes a three-dimensional set of atomic models arranged periodically to illustrate trend in electronegativity and the use of molecular models to illustrate important concepts in general chemistry.
Sanderson, R. T. J. Chem. Educ. 1959, 36, 507.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Molecular Modeling |
Molecular Properties / Structure |
Crystals / Crystallography |
Nonmetals
Hollow lantern slides illustrating crystal structure  Kenney, Malcolm E.; Skinner, Selby M.
The structure of simple crystals can be illustrated by enclosing a layer of bearing balls in a hollow lantern slide and projecting the shadow pattern.
Kenney, Malcolm E.; Skinner, Selby M. J. Chem. Educ. 1959, 36, 495.
Crystals / Crystallography |
Solids
Crystal models  Slabaugh, W. H.
Describes the production of crystal models made of Plexiglass.
Slabaugh, W. H. J. Chem. Educ. 1959, 36, 288.
Crystals / Crystallography |
Solids
Chemical geometryApplication to salts  Gibb, Thomas R. P., Jr.; Winnerman, Anne
It is the purpose of this article to illustrate how one may delve rather deeply into some aspects of crystal structure that are of special interest chemically without becoming involved in the symbology and semantic complexities of conventional crystallography.
Gibb, Thomas R. P., Jr.; Winnerman, Anne J. Chem. Educ. 1958, 35, 578.
Crystals / Crystallography |
Solids
Permanent packing type crystal models  Kenney, Malcolm E.
Crystal models made of styrofoam balls are more durable if packed in clear plastic boxes.
Kenney, Malcolm E. J. Chem. Educ. 1958, 35, 513.
Crystals / Crystallography |
Solids |
Molecular Modeling
Letters  Fisher, D. Jerome
A spirited discussion regarding terminology for crystal classes.
Fisher, D. Jerome J. Chem. Educ. 1958, 35, 214.
Crystals / Crystallography |
Nomenclature / Units / Symbols
Letters  Donohue, Jerry
A spirited discussion regarding terminology for crystal classes.
Donohue, Jerry J. Chem. Educ. 1958, 35, 214.
Crystals / Crystallography |
Nomenclature / Units / Symbols
Face-centered cube and cubical close-packing  Barnett, E. De Barry
Instructions for the construction of simple models designed to illustrate the face-centered cube and cubical close-packing.
Barnett, E. De Barry J. Chem. Educ. 1958, 35, 186.
Crystals / Crystallography |
Solids
Textbook errors: XV. Miscellanea  Mysels, Karol J.
Textbooks errors considered include the solubility of acetates, the effect of light on reactions, tetrahedral carbon, the production of aluminum, and fumaric acid.
Mysels, Karol J. J. Chem. Educ. 1958, 35, 32.
Photochemistry |
Covalent Bonding
Some aspects of organic molecules and their behavior. II. Bond energies  Reinmuth, Otto
Examines bond and dissociation energies, the "constancy" of C-H and C-C dissociation energies, and some common types of organochemical reactions.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 318.
Covalent Bonding |
Molecular Properties / Structure |
Reactions
Some aspects of organic molecules and their behavior. I. Electronegativity  Reinmuth, Otto
Reviews the concept of electronegativity as a means of helping introductory students understand aspects of organic molecules and their behavior.
Reinmuth, Otto J. Chem. Educ. 1957, 34, 272.
Molecular Properties / Structure |
Periodicity / Periodic Table |
Atomic Properties / Structure |
Covalent Bonding
Letters to the editor  Fisher, D. Jerome
The author comments on definitions of crystal systems.
Fisher, D. Jerome J. Chem. Educ. 1957, 34, 259.
Crystals / Crystallography |
Solids
Textbook errors: Guest column. XII: The lubricating properties of graphite  Lavrakas, Vasilis
The presentation of the correct lamellar structure of graphite is generally followed in textbooks by an erroneous statement that the lubricating properties of graphite are due to the easy slippage between layers.
Lavrakas, Vasilis J. Chem. Educ. 1957, 34, 240.
Solids |
Gases
A new type of crystal model  Westbrook, J. H.; DeVries, R. C.
Describes the design and construction of a crystal model in which the positions of atoms are represented by colored lights that can be lit to illustrate various structures.
Westbrook, J. H.; DeVries, R. C. J. Chem. Educ. 1957, 34, 220.
Crystals / Crystallography |
Solids |
Molecular Modeling
Some simple solid models  Campbell, J. A.
Describes the use of hard spheres to illustrate a variety of concepts with respect solids, including closest packing and the effects of temperature and alloying.
Campbell, J. A. J. Chem. Educ. 1957, 34, 210.
Solids |
Crystals / Crystallography |
Molecular Modeling
Lone pair electrons  Fowles, Gerald W. A.
The lone pair electrons, whether in simple or hybrid orbitals, have profound effects on the properties of the molecule; these effects may be discussed as bond angles, dipole moments, bond energies and lengths, and coordination and hydrogen bonding.
Fowles, Gerald W. A. J. Chem. Educ. 1957, 34, 187.
Atomic Properties / Structure |
Covalent Bonding |
Coordination Compounds |
Noncovalent Interactions |
Hydrogen Bonding |
Molecular Properties / Structure
Construction of crystal models from styrofoam spheres  Gibb, Thomas R. P., Jr.; Bassow, Herbert
Presents a method for constructing crystal models from styrofoam spheres using a specialized aluminum jig.
Gibb, Thomas R. P., Jr.; Bassow, Herbert J. Chem. Educ. 1957, 34, 99.
Crystals / Crystallography |
Molecular Modeling |
Solids
Textbook errors: X. The classification of crystals  Mysels, Karol J.
The classification of crystals into several systems (e.g., cubic, tetragonal, orthorombic) is generally based in textbooks on a consideration of crystal axes, particularly their relative lengths and direction; this approach usually gives correct assignments but occasionally leads to an error.
Mysels, Karol J. J. Chem. Educ. 1957, 34, 40.
Crystals / Crystallography |
Solids
Growing crystals: A survey of laboratory methods  Fehlner, Francis P.
The purpose of this article is to provide basic information and readily available references for anyone wishing to begin the production of crystals.
Fehlner, Francis P. J. Chem. Educ. 1956, 33, 449.
Crystals / Crystallography |
Solids
Demonstration of dynamic nature of ions using I131  Blake, Richard F.
This demonstration presents visual evidence of the ionic nature of solid salts and the dynamic equilibrium existing between dissolved and undissolved ions.
Blake, Richard F. J. Chem. Educ. 1956, 33, 354.
Isotopes |
Aqueous Solution Chemistry |
Solids |
Precipitation / Solubility |
Equilibrium
A chart of chemical compounds based on electronegativities  Yeh, Ping-Yuan
This short note presents a chart of chemical compounds based on the relative electronegativities of the elements.
Yeh, Ping-Yuan J. Chem. Educ. 1956, 33, 134.
Covalent Bonding |
Metallic Bonding |
Ionic Bonding
Note on the representation of the electronic structures of acetylene and benzene  Noller, Carl R.
The three dimensional nature of molecular orbitals in acetylene and benzene are illustrated.
Noller, Carl R. J. Chem. Educ. 1955, 32, 23.
Alkenes |
Alkynes |
Aromatic Compounds |
Molecular Properties / Structure |
Covalent Bonding |
MO Theory
The evolution of valence theory and bond symbolism  Mackle, Henry
Traces the historic evolution of valence theory and bond symbolism, including numerical aspects of chemical bonding, the mechanism of chemical bonding and its origins, chemical bonding in organic compounds, stereochemical aspects of chemical bonding, residual valence of unsaturated compounds, and electronic theories of valence.
Mackle, Henry J. Chem. Educ. 1954, 31, 618.
Covalent Bonding
An unconventional representation of multiple bonds  Gillis, Richard G.; Nelson, Peter F.
There are several advantages to differentiating between sigma and pi electrons in representing multiple bonds.
Gillis, Richard G.; Nelson, Peter F. J. Chem. Educ. 1954, 31, 546.
Covalent Bonding
Electronegativities in inorganic chemistry. III  Sanderson, R. T.
The purpose of this paper is to illustrate some of the practical applications of electronegativities and charge distribution.
Sanderson, R. T. J. Chem. Educ. 1954, 31, 238.
Atomic Properties / Structure |
Covalent Bonding |
Acids / Bases
Chemistry of the covalent bond: The first-year course at Brown  Clapp, Leallyn B.
Provides an outline of the first-year chemistry course at Brown University, "The Chemistry of the Covalent Bond."
Clapp, Leallyn B. J. Chem. Educ. 1953, 30, 530.
Covalent Bonding
Recent history of the notion of a chemical species  Bulloff, Jack J.
Quantum and nuclear chemistry have challenged the doctrine that chemical elements are homogeneous entities while studies of the structure and stoichiometry of solids invite a change in our ideas of definite proportions in chemical combinations.
Bulloff, Jack J. J. Chem. Educ. 1953, 30, 78.
Nuclear / Radiochemistry |
Isotopes |
Stoichiometry |
Solids
The electron as an element  Ramsay, W.
Reprint of a short article examining the bonding of sodium and chlorine.
Ramsay, W. J. Chem. Educ. 1953, 30, 2.
Ionic Bonding
Cork-ball experiments on crystalline and molecular structure  Davidson, Norman
Cork balls and pins are used to construct models of crystalline and molecular structures.
Davidson, Norman J. Chem. Educ. 1952, 29, 249.
Crystals / Crystallography |
Molecular Properties / Structure |
Molecular Modeling
Large crystals of monoclinic sulfur  Wolf, Milton G.
Presents a procedure for producing large crystals of monoclinic sulfur through crystallization from olive oil.
Wolf, Milton G. J. Chem. Educ. 1951, 28, 427.
Crystals / Crystallography