TIGER

Journal Articles: 318 results
The Electrochemical Synthesis of Transition-Metal Acetylacetonates  S. R. Long, S. R. Browning, and J. J. Lagowski
The electrochemical synthesis of transition-metal acetylacetonates can assist in the transformation of an entry-level laboratory course into a research-like environment where all members of a class are working on the same problem, but each student has a personal responsibility for the synthesis and characterization of a specific compound.
Long, S. R.; Browning, S. R.; Lagowski, J. J. J. Chem. Educ. 2008, 85, 1429.
Coordination Compounds |
Electrochemistry |
IR Spectroscopy |
Physical Properties |
Synthesis |
Transition Elements |
UV-Vis Spectroscopy
The Correlation of Binary Acid Strengths with Molecular Properties in First-Year Chemistry  Travis D. Fridgen
This article replaces contradictory explanations for the strengths of different binary acids in first-year chemistry textbooks with a single explanation that uses a BornHaber cycle involving homolyic bond dissociation energies, electron affinities, and ion solvation enthalpies to rationalize trends in the strengths of all binary acids.
Fridgen, Travis D. J. Chem. Educ. 2008, 85, 1220.
Acids / Bases |
Atomic Properties / Structure |
Aqueous Solution Chemistry |
Physical Properties |
Thermodynamics
Introducing Undergraduate Students to Electrochemistry: A Two-Week Discovery Chemistry Experiment  Kenneth V. Mills, Richard S. Herrick, Louise W. Guilmette, Lisa P. Nestor, Heather Shafer, and Mauri A. Ditzler,
Within the framework of a laboratory-focused, guided-inquiry pedagogy, students discover the Nernst equation, the spontaneity of galvanic cells, concentration cells, and the use of electrochemical data to calculate equilibrium constants.
Mills, Kenneth V.; Herrick, Richard S.; Guilmette, Louise W.; Nestor, Lisa P.; Shafer, Heather;Ditzler, Mauri A. J. Chem. Educ. 2008, 85, 1116.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium
Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery  Hiromasa Goto, Hiroyuki Yoneyama, Fumihiro Togashi, Reina Ohta, Akitsu Tsujimoto, Eiji Kita, and Ken-ichi Ohshima
The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level.
Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi. J. Chem. Educ. 2008, 85, 1067.
Aromatic Compounds |
Conductivity |
Electrochemistry |
Materials Science |
Oxidation / Reduction |
Polymerization
Energy  John W. Moore
Scientific Challenges in Sustainable Energy Technology, by Nathan S. Lewis of the California Institute of Technology, summarizes data on energy resources and analyses the implications for human society. Slides, text, and streaming audio/video are available at his Web site. There is much in this presentation that could (and should) be incorporated into chemistry pedagogy.
Moore, John W. J. Chem. Educ. 2008, 85, 891.
Thermodynamics
EQVAPSIM: A Vapor–Liquid Equilibria of Binary Systems Computer Simulation by LabVIEW  A. Belletti, R. Borromei, and G. Ingletto
Reports the results of a program using LabVIEW software to simulate the construction of a phase diagram representing a liquidvapor equilibrium. The program models work in a real laboratory, including mistakes commonly made in this context.
Belletti, A.; Borromei, R.; Ingletto, G. J. Chem. Educ. 2008, 85, 879.
Equilibrium |
Thermodynamics |
Student-Centered Learning
Prussian Blue: Artists' Pigment and Chemists' Sponge  Mike Ware
The variable composition of Prussian blue tantalized chemists until investigations by X-ray crystallography in the late 20th century explained its many properties and uses.
Ware, Mike. J. Chem. Educ. 2008, 85, 612.
Applications of Chemistry |
Coordination Compounds |
Dyes / Pigments |
Electrochemistry |
Oxidation / Reduction |
Photochemistry |
Toxicology
Metal Electrodeposition on an Integrated, Screen-Printed Electrode Assembly  Yieu Chyan and Oliver Chyan
Screen-printed, carbon strip electrodes illustrate the essential concepts of electrochemistry and electrodeposition; their light weight facilitates sensitive measurements of electrodeposited metal, allowing for the exploration of Faraday's law and electrodeposition efficiency.
Chyan, Yieu; Chyan, Oliver. J. Chem. Educ. 2008, 85, 565.
Electrochemistry |
Metals |
Oxidation / Reduction |
Quantitative Analysis
Netorials  Rebecca Ottosen, John Todd, Rachel Bain, Mike Miller, Liana Lamont, Mithra Biekmohamadi, and David B. Shaw
Netorials is a collection of about 30 online tutorials on general chemistry topics designed as a supplement for high school or college introductory courses. Each Netorial contains several pages of interactive instruction that includes animated mouse-overs, questions for students to answer, and manipulable molecular structures.
Ottosen, Rebecca; Todd, John; Bain, Rachel; Miller, Mike; Lamont. Liana; Biekmohamadi, Mithra; Shaw, David B. J. Chem. Educ. 2008, 85, 463.
Acids / Bases |
Electrochemistry |
Reactions |
VSEPR Theory |
Stoichiometry
Physical Chemistry: Thermodynamics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 694 pp. ISBN: 978-0815340911 (paper). $49.95

Physical Chemistry: Statistical Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 292 pp. ISBN: 978-0815340850 (paper). $44.95

Physical Chemistry: Kinetics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 169 pp. ISBN: 978-0815340898 (paper). $44.95

Physical Chemistry: Quantum Mechanics (Horia Metiu)
Taylor & Francis, New York, London, 2006. 481 pp. ISBN: 978-0815340874 (paper). $44.95

  John Krenos
Metiu has created a significant set of volumes on undergraduate physical chemistry. The integration of Mathematica and Mathcad workbooks into the four texts provides instructors with an attractive new option in teaching.
Krenos, John. J. Chem. Educ. 2008, 85, 206.
Quantum Chemistry |
Statistical Mechanics |
Thermodynamics |
Kinetics
An Experimental Approach to Teaching and Learning Elementary Statistical Mechanics  Frank B. Ellis and David C. Ellis
This article details demonstrations that show how equilibrium changes with temperature, energy, and entropy and involve exothermic and endothermic reactions, the dynamic nature of equilibrium, and Le Châtelier's principle.
Ellis, Frank B.; Ellis, David C. J. Chem. Educ. 2008, 85, 78.
Equilibrium |
Kinetics |
Statistical Mechanics |
Thermodynamics
Electrochemical Polishing of Silverware: A Demonstration of Voltaic and Galvanic Cells  Michelle M. Ivey and Eugene T. Smith
Using a battery and a graphite electrode, an electrolytic cell is constructed to generate a layer of tarnish on silverware. Students then determine that the tarnish can be removed by electrochemically converting it back to silver using aluminum foil and baking soda.
Ivey, Michelle M.; Smith, Eugene T. J. Chem. Educ. 2008, 85, 68.
Consumer Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The Use of Limits in an Advanced Placement Chemistry Course  Paul S. Matsumoto, Jonathan Ring, and Jia Li (Lily) Zhu
This article describes the use of limits in topics usually covered in advanced placement or first-year college chemistry. This approach supplements the interpretation of the graph of an equation since it is usually easier to evaluate the limit of a function than to generate its graph.
Matsumoto, Paul S.; Ring, Jonathan; Zhu, Jia Li (Lily). J. Chem. Educ. 2007, 84, 1655.
Acids / Bases |
Equilibrium |
Gases |
Mathematics / Symbolic Mathematics |
Thermodynamics
Redox Titration of Ferricyanide to Ferrocyanide with Ascorbic Acid: Illustrating the Nernst Equation and Beer–Lambert Law  Tina H. Huang, Gail Salter, Sarah L. Kahn, and Yvonne M. Gindt
In this simple experiment, which illustrates the Nernst equation and BeerLambert law, students monitor the reduction of ferricyanide ion to ferrocyanide electrochemically and spectrophoto-metrically upon titration with ascorbic acid. The Nernst equation is used to calculate the standard reduction potential of the redox couple at pH 7 and the number of electrons transferred.
Huang, Tina H.; Salter, Gail; Kahn, Sarah L.; Gindt, Yvonne M. J. Chem. Educ. 2007, 84, 1461.
Coordination Compounds |
Electrochemistry |
Potentiometry |
Spectroscopy |
UV-Vis Spectroscopy
Mass-Elastic Band Thermodynamics: A Visual Teaching Aid at the Introductory Level  William C. Galley
Demonstrations of five spontaneous isothermal processes involving the coupling of a mass and elastic band and arising from combinations of enthalpy and entropy changes are presented and then dissected. Analogies are drawn between these processes and common spontaneous molecular events such as chemical reactions and phase transitions.
Galley, William C. J. Chem. Educ. 2007, 84, 1147.
Calorimetry / Thermochemistry |
Thermodynamics
Textbook Error: Short Circuiting an Electrochemical Cell  Judith M. Bonicamp and Roy W. Clark
Reports a serious error in the electrochemical diagrams in eight, 21st century texts and offers an analogy to electrical potential energy and a diagram to clarify the interrelationships between electromotive force E, reaction quotient Q, and Gibbs free energy G.
Bonicamp, Judith M.; Clark, Roy W. J. Chem. Educ. 2007, 84, 731.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Small-Scale and Low-Cost Electrodes for "Standard" Reduction Potential Measurements  Per-Odd Eggen, Lise Kvittingen, and Truls Grønneberg
This article describes how to construct three simple and inexpensive, microchemistry electrodes: hydrogen, chlorine, and copper.
Eggen, Per-Odd; Grønneberg, Truls; Kvittingen, Lise. J. Chem. Educ. 2007, 84, 671.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Microscale Lab |
Student-Centered Learning
A Lemon Cell Battery for High-Power Applications  Kenneth R. Muske, Christopher W. Nigh, and Randy D. Weinstein
This article discusses the development of a lemon cell battery for high-power applications such as radios, portable cassette or CD players, and battery-powered toys.
Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D. J. Chem. Educ. 2007, 84, 635.
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Flame Emission Spectrometry in General Chemistry Labs: Solubility Product (Ksp) of Potassium Hydrogen Phthalate  Frazier W. Nyasulu, William Cusworth III, David Lindquist, and John Mackin
In this general chemistry laboratory, flame emission spectrometry is used to determine the potassium ion concentration in saturated solutions of potassium hydrogen phthalate. From these data the solubility products, the Gibbs free energies of solution, the standard enthalpy of solution, and the standard entropy of solution are calculated.
Nyasulu, Frazier W.; Cusworth, William, III; Lindquist, David; Mackin, John. J. Chem. Educ. 2007, 84, 456.
Acids / Bases |
Atomic Properties / Structure |
Spectroscopy |
Equilibrium |
Quantitative Analysis |
Thermodynamics |
Titration / Volumetric Analysis |
Solutions / Solvents |
Aqueous Solution Chemistry |
Atomic Spectroscopy
Discovering the Thermodynamics of Simultaneous Equilibria. An Entropy Analysis Activity Involving Consecutive Equilibria  Thomas H. Bindel
This activity explores the thermodynamics of simultaneous, consecutive equilibria and is appropriate for second-year high school or AP chemistry. Students discover that a reactant-favored (entropy-diminishing) reaction can be caused to happen if it is coupled with a product-favored reaction of sufficient entropy production.
Bindel, Thomas H. J. Chem. Educ. 2007, 84, 449.
Acids / Bases |
Equilibrium |
Thermodynamics
An Easy Way to Personalize Your Iron or Stainless Steel Items  Ejaz ur Rehman
Describes a simple and useful method for permanently labeling metallic items by the application of alternating current through a mask.
Rehman, Ejaz ur. J. Chem. Educ. 2007, 84, 40.
Electrochemistry |
Oxidation / Reduction
Effectiveness of Conceptual Change-Oriented Teaching Strategy To Improve Students' Understanding of Galvanic Cells  Ali Riza Özkaya, Musa Üce, Hakan Sariçayir, and Musa Sahin
This article presents efforts to develop a conceptual change-oriented strategy to teaching galvanic cells in electrochemistry. The objective is to assess the effectiveness of conceptual change-oriented instruction relative to conventional instruction using statistical comparisons.
Özkaya, Ali Riza; Üce, Musa; Sariçayir, Hakan; Sahin, Musa. J. Chem. Educ. 2006, 83, 1719.
Electrochemistry |
Equilibrium |
Oxidation / Reduction |
Undergraduate Research
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Teaching Physical Chemistry Experiments with a Computer Simulation by LabVIEW  A. Belletti, R. Borromei, and G. Ingletto
This article reports on a computer simulation developed with the software LabVIEW of the physical chemistry experiment regarding the vapor pressure measurements of a pure liquid as a function of temperature, as well as a system of data collecting that emphasizes the similarities between the virtual and real experiment.
Belletti, A.; Borromei, R.; Ingletto, G. J. Chem. Educ. 2006, 83, 1353.
Equilibrium |
Laboratory Computing / Interfacing |
Liquids |
Thermodynamics |
Gases |
Student-Centered Learning
Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction  Joel Tellinghuisen
The conditions under which chemical reactions occur determine which thermodynamic functions are minimized or maximized. This point is illustrated for the formation of ammonia in the ideal gas approximation using a numerical exercise.
Tellinghuisen, Joel. J. Chem. Educ. 2006, 83, 1090.
Gases |
Equilibrium |
Thermodynamics
The Synthesis of Copper(II) Carboxylates Revisited  Kevin Kushner, Robert E. Spangler, Ralph A. Salazar, Jr., and J. J. Lagowski
Describes an electrochemical synthesis of copper(II) carboxylates for use in the general chemistry laboratory course for chemistry majors.
Kushner, Kevin; Spangler, Robert E.; Salazar, Ralph A., Jr.; Lagowski, J. J. J. Chem. Educ. 2006, 83, 1042.
Carboxylic Acids |
Coordination Compounds |
Electrochemistry |
Metals |
Solutions / Solvents |
Transition Elements |
Undergraduate Research |
Synthesis
Give Them Money: The Boltzmann Game, a Classroom or Laboratory Activity Modeling Entropy Changes and the Distribution of Energy in Chemical Systems  Robert M. Hanson and Bridget Michalek
Described here is a short, simple activity that can be used in any high school or college chemistry classroom or lab to explore the way energy is distributed in real chemical systems and as an entry into discussions of the probabilistic nature of entropy.
Hanson, Robert M.; Michalek, Bridget. J. Chem. Educ. 2006, 83, 581.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Using Computer Simulations To Teach Salt Solubility. The Role of Entropy in Solubility Equilibrium  Victor M. S. Gil and João C. M. Paiva
Pairs of salts are discussed to illustrate the interpretation of their different behavior in water in terms of the fundamental concept of entropy. The ability of computer simulations to help improve students' understanding of these chemistry concepts is also examined.
Gil, Victor M. S.; Paiva, João C. M. J. Chem. Educ. 2006, 83, 170.
Computational Chemistry |
Equilibrium |
Thermodynamics |
Solutions / Solvents |
Precipitation / Solubility
E = mc2 for the Chemist: When Is Mass Conserved?  Richard S. Treptow
Einstein's famous equation is frequently misunderstood in textbooks and popular science literature. Its correct interpretation is that mass and energy are different measures of a single quantity known as massenergy, which is conserved in all processes.
Treptow, Richard S. J. Chem. Educ. 2005, 82, 1636.
Atomic Properties / Structure |
Nuclear / Radiochemistry |
Theoretical Chemistry |
Thermodynamics
Electropolymerized Conducting Polymer as Actuator and Sensor Device: An Undergraduate Electrochemical Laboratory Experiment  María T. Cortés and Juan C. Moreno
A trilayer formed by two conducting polymer films sandwiched around an adhesive polymer layer works as actuator and sensor simultaneously. This device can be bent up to 180 and it can be used as a sensing device of physical chemistry parameters such as cell temperature and electrolyte concentration. In this article, it is shown in a didactic way how to electrochemically synthesize ClO4-doped polypyrrole (PPy) films, how to fabricate a trilayer device, and how to evaluate its actuating and sensing capabilities. The required materials are simple and a complicated setup is not necessary.
Cortés, María T.; Moreno, Juan C. J. Chem. Educ. 2005, 82, 1372.
Electrochemistry |
Materials Science |
Undergraduate Research |
Polymerization |
Applications of Chemistry
A Note on Dalton's Law: Myths, Facts, and Implementation  Ronald W. Missen and William R. Smith
The treatment of Dalton's law for gas mixtures commonly includes the improper designation "Dalton's law of partial pressures", rather than the correct "Dalton's law of additivity of (pure component) pressures". It also identifies the pure component pressure as the partial pressure, although these are only numerically equal for a mixture of ideal gases. The situation is clarified by examination of an appropriate statement of the law and definitions, eventually in operational form with reference to mixtures of nonideal gases.
Missen, Ronald Wi.; Smith, William R. J. Chem. Educ. 2005, 82, 1197.
Thermodynamics |
Gases
Equilibria That Shift Left upon Addition of More Reactant  Jeffrey E. Lacy
Most textbook presentations of Le Chtelier's principle in general and physical chemistry do not include a discussion of constant pressure conditions for which addition of a reactant can shift the equilibrium to the left. We propose presentations of isothermal, open systems at constant pressure for both levels of study by using concepts and skills that the respective students already possess. In addition, we derive novel criteria based on the stoichiometry of the reaction that can be used to identify those equilibria that will shift left upon addition of more reactant.
Lacy, Jeffrey E. J. Chem. Educ. 2005, 82, 1192.
Equilibrium |
Mathematics / Symbolic Mathematics |
Thermodynamics
Microscopic Description of Le Châtelier's Principle  Igor Novak
The analysis based on microscopic descriptors (energy levels and their populations) is given that provides visualization of free energies and conceptual rationalization of Le Châtelier's principle. The misconception "nature favors equilibrium" is highlighted.
Novak, Igor. J. Chem. Educ. 2005, 82, 1190.
Equilibrium |
Thermodynamics
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems: The Reaction Quotient (Q) IS Useful After All  Todd P. Silverstein
Paul Matsumoto was absolutely correct in writing The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems.
Silverstein, Todd P. J. Chem. Educ. 2005, 82, 1149.
Equilibrium |
Thermodynamics
The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems: The Reaction Quotient (Q) IS Useful After All  Todd P. Silverstein
Paul Matsumoto was absolutely correct in writing The Reaction Quotient Is Unnecessary To Solve Equilibrium Problems.
Silverstein, Todd P. J. Chem. Educ. 2005, 82, 1149.
Equilibrium |
Thermodynamics
Conceptual Considerations in Molecular Science  Donald T. Sawyer
The undergraduate curriculum and associated textbooks include several significant misconceptions.
Sawyer, Donald T. J. Chem. Educ. 2005, 82, 985.
Catalysis |
Covalent Bonding |
Electrolytic / Galvanic Cells / Potentials |
Oxidation / Reduction |
Reactions |
Reactive Intermediates |
Thermodynamics |
Water / Water Chemistry
Let's Drive "Driving Force" Out of Chemistry  Norman C. Craig
"Driving force" is identified as a misleading concept in analyzing spontaneous change. Driving force wrongly suggests that Newtonian mechanics and determinism control and explain spontaneous processes. The usefulness of the competition of ?H versus ?S in discussing chemical change is also questioned. Entropy analyseswhich consider the contributions to the total change in entropyare advocated.
Craig, Norman C. J. Chem. Educ. 2005, 82, 827.
Natural Products |
Bioenergetics |
Biophysical Chemistry |
Calorimetry / Thermochemistry |
Thermodynamics
Teaching pH Measurements with a Student-Assembled Combination Quinhydrone Electrode  Fritz Scholz, Tim Steinhardt, Heike Kahlert, Jens R. Pörksen, and Jürgen Behnert
A combination pH electrode that can be assembled by the student is described. It consists of a glass holder and two sensors in the form of rubber stoppers that contain quinhydrone and graphite. The combination electrode is suitable to teach potentiometric measurements, pH measurements, and the interplay of acidbase and redox equilibria. The electrode meets highest safety standards and overcomes the troubles associated with the use of the conventional quinhydrone electrode.
Scholz, Fritz; Steinhardt, Tim; Kahlert, Heike; Pörksen, Jens R.; Behnert, Jürgen. J. Chem. Educ. 2005, 82, 782.
Acids / Bases |
pH |
Laboratory Equipment / Apparatus |
Electrochemistry
Procedure for Decomposing a Redox Reaction into Half-Reactions  Ilie Fishtik and Ladislav H. Berka
The principle of stoichiometric uniqueness provides a simple algorithm to check whether a simple redox reaction may be uniquely decomposed into half-reactions in a single way. For complex redox reactions the approach permits a complete enumeration of a finite and unique number of ways a redox reaction may be decomposed into half-reactions. Several examples are given.
Fishtik, Ilie; Berka, Ladislav H. J. Chem. Educ. 2005, 82, 553.
Stoichiometry |
Equilibrium |
Electrochemistry |
Oxidation / Reduction |
Reactions |
Thermodynamics
Teaching Entropy Analysis in the First-Year High School Course and Beyond  Thomas H. Bindel
A 16-day teaching unit is presented that develops chemical thermodynamics at the introductory high school level and beyond from exclusively an entropy viewpoint referred to as entropy analysis. Many concepts are presented, such as: entropy, spontaneity, the second law of thermodynamics, qualitative and quantitative entropy analysis, extent of reaction, thermodynamic equilibrium, coupled equilibria, and Gibbs free energy. Entropy is presented in a nontraditional way, using energy dispersal.
Bindel, Thomas H. J. Chem. Educ. 2004, 81, 1585.
Thermodynamics
Entropy and Constraint of Motion  Frank L. Lambert
William Jensen's presentation of entropy increase as solely due to kinetic energy dispersion is stimulating.
Lambert, Frank L. J. Chem. Educ. 2004, 81, 640.
Thermodynamics
Entropy and Constraint of Motion   William B. Jensen
I would like to make several observations supplementing and supporting the article by Frank Lambert on entropy as energy dissipation, since this is an approach that I have also used for many years when teaching a qualitative version of the entropy concept to students of general and introductory inorganic chemistry.
Jensen, William B. J. Chem. Educ. 2004, 81, 639.
Thermodynamics
Isolation of Copper from a 5–Cent Coin. An Example of Electrorefining  Steven G. Sogo
The United States 5cent coin, commonly known as a "nickel", is made of an alloy containing 75% copper and 25% nickel. The experiment is a visually appealing illustration of the process of electrorefining using selective reduction.
Sogo, Steven G. J. Chem. Educ. 2004, 81, 530.
Electrochemistry |
Oxidation / Reduction |
Metals
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
Photogalvanic Cells for Classroom Investigations: A Contribution for Ongoing Curriculum Modernization  Claudia Bohrmann-Linde and Michael W. Tausch
Laboratory experiments examining the fundamental processes in the conversion of light into electrical energy using photogalvanic cells have been developed. These simple cells are suitable for classroom investigations examining the operating principles of photogalvanic cells and the influence of different parameters on their efficiency.
Bohrmann-Linde, Claudia; Tausch, Michael W. J. Chem. Educ. 2003, 80, 1471.
Electrochemistry |
Atomic Properties / Structure |
Photochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials
Palm-Based Data Acquisition Solutions for the Undergraduate Chemistry Laboratory  Susan Hudgins, Yu Qin, Eric Bakker, and Curtis Shannon
Handheld computers provide a compact and cost-effective means to log data in the undergraduate chemistry laboratory. Handheld computers have the ability to record multiple forms of data, be programmed for specific projects, and later have data transferred to a personal computer for manipulation and analysis.
Hudgins, Susan; Qin, Yu; Bakker, Eric; Shannon, Curtis. J. Chem. Educ. 2003, 80, 1303.
Acids / Bases |
Electrochemistry |
Instrumental Methods |
Laboratory Computing / Interfacing |
Laboratory Equipment / Apparatus
Playing-Card Equilibrium  Robert M. Hanson
A simple hands-on simulation suitable for either classroom use or laboratory investigation involves using a standard deck of playing cards to explore the statistical aspects of equilibrium. Concepts that can be easily demonstrated include fluctuation around a most probable distribution, Le Chtelier's principle, the equilibrium constant, prediction of the equilibrium constant based on probability, and the effect of sample size on equilibrium fluctuations.
Hanson, Robert M. J. Chem. Educ. 2003, 80, 1271.
Equilibrium |
Statistical Mechanics |
Thermodynamics
Lithium Batteries: A Practical Application of Chemical Principles  Richard S. Treptow
In recent years batteries have emerged in the marketplace that take advantage of the unique properties of lithium. Lithium metal is an attractive choice to serve as a battery anode because it is easily oxidized and it produces an exceptionally high amount of electrical charge per unit-weight.
Treptow, Richard S. J. Chem. Educ. 2003, 80, 1015.
Consumer Chemistry |
Electrochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Three Forms of Energy  Sigthór Pétursson
Calculations comparing the energy involved in three forms: heat, mechanical energy, and expansion against pressure.
Pétursson, Sigthór . J. Chem. Educ. 2003, 80, 776.
Calorimetry / Thermochemistry |
Nutrition |
Thermodynamics
Determination of Avogadro's Number by Improved Electroplating  Carlos A. Seiglie
Electroplating procedure to accurately determine Avogadro's number or Faraday's constant.
Seiglie, Carlos A. J. Chem. Educ. 2003, 80, 668.
Electrochemistry |
Metals |
Quantitative Analysis |
Stoichiometry
Simple Recipes for Prebiotic Soup: A High School or Undergraduate Chemistry Laboratory  Marisol Martinez-Meeler, Nika Aljinovic, and Dorothy Swain
Replicating Stanley Miller's prebiotic soup experiment for introductory chemistry; includes experimental apparatus and analysis of the products.
Martinez-Meeler, Marisol; Aljinovic, Nika; Swain, Dorothy. J. Chem. Educ. 2003, 80, 665.
Amino Acids |
Aqueous Solution Chemistry |
Chromatography |
Electrochemistry |
Proteins / Peptides |
Synthesis |
Applications of Chemistry
"Disorder" in Unstretched Rubber Bands?  Warren Hirsch
Analysis of the thermodynamics of a stretched rubber band.
Hirsch, Warren. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
"Disorder" in Unstretched Rubber Bands?  Frank L. Lambert
Analysis of the thermodynamics of a stretched rubber band.
Lambert, Frank L. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
"Disorder" in Unstretched Rubber Bands?  Frank L. Lambert
Analysis of the thermodynamics of a stretched rubber band.
Lambert, Frank L. J. Chem. Educ. 2003, 80, 145.
Noncovalent Interactions |
Thermodynamics
Rubber Bands, Free Energy, and Le Châtelier's Principle  Warren Hirsch
Using a rubber band to illustrate Gibbs free energy, entropy, and enthalpy.
Hirsch, Warren. J. Chem. Educ. 2002, 79, 200A.
Noncovalent Interactions |
Thermodynamics |
Equilibrium
Energy as Money, Chemical Bonding as Business, and Negative ΔH and ΔG as Investment   Evguenii I. Kozliak
Analogy for explaining the sign (+ or -) of ?H, ?G, and ?S to introductory students.
Kozliak, Evguenii I. J. Chem. Educ. 2002, 79, 1435.
Nonmajor Courses |
Thermodynamics
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Gases
Why Do Some Batteries Last Longer Than Others?  Michael J. Smith and Colin A. Vincent
Comparing the energy content of the cathode material of different commercial batteries using a test cell.
Smith, Michael J.; Vincent, Colin A. J. Chem. Educ. 2002, 79, 851.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
A Direct Methanol Fuel Cell  Orfeo Zerbinati
Materials and methods for construction of a direct methanol fuel cell.
Zerbinati, Orfeo. J. Chem. Educ. 2002, 79, 829.
Electrochemistry |
Laboratory Equipment / Apparatus |
Electrolytic / Galvanic Cells / Potentials
Conceptual Difficulties Experienced by Prospective Teachers in Electrochemistry: Half-Cell Potential, Cell Potential, and Chemical and Electrochemical Equilibrium in Galvanic Cells  Ali Riza Özkaya
Study of prospective teachers' conceptual understanding of topics in electrochemistry.
Özkaya, Ali Riza. J. Chem. Educ. 2002, 79, 735.
Electrochemistry |
Equilibrium |
Electrolytic / Galvanic Cells / Potentials
Redox Redux: Recommendations for Improving Textbook and IUPAC Definitions  Ed Vitz
Defining oxidation / reduction reactions as those in which oxidation states of the reactant(s) change.
Vitz, Ed. J. Chem. Educ. 2002, 79, 397.
Electrochemistry |
Mechanisms of Reactions |
Oxidation / Reduction |
Oxidation State
The Electrolytic Recovery of Copper from Brass. A Laboratory Simulation of an Industrial Application of Electrical Energy  Domenico Osella, Mauro Ravera, Cristina Soave, and Sonia Scorza
Procedure demonstrating the electrolytic purification of copper.
Osella, Domenico; Ravera, Mauro; Soave, Cristina; Scorza, Sonia. J. Chem. Educ. 2002, 79, 343.
Electrochemistry |
Materials Science |
Metals
A Chemically Relevant Model for Teaching the Second Law of Thermodynamics  Bryce E. Williamson and Tetsuo Morikawa
Presentation of a chemically relevant model that exemplifies many aspects of the second law: reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry.
Williamson, Bryce E.; Morikawa, Tetsuo. J. Chem. Educ. 2002, 79, 339.
Calorimetry / Thermochemistry |
Electrochemistry |
Thermodynamics
The Lead-Acid Battery: Its Voltage in Theory and in Practice  Richard S. Treptow
Lead-acid battery fundamentals, cell voltage and the Nernst equation, and an analysis of actual battery performance.
Treptow, Richard S. J. Chem. Educ. 2002, 79, 334.
Electrochemistry |
Oxidation / Reduction |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Acids / Bases |
Applications of Chemistry
Spontaneous Assembly of Soda Straws  D. J. Campbell, E. R. Freidinger, J. M. Hastings, and M. K. Querns
Demonstrating spontaneous assembly using soda straws.
Campbell, D. J.; Freidinger, E. R.; Hastings, J. M.; Querns, M. K. J. Chem. Educ. 2002, 79, 201.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Thermodynamics
On the Importance of Ideality  Rubin Battino, Scott E. Wood, and Arthur G. Williamson
Analysis of the utility of ideality in gaseous phenomena, solutions, and the thermodynamic concept of reversibility.
Battino, Rubin; Wood, Scott E.; Williamson, Arthur G. J. Chem. Educ. 2001, 78, 1364.
Thermodynamics |
Gases |
Solutions / Solvents
The Isothermal Heat Conduction Calorimeter: A Versatile Instrument for Studying Processes in Physics, Chemistry, and Biology  Lars Wadsö, Allan L. Smith, Hamid Shirazi, S. Rose Mulligan, and Thomas Hofelich
A simple but sensitive isothermal heat-conduction calorimeter and five experiments for students to illustrate its use (heat capacity of solids, acid-base titration, enthalpy of vaporization of solvents, cement hydration, and insect metabolism).
Wadsö, Lars; Smith, Allan L.; Shirazi, Hamid; Mulligan, S. Rose; Hofelich, Thomas. J. Chem. Educ. 2001, 78, 1080.
Calorimetry / Thermochemistry |
Laboratory Equipment / Apparatus |
Thermal Analysis |
Thermodynamics
Stories to Make Thermodynamics and Related Subjects More Palatable  Lawrence S. Bartell
Collection of anecdotes regarding the history and human side of chemistry.
Bartell, Lawrence S. J. Chem. Educ. 2001, 78, 1059.
Surface Science |
Thermodynamics |
Kinetic-Molecular Theory |
Applications of Chemistry
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
Laboratory Experiments on Electrochemical Remediation of the Environment. Part 5: Indirect H2S Remediation  J. G. Ibanez
Experiment to introduce students in general chemistry, environmental chemistry, or electrochemistry to the concept of indirect electrolysis, its application in environmental remediation schemes, the role of a mediator, and the application of redox chemistry concepts.
Ibanez, J. G. J. Chem. Educ. 2001, 78, 778.
Electrochemistry |
Gases |
Microscale Lab |
Oxidation / Reduction |
Applications of Chemistry
Structure and Content of Some Primary Batteries  Michael J. Smith and Colin A. Vincent
An experiment that complements electrochemical characterization and allows students to explore the structure of commercial cells and calculate the anode and cathode capacities from the stoichiometry of the cell reaction.
Smith, Michael J.; Vincent, Colin A. J. Chem. Educ. 2001, 78, 519.
Consumer Chemistry |
Electrochemistry |
Undergraduate Research |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Observations on Lemon Cells  Jerry Goodisman
The lemon cell, consisting of pieces of two different metals stuck into a lemon or other fruit, is pictured in many general chemistry textbooks without being discussed; manuscript describes simple experiments, suitable for the general chemistry laboratory, which elucidate how this kind of cell works.
Goodisman, Jerry. J. Chem. Educ. 2001, 78, 516.
Electrochemistry |
Metals |
Electrolytic / Galvanic Cells / Potentials
Electrical Deflection of Polar Liquid Streams: A Misunderstood Demonstration  Maryam Ziaei-Moayyed, Edward Goodman, and Peter Williams
The electrical deflection of polar liquid streams, commonly used as a textbook illustration of the behavior of polar molecules, is shown to be due to the formation of electrically charged droplets in the polar liquid stream, induced by a nearby charged object, rather than any force exerted on molecular dipoles.
Ziaei-Moayyed, Maryam; Goodman, Edward; Williams, Peter. J. Chem. Educ. 2000, 77, 1520.
Electrochemistry
Interpretation of Second Virial Coefficient  Vivek Utgikar
Identifying the gel point of a polymer using a multimeter.
Utgikar, Vivek. J. Chem. Educ. 2000, 77, 1409.
Kinetics |
Lasers |
Spectroscopy |
Gases |
Thermodynamics
Potentiometric Determination of CO2 Concentration in the Gaseous Phase: Applications in Different Laboratory Activities  Eduardo Cortón, Santiago Kocmur, Liliana Haim, and Lydia Galagovsky
The first lab comprises the calibration of a CO2 potentiometric detector with gas mixtures. The CO2 and CO2-free air required for the gaseous samples are produced in the lab by an inexpensive and simple apparatus. In the second lab, the CO2 potentiometric device is used to measure CO2 uptake and release during different metabolic processes.
Cortón, Eduardo; Kocmur, Santiago; Haim, Liliana; Galagovsky, Lydia. J. Chem. Educ. 2000, 77, 1188.
Electrochemistry |
Gases |
Quantitative Analysis |
Metabolism
Determination of Ksp, ΔG0, ΔH0, and ΔS0 for the Dissolution of Calcium Hydroxide in Water: A General Chemistry Experiment  William B. Euler, Louis J. Kirschenbaum, and Ben Ruekberg
This exercise utilizes low-cost, relatively nonhazardous materials presenting few disposal problems. It reinforces the students' understanding of the interrelationship of solubility, Ksp, ΔG0, ΔH0, and ΔS0.
Euler, William B.; Kirschenbaum, Louis J.; Ruekberg, Ben. J. Chem. Educ. 2000, 77, 1039.
Equilibrium |
Thermodynamics |
Titration / Volumetric Analysis
Understanding Electrochemical Thermodynamics through Entropy Analysis  Thomas H. Bindel
This discovery-based activity involves entropy analysis of galvanic cells. The intent of the activity is for students to discover the fundamentals of electrochemical cells through a combination of entropy analysis, exploration, and guided discovery.
Bindel, Thomas H. J. Chem. Educ. 2000, 77, 1031.
Electrochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials
A Closer Look at Phase Diagrams for the General Chemistry Course  Stephen A. Gramsch
The information provided by the high-pressure phase diagrams of some simple systems (carbon dioxide, water, hydrogen, and iron) can provide a useful extension to the traditional discussion of phase diagrams in the general chemistry course. At the same time, it can prepare students for a more illuminating presentation of the concept of equilibrium than is possible through the discussion of gas phase, acid-base, and solubility product equilibria alone.
Gramsch, Stephen A. J. Chem. Educ. 2000, 77, 718.
Equilibrium |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Geochemistry
Illustrating Thermodynamic Concepts Using a Hero's Engine  Pedro L. Muiño and James R. Hodgson
A modified Hero's engine is used to illustrate concepts of thermodynamics and engineering design suitable for introductory chemistry courses and more advanced physical chemistry courses. This demonstration is suitable to illustrate concepts like gas expansion, gas cooling through expansion, conversion of heat to work, interconversion between kinetic energy and potential energy, and feedback mechanisms.
Muio, Pedro L.; Hodgson, James R. J. Chem. Educ. 2000, 77, 615.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
Using a Teaching Model to Correct Known Misconceptions in Electrochemistry  P. A. Huddle, Margaret Dawn White, and Fiona Rogers
A concrete teaching model for electrochemistry is presented here. It addresses many common student misconceptions about current flow by demonstrating what is occurring at the microscopic level in an electrochemical cell. Both the scope and limitations of the model are discussed.
Huddle, Penelope Ann; White, Margaret Dawn; Rogers, Fiona. J. Chem. Educ. 2000, 77, 104.
Electrochemistry |
Learning Theories
Determination of the Fundamental Electronic Charge via the Electrolysis of Water  Brittany Hoffman, Elizabeth Mitchell, Petra Roulhac, Marc Thomes, and Vincent M. Stumpo
In an illuminating experiment suitable for secondary school students, a Hoffman electrolysis apparatus is employed to determine the fundamental electronic charge. The volume and pressure of hydrogen gas produced via the electrolysis of water during a given time interval are measured.
Hoffman, Brittany; Mitchell, Elizabeth; Roulhac, Petra; Thomes, Marc; Stumpo, Vincent M. J. Chem. Educ. 2000, 77, 95.
Atomic Properties / Structure |
Electrochemistry |
Gases |
Molecular Properties / Structure
Boerhaave on Fire  Damon Diemente
This article offers a selection of passages from Boerhaave's chapter on fire. Boerhaave offers demonstrations and experiments that can be instructively performed today, quantitative data that can be checked against modern equations, and much theory and hypothesis that can be assessed in light of modern chemical ideas.
Diemente, Damon. J. Chem. Educ. 2000, 77, 42.
Calorimetry / Thermochemistry |
Thermodynamics
A Simple Experiment for Ion Migration  Karl E. Bessler and Daniel de Oliveira Campos
A simple, versatile, and low-cost version of a qualitative ion migration experiment is presented, which needs a minimum amount of chemicals and can be performed by inexperienced students. In the experiment cations and anions (preferably colorless or faintly colored) migrate toward one another and on combination produce insoluble and strongly colored compounds.
Bessler, Karl E.; Campos, Daniel de O. J. Chem. Educ. 1999, 76, 1516.
Aqueous Solution Chemistry |
Electrochemistry |
Qualitative Analysis |
Electrophoresis
Entropy, Disorder, and Freezing  Brian B. Laird
It is argued that the usual view that entropy is a measure of "disorder" is problematic and that there exist systems at high density, for which packing considerations dominate, where a spatially ordered state has a higher entropy than a disordered one.
Laird, Brian B. J. Chem. Educ. 1999, 76, 1388.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Statistical Mechanics
An Analysis of College Chemistry Textbooks As Sources of Misconceptions and Errors in Electrochemistry  Michael J. Sanger and Thomas J. Greenbowe
The oxidation-reduction and electrochemistry chapters of 10 introductory college chemistry textbooks were reviewed for misleading or erroneous statements, using a list of student misconceptions. As a result of this analysis, we provide suggestions for chemistry instructors and textbook authors.
Sanger, Michael J.; Greenbowe, Thomas J. J. Chem. Educ. 1999, 76, 853.
Electrochemistry |
Oxidation / Reduction |
Learning Theories
Student Construction of a Gel-Filled Ag/AgCl Reference Electrode for Use in a Potentiometric Titration  James M. Thomas
Instructions for the preparation of a Ag/AgCl "reference"-type electrode that uses a gel-type matrix are given. In addition, construction steps are provided for a very sturdy Pt-nichrome "inert" electrode, which can be used many times. Together, these two electrodes, along with a multivoltmeter, have been used successfully to determine the percent of iron in Fe(NH4)2(SO4)2 and in Fe2O2 unknowns purchased commercially.
Thomas, James M. J. Chem. Educ. 1999, 76, 97.
Instrumental Methods |
Electrochemistry |
Quantitative Analysis |
Oxidation / Reduction |
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis
The Nernst Equation: Determination of Equilibrium Constants for Complex Ions of Silver  Martin L. Thompson and Laura J. Kateley
The experiment requires a voltmeter capable of recording millivolts (or a good pH meter) and inexpensive chemicals. It allows students to check the validity of the Nernst equation and compare their experimental Kform values to reported ones.
Thompson, Martin L.; Kateley, Laura J. J. Chem. Educ. 1999, 76, 95.
Equilibrium |
Coordination Compounds |
Electrochemistry |
Oxidation / Reduction
Automatic Titrators in the Analytical and Physical Chemistry Laboratories  Kathryn R. Williams
In 1995 the University of Florida received an NSF-ILI grant to purchase six automatic titrators, which have now been successfully integrated into the analytical and physical chemistry teaching laboratories. After they have mastered fundamental techniques, students in the introductory analytical laboratory gain experience with automated analyses in three experiments: the iodimetric analysis of ascorbic acid, the determination of polymer molecular weight, and the analysis of chloride by ion selective electrode.
Williams, Kathryn R. J. Chem. Educ. 1998, 75, 1133.
Electrochemistry |
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis
Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter  Greg P. Smestad and Michael Gratzel
A unique solar cell fabrication procedure has been developed using natural anthocyanin dyes extracted from berries. It can be reproduced with a minimum amount of resources in order to provide an interdisciplinary approach for lower-division undergraduate students learning the basic principles of biological extraction, physical chemistry, and spectroscopy as well as environmental science and electron transfer.
Smestad, Greg P.; Grtzel, Michael. J. Chem. Educ. 1998, 75, 752.
Photochemistry |
Plant Chemistry |
Electrochemistry |
Atomic Properties / Structure |
Dyes / Pigments |
Nanotechnology |
Separation Science |
Spectroscopy
Slide Projector Corrosion Cell  Silvia Tejada, Estela Guevara, and Esperanza Olivares
The process of corrosion can be demonstrated in a slide projector, since the cell is in the shape of a slide, or on the stage of an overhead projector by setting up a simple galvanic cell. Corrosion occurs as the result of a galvanic cell reaction, in which the corroding metal acts as the anode. Several simple demonstrations relating to corrosion are described here.
Tejada, Silvia; Guevara, Estela; Olivares, Esperanza. J. Chem. Educ. 1998, 75, 747.
Electrochemistry |
Microscale Lab |
Oxidation / Reduction |
Reactions |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Thermodynamics and Spontaneity (the author replies)  Ochs, Raymond S.
The term "spontaneous" is historical baggage.
Ochs, Raymond S. J. Chem. Educ. 1998, 75, 659.
Thermodynamics
Thermodynamics and Spontaneity  Earl, Boyd L.
The term "spontaneous" is worth keeping in the chemistry lexicon.
Earl, Boyd L. J. Chem. Educ. 1998, 75, 658.
Thermodynamics
Letters to the Editor  
The term "spontaneous" is worth keeping in the chemistry lexicon.
J. Chem. Educ. 1998, 75, 658.
Thermodynamics
A Closer Look at the Addition of Equations and Reactions  Damon Diemente
Chemists occasionally find it convenient or even necessary to express an overall reaction as the sum of two or more component reactions. A close examination, however, reveals that the resemblance between chemical algebraic equations is entirely superficial, and that the real meaning of addition in chemical equations is subtle and varies from case to case. In high-school courses, students are likely to encounter the addition of equations in thermochemistry, in electrochemistry, and in kinetics.
Diemente, Damon. J. Chem. Educ. 1998, 75, 319.
Calorimetry / Thermochemistry |
Electrochemistry |
Mechanisms of Reactions |
Stoichiometry |
Reactions
Lemon Cells Revisited - The Lemon-Powered Calculator  Daniel J. Swartling and Charlotte Morgan
Using lemons to create a voltaic cell to run items that students would use in their everyday lives drives home that chemistry plays an integral role in their lives.
Swartling, Daniel J.; Morgan, Charlotte. J. Chem. Educ. 1998, 75, 181.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
The Electromotive Series and Other Non-Absolute Scales  Gavin D. Peckham
Stresses the reference-state approach for students learning the electromotive series and other non-absolute scales.
Peckham, Gavin D. J. Chem. Educ. 1998, 75, 49.
Electrochemistry
Constructing Chemical Concepts through a Study of Metals and Metal Ions: Guided Inquiry Experiments for General Chemistry  Ram S. Lamba, Shiva Sharma, and Baird W. Lloyd
A set of inquiry-based experiments designed to help students develop an understanding of basic chemical concepts within the framework of studying the properties and reactivity of metals and metal ions.
Lamba, Ram S.; Sharma, Shiva; Lloyd, Baird W. J. Chem. Educ. 1997, 74, 1095.
Electrochemistry |
Metals |
Oxidation / Reduction |
Stoichiometry
Why Don't Things Go Wrong More Often? Activation Energies: Maxwell's Angels, Obstacles to Murphy's Law  Frank L. Lambert
The micro-complexity of fracturing utilitarian or beautiful objects prevents assigning a characteristic activation energy even to chemically identical artifacts. Nevertheless, a qualitative EACT SOLID can be developed. Its surmounting is correlated with the radical drop in human valuation of an object when it is broken.
Lambert, Frank L. J. Chem. Educ. 1997, 74, 947.
Kinetics |
Nonmajor Courses |
Thermodynamics
A Low-Cost and High-Performance Conductivity Meter  Rogerio T. da Rocha, Ivano G. R. Gutz, and Claudimir L. do Lago
A two-electrode conductivimeter is described, which keep good performance in spite of its low cost.
da Rocha, Rogerio T. ; Gutz, Ivano G.R. ; do Lago, Claudimir L. J. Chem. Educ. 1997, 74, 572.
Instrumental Methods |
Conductivity |
Electrochemistry |
Laboratory Equipment / Apparatus
The Thermodynamics of Drunk Driving  Robert Q. Thompson
Biological, chemical, and instrumental variables are described along with their contributions to the overall uncertainty in the value of BrAC/BAC.
Thompson, Robert Q. J. Chem. Educ. 1997, 74, 532.
Thermodynamics |
Nonmajor Courses |
Forensic Chemistry |
Drugs / Pharmaceuticals |
Applications of Chemistry
Synthesis and Characterization of a Conduction Polymer: An Electrochemical Experiment for General Chemistry  Roger K. Bunting, Karsten Swarat, DaJing Yan, Duane Finello
The electrochemical synthesis of a free-standing film of polypyrrole, using commonly available equipment and materials, is described at a level suitable to application in a general chemistry laboratory. Also described are methods to quantitatively assess the doping level and to characterize the polymer film in terms of its conductivity as a function of temperature.
Bunting, Roger K.; Swarat, Karsten; Yan, DaJing; Finello, Duane. J. Chem. Educ. 1997, 74, 421.
Electrochemistry |
Conductivity
Heat Flow vs. Cash Flow: A Banking Analogy  Charles M. Wynn, Sr.
An analogy is drawn between the withdrawal of money from an automated teller machine (ATM) and an exothermic chemical reaction.
Wynn, Charles M. Sr. J. Chem. Educ. 1997, 74, 397.
Thermodynamics |
Calorimetry / Thermochemistry
A Brief History of Thermodynamics Notation  Rubin Battino, Laurence E. Strong, Scott E. Wood
This paper gives a brief history of thermodynamic notation for the energy, E, enthalpy, H, entropy, S, Gibbs energy, G, Helmholtz energy, A, work, W, heat, Q, pressure, P, volume, V, and temperature, T. In particular, the paper answers the question, "Where did the symbol S for entropy come from?"
Battino, Rubin; Strong Laurence E.; Wood, Scott E. J. Chem. Educ. 1997, 74, 304.
Thermodynamics
In Defense of Thermodynamics - An Animate Analogy  Sture Nordholm
In order to illustrate the deepest roots of thermodynamics and its great power and generality, it is applied by way of analogy to human behavior from an economic point of view.
Nordholm, Sture. J. Chem. Educ. 1997, 74, 273.
Thermodynamics
Chemical Equilibrium (the author replies)  Banerjee, Anil
Item 7 deserves a fuller answer than was provided.
Banerjee, Anil J. Chem. Educ. 1996, 73, A262.
Equilibrium |
Thermodynamics
Chemical Equilibrium  Logan, S. R.
Item 7 deserves a fuller answer than was provided.
Logan, S. R. J. Chem. Educ. 1996, 73, A261.
Equilibrium |
Thermodynamics
The Chemical and Educational Appeal of the Orange Juice Clock  Paul B. Kelter, James D. Carr, Tanya Johnson, and Carlos Mauricio Castro-Acuña
The Orange Juice Clock, in which a galvanic cell is made from the combination of a magnesium strip, a copper strip, and juice in a beaker, has been a popular classroom, conference, and workshop demonstration for nearly 10 years. The discussion that follows considers the recent history, chemistry, and educational uses of the demonstration.
Kelter, Paul B.; Carr, James D.; Johnson, Tanya; Castro-Acuña, Carlos Mauricio. J. Chem. Educ. 1996, 73, 1123.
Electrochemistry
Concept Maps in Chemistry Education  Alberto Regis, Pier Giorgio Albertazzi, Ezio Roletto
This article presents and illustrates a proposed application of concept maps in chemistry teaching in high schools. Three examples of the use of concept maps in chemistry teaching are reported and discussed with reference to: atomic structure, oxidation-reduction and thermodynamics.
Regis, Alberto; Albertazzi, Pier Giorgio; Roletto, Ezio. J. Chem. Educ. 1996, 73, 1084.
Learning Theories |
Atomic Properties / Structure |
Oxidation / Reduction |
Thermodynamics
A Simple Method for Determining the Temperature Coefficient of Voltaic Cell Voltage  Alfred E. Saieed, Keith M. Davies
This article describes a relatively simple method for preparing voltaic cells, and through their temperature coefficient, ?E/?T, it explores relationships between ?G, ?H,and ?S for the cell reactions involved.
Saieed, Alfred E.; Davies, Keith M. J. Chem. Educ. 1996, 73, 959.
Electrochemistry |
Calorimetry / Thermochemistry |
Thermodynamics |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus |
Laboratory Management |
Oxidation / Reduction
Thermodynamics and Spontaneity  Raymond S. Ochs
Despite the importance of thermodynamics as the foundation of chemistry, most students emerge from introductory courses with only a dim understanding of this subject.
Ochs, Raymond S. J. Chem. Educ. 1996, 73, 952.
Thermodynamics |
Learning Theories |
Equilibrium
From Christmas Ornament to Glass Electrode  Rogério T. da Rocha, Ivano G. R. Gutz, and Claudimir L. do Lago
Instructions and use of a homemade glass electrode for pH measurements/titrations.
Da Rocha, Rogerio T.; Gutz, Ivano G. R.; do Lago, Claudimir L. J. Chem. Educ. 1995, 72, 1135.
Laboratory Equipment / Apparatus |
Electrochemistry |
Titration / Volumetric Analysis |
Ion Selective Electrodes |
Aqueous Solution Chemistry |
Acids / Bases |
Laboratory Management |
pH
Photosynthesis: Why Does It Occur?  J. J. MacDonald
Explanation of why photosynthesis occurs; stating that it is merely the reverse of respiration is misleading.
MacDonald, J. J. J. Chem. Educ. 1995, 72, 1113.
Plant Chemistry |
Reactions |
Thermodynamics |
Photochemistry |
Electrochemistry
What Does It Mean?: Reflections on Concentration, Activity, and Electrode Potential  Pietro Lanza
Explanation of electrode potential and the mechanism of the electrode process for determining concentration.
Lanza, Pietro. J. Chem. Educ. 1995, 72, 1009.
Solutions / Solvents |
Aqueous Solution Chemistry |
Atomic Properties / Structure |
Ion Selective Electrodes |
Electrochemistry
Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Course   Susan M. Temme
Using differential scanning calorimetry (DSC) in AP chemistry.
Temme, Susan M. J. Chem. Educ. 1995, 72, 916.
Calorimetry / Thermochemistry |
Calorimetry / Thermochemistry |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Thermal Analysis |
Thermodynamics
Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes  Anil C. Banerjee
Discussion of the conceptual difficulties experienced by undergraduates when dealing with equilibrium and thermodynamics, along with teaching strategies for dealing with these difficulties.
Banerjee, Anil C. J. Chem. Educ. 1995, 72, 879.
Equilibrium |
Thermodynamics
Osmotic Pressure and Electrochemical Potential--A Parallel   Rainer Bausch
Comparison of osmotic pressure and electrochemical potential.
Bausch, Rainer. J. Chem. Educ. 1995, 72, 713.
Electrochemistry |
Solutions / Solvents |
Membranes |
Transport Properties
Resistance Measurement as a Tool for Corrosion Studies  Singh, N. P.; Gupta, S. C.; Sood, B. R.
Procedure for determining the rate of corrosion by measuring changes in the resistance of a thin wire or strip of metal; sample data and analysis included.
Singh, N. P.; Gupta, S. C.; Sood, B. R. J. Chem. Educ. 1995, 72, 465.
Oxidation / Reduction |
Metals |
Rate Law |
Reactions |
Electrochemistry
The "Golden Penny" Demonstration: An Explanation of the Old Experiment and the Rational Design of the New and Simpler Demonstration.  Szczepankiewicz, Steven H.; Bieron, Joseph F.; Kozik, Mariusz
An explanation and simpler/safer design for the classical "gold penny" demonstration.
Szczepankiewicz, Steven H.; Bieron, Joseph F.; Kozik, Mariusz J. Chem. Educ. 1995, 72, 386.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Kinetics in Thermodynamic Clothing: Fun with Cooling Curves: A First-Year Undergraduate Chemistry Experiment  Casadonte, Dominick J., Jr.
A series of experiments examining the phenomenon of cooling by producing part of the cooling curve for water at different initial temperatures, focussing on the fact that the curve is nonlinear (unlike the information presented in many texts).
Casadonte, Dominick J., Jr. J. Chem. Educ. 1995, 72, 346.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Kinetics
An Easily Constructed Salicylate-Ion-Selective Electrode for Use in the Instructional Laboratory  Creager, Stephen E.; Lawrence, Kyle D.; Tibbets, Craig R.
Construction and use of a salicylate-ion-selective electrode; includes a calibration curve.
Creager, Stephen E.; Lawrence, Kyle D.; Tibbets, Craig R. J. Chem. Educ. 1995, 72, 274.
Laboratory Equipment / Apparatus |
Atomic Properties / Structure |
Aqueous Solution Chemistry |
Electrochemistry |
Ion Selective Electrodes
REACT: Exploring Practical Thermodynamic and Equilibrium Calculations  Ramette, Richard W.
Description of REACT software to balance complicated equations; determine thermodynamic data for all reactants and products; calculate changes in free energy, enthalpy, and entropy for a reaction; and find equilibrium conditions for the a reaction.
Ramette, Richard W. J. Chem. Educ. 1995, 72, 240.
Stoichiometry |
Equilibrium |
Thermodynamics |
Chemometrics
Use of Electrochemical Concentration Cells to Demonstrate the Dimeric Nature of Mercury(I) in Aqueous Media  Bhattacharya, Deepta; Peters, Dennis G.
Experimental procedure for demonstrating that divalent mercury is monovalent in aqueous solution; includes data and analysis.
Bhattacharya, Deepta; Peters, Dennis G. J. Chem. Educ. 1995, 72, 64.
Atomic Properties / Structure |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Solution-Phase Thermodynamics: A "Spontaneity" Activity  Bindel, Thomas H.
Experimental procedure for verifying the concept of spontaneity using solution chemistry; includes data and analysis.
Bindel, Thomas H. J. Chem. Educ. 1995, 72, 34.
Aqueous Solution Chemistry |
Thermodynamics
An Electrochemistry Experiment: Hydrogen Evolution Reaction on Different Electrodes   Marin, D.; Medicuti, F.; Teijeiro, C.
This paper presents a simple laboratory experiment designed to acquaint the student with overvoltage in the hydrogen evolution reaction.
Marin, D.; Medicuti, F.; Teijeiro, C. J. Chem. Educ. 1994, 71, A277.
Electrochemistry |
Ion Selective Electrodes
Determination of Ionic Mobilities by Thin-Layer Electrodeposition   Kuhn, Alexander; Argoul, Francoise
The authors describe a new method for the determination of ionic mobilities. An advantage of the measurement described is that it allows its demonstration within the framework of the student's practical training in ionic conductivity.
Kuhn, Alexander; Argoul, Francoise J. Chem. Educ. 1994, 71, A273.
Electrochemistry |
Ion Selective Electrodes |
Metals
Probing Student Misconceptions in Thermodynamics with In-Class Writing  Beall, Herbert
Examples of the use of in-class writing assignments in the teaching of thermodynamics in general chemistry are presented.
Beall, Herbert J. Chem. Educ. 1994, 71, 1056.
Thermodynamics
Rubber Elasticity: A Simple Method for Measurement of Thermodynamic Properties  Byrne, John P.
A modified triple-beam balance that uses an optical lever to detect small changes in the length of a stretched rubber band.
Byrne, John P. J. Chem. Educ. 1994, 71, 531.
Thermodynamics |
Laboratory Equipment / Apparatus |
Physical Properties
Using the Biological Cell in Teaching Electrochemistry  Merkel, Eva Gankiewicz
How electricity is produced in a simple cell is correlated with how commercial batteries work; this concept can then be related to how living cells send electrical impulses.
Merkel, Eva Gankiewicz J. Chem. Educ. 1994, 71, 240.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Equilibrium
Photon-initiated hydrogen-chlorine reaction: A student experiment at the microscale level   Egolf, Leanne M.; Keiser, Joseph T.
This lab offers a way to integrate the principles of thermodynamics and kinetics as well as other valuable instrumental methods.
Egolf, Leanne M.; Keiser, Joseph T. J. Chem. Educ. 1993, 70, A208.
Covalent Bonding |
Ionic Bonding |
Electrochemistry |
Free Radicals |
Microscale Lab |
Thermodynamics |
Kinetics
A high school adventure  Cullen, Schuyler; Pardini, Aaron; Vang, Yeng; Wasinger, Erik; Ball, Jenelle; Cooke, Ron; Willis, Grover
Prompted by their students discovery an error in a popular lab activity, these authors encourage readers of the Journal to think about the meaning and importance of inquiry in science education.
Cullen, Schuyler; Pardini, Aaron; Vang, Yeng; Wasinger, Erik; Ball, Jenelle; Cooke, Ron; Willis, Grover J. Chem. Educ. 1993, 70, 823.
Electrochemistry
The electrician's multimeter in the chemistry teaching laboratory: Part 2: Potentiometry and conductimetry  Sevilla, Fortunato, III; Alfonso, Rafael L.; Andres, Roberto T.
Further applications of the multimeter in chemistry laboratories are discussed in this paper: potentiometry, reduction potentials and cell EMF, the Nerst equations, pH measurements, titration, conductimetry, and conduction of solutions.
Sevilla, Fortunato, III; Alfonso, Rafael L.; Andres, Roberto T. J. Chem. Educ. 1993, 70, 580.
Acids / Bases |
Solutions / Solvents |
Titration / Volumetric Analysis |
Electrochemistry |
Laboratory Equipment / Apparatus |
Potentiometry
Electronegativity and bond type: I. Tripartate separation  Sproul, Gordon D.
As a unifying concept of bonding, electronegativity has been widely applied but gets only a limited treatment in most general chemistry texts.
Sproul, Gordon D. J. Chem. Educ. 1993, 70, 531.
Ionic Bonding |
Covalent Bonding |
Electrochemistry
The aluminum can as electrochemical energy source  Lehman, Thomas A.; Renich, Paul; Schmidt, Norman E.
A high-current electrochemical cell made from aluminum cans and scraps of copper wire that illustrates important electrochemical principles.
Lehman, Thomas A.; Renich, Paul; Schmidt, Norman E. J. Chem. Educ. 1993, 70, 495.
Electrochemistry
Heat and Work are Not "Forms of Energy"   Peckham, Gavin D.; McNaught, Ian J.
Heat and work are processes by which the internal energy of a system is changed. The title reflects a common misconception used by students and instructors.
Peckham, Gavin D.; McNaught, Ian J. J. Chem. Educ. 1993, 70, 103.
Thermodynamics |
Enrichment / Review Materials
Intensive and extensive: Underused concepts  Canagaratna, Sebastian G.
Methods for teaching intensive and extensive properties.
Canagaratna, Sebastian G. J. Chem. Educ. 1992, 69, 957.
Physical Properties |
Thermodynamics
Fractal structures for the overhead projector   Silverman, L. Phillip
One of the most interesting electrochemistry demonstrations is the production of dendritic silver fractals via electrodeposition onto water. The demonstration can be adapted easily for use on an overhead projector.
Silverman, L. Phillip J. Chem. Educ. 1992, 69, 928.
Electrochemistry
Putting some snap into work.  Mitschele, Jonathan.
Suggestions for improving the instructional value of the demonstration presented.
Mitschele, Jonathan. J. Chem. Educ. 1992, 69, 687.
Thermodynamics
Electricity/electronic experiments for the chemistry laboratory.  Braun, Robert D.
Experiments that permit students to observe the behavior of simple electrical circuits, including a DC constant current source, voltage divider, diodes, logic gates, flip-flops, and the seven-segment display.
Braun, Robert D. J. Chem. Educ. 1992, 69, 671.
Electrochemistry |
Instrumental Methods
The thermodynamics of home-made ice cream.  Gibbon, Donald L.; Kennedy, Keith; Reading, Nathan; Quieroz, Mardsen.
Using the production of ice cream to teach heat capacity, viscosity, and freezing-point reduction.
Gibbon, Donald L.; Kennedy, Keith; Reading, Nathan; Quieroz, Mardsen. J. Chem. Educ. 1992, 69, 658.
Thermodynamics |
Water / Water Chemistry |
Applications of Chemistry
Applications of Maxwell-Boltzmann distribution diagrams.  Peckham, Gavin D.; McNaught, Ian J.
Although Maxwell-Boltzmann distribution diagrams are intuitively appealing, care must be taken to avoid several common errors and misconceptions.
Peckham, Gavin D.; McNaught, Ian J. J. Chem. Educ. 1992, 69, 554.
Thermodynamics |
Rate Law |
Catalysis
Boiling and freezing simultaneously - with a feeble vacuum pump!   Ellison, Mike
The author uses this demonstration of freezing and boiling at reduced pressure to reinforce concepts about energy effects in phase changes.
Ellison, Mike J. Chem. Educ. 1992, 69, 325.
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Thermodynamics
The world's largest human salt bridge  Silverman, L. Phillip; Bunn, Barbara B.
On a beautiful April afternoon, the 1500 students had fun and learned something about electrochemistry, and they helped set a world's record for the "Longest Human Salt Bridge".
Silverman, L. Phillip; Bunn, Barbara B. J. Chem. Educ. 1992, 69, 309.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The use of equilibrium notation in listings of standard potentials.  Donkersloot, Maarten C. A.
The difficulty in equilibrium notation of standard electrode potentials is due to the convention that half-reactions must be written as reductions if the given potential is to be called a (standard) electrode potential.
Donkersloot, Maarten C. A. J. Chem. Educ. 1992, 69, 256.
Equilibrium |
Electrochemistry
A lemon-powered clock   Letcher, Trevor M.; Sonemann, Aubrey W.
Because a watch or crystal-quartz clock use very small batteries they can be powered with a number of "homemade" power sources.
Letcher, Trevor M.; Sonemann, Aubrey W. J. Chem. Educ. 1992, 69, 157.
Electrochemistry |
Food Science
The conversion of chemical energy: Part 1. Technological examples  Wink, Donald J.
When a chemical reaction occurs, the energy of the chemical species may change and energy can be released or absorbed from the surroundings. This can involve the exchange of chemical energy with another kind of energy or with another chemical system.
Wink, Donald J. J. Chem. Educ. 1992, 69, 108.
Reactions |
Thermodynamics |
Electrochemistry |
Photosynthesis
Electrochemical measurements in general chemistry lab using a student-constructed Ag-AgCl reference electrode  Ahn, M. K.; Reuland, D. J.; Chadd, K. D.
This paper describes a simple method of making a reproducible and durable reference electrode for use by freshmen chemistry students.
Ahn, M. K.; Reuland, D. J.; Chadd, K. D. J. Chem. Educ. 1992, 69, 74.
Electrochemistry |
Laboratory Equipment / Apparatus
Studying odd-even effects and solubility behavior using alpha, omega-dicarboxylic acids  Burrows, Hugh D.
Odd-even effect provides a satisfying way of introducing students to a large area of chemistry that encompasses both classical thermodynamics and applied aspects.
Burrows, Hugh D. J. Chem. Educ. 1992, 69, 69.
Precipitation / Solubility |
Physical Properties |
Thermodynamics
Half cell reactions: Do students ever see them?   Ciparick, Joseph D.
This demonstration shows more clearly that there are two real half reactions.
Ciparick, Joseph D. J. Chem. Educ. 1991, 68, 247.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Chemical equilibrium: I. The thermodynamic equilibrium constant  Gordus, Adon A.
This is the first article in a series of eight that investigates the various assumptions that result in the simplified equilibrium equations found in most introductory texts. In this first article, the author considers the general nature of the constant K, Le Chatelier's principle, and the effect of the temperature on K.
Gordus, Adon A. J. Chem. Educ. 1991, 68, 138.
Thermodynamics |
Equilibrium
Reactivity of nickel  Birk, James P.; Ronan, Martha; Bennett, Imogene; Kinney, Cheri
A series of experiments which lead to observations about the reactivity of nickel. [Debut]
Birk, James P.; Ronan, Martha; Bennett, Imogene; Kinney, Cheri J. Chem. Educ. 1991, 68, 48.
Reactions |
Quantitative Analysis |
Coordination Compounds |
Oxidation State |
Electrochemistry
Electrochemical conventions: Responses to a provocative opinion (6)  Martin-Sanchez, M.; Martin-Sanchez, MaT
The solution may be to use the etymological meaning of anode and cathode.
Martin-Sanchez, M.; Martin-Sanchez, MaT J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (5)  Sweeting, Linda M.
The chemical potential of the electrons, not their "richness" determines direction of flow.
Sweeting, Linda M. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (4)  Fochi, Giovanni
It is sufficient to show what part of the circuit is the electric generator.
Fochi, Giovanni J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (3)  Woolf, A. A.
There are no shortcuts in teaching the electrochemistry of galvanic cells; the process in each cell must be treated holistically.
Woolf, A. A. J. Chem. Educ. 1990, 67, 992.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Electrochemical conventions: Responses to a provocative opinion (2)  Castellan, Gilbert W.
The difficulty is not so much confusion over conventions as the actual wrong use of terminology.
Castellan, Gilbert W. J. Chem. Educ. 1990, 67, 991.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Experiments with "Calo-pH Meter"   Paris, Michel R.; Aymes, Daniel J.

Paris, Michel R.; Aymes, Daniel J. J. Chem. Educ. 1990, 67, 510.
Laboratory Equipment / Apparatus |
Thermodynamics |
Calorimetry / Thermochemistry
Development of a new design for multipurpose meter: "Calo-pH Meter"   Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland
The purpose of this article is to describe the design of a common box that can be turned into a simple voltmeter, a pH meter, or a calorimeter.
Paris, Michel R.; Aymes, Daniel J.; Poupon, Rene; Gavasso, Roland J. Chem. Educ. 1990, 67, 507.
Laboratory Equipment / Apparatus |
Electrochemistry |
pH |
Calorimetry / Thermochemistry
Redox reactions and the electropotential axis   Vella, Alfred J.
An introductory discussion should not get bogged down with the problems of representing cells by standard cell diagrams and notations and instead should concentrate on the chemistry of galvanic cells and the use of these cells in describing the concepts of redox chemistry.
Vella, Alfred J. J. Chem. Educ. 1990, 67, 479.
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials |
Electrochemistry
An effective approach to teaching electrochemistry  Birss, Viola I.; Truax, D. Rodney
By interweaving concepts from thermodynamics and chemical kinetics with those of electrochemical measurement, the authors provide students with an enriched appreciation of the utility of ideas from kinetics and thermodynamics.
Birss, Viola I.; Truax, D. Rodney J. Chem. Educ. 1990, 67, 403.
Electrochemistry |
Kinetics |
Thermodynamics
Construction and evaluation of an inexpensive reference electrode with internal electrolyte in agar matrix  Victoria, Leandro; Ortega, M. Gloria; Ibanez, Jose A.
In this paper the authors show how to construct a reference electrode of Ag/AgCl with an internal electrolyte in agar matrix.
Victoria, Leandro; Ortega, M. Gloria; Ibanez, Jose A. J. Chem. Educ. 1990, 67, 179.
Electrolytic / Galvanic Cells / Potentials |
Electrochemistry |
Laboratory Equipment / Apparatus
The human salt bridge   Scharlin, Pirketta; Battino, Rubin
In this paper the authors describe a simple device designed for use on an overhead projector to illustrate the "human salt bridge".
Scharlin, Pirketta; Battino, Rubin J. Chem. Educ. 1990, 67, 156.
Electrochemistry
Calculating entropy changes at different extents of reaction  Brosnan, Tim
The Revised Nuffield Chemistry course uses a simple statistical approach to entropy a a unifying idea in its treatment of thermodynamics. It was for these students that the author developed this method of calculating entropy changes at different extents of reaction which are listed here.
Brosnan, Tim J. Chem. Educ. 1990, 67, 48.
Thermodynamics
Alleviating the common confusion caused by polarity in electrochemistry  Moran, P. J.; Gileadi, E.
The issue of polarity encountered in electrochemistry and relevant to a variety of electrochemical concepts often confuses students and is an unnecessary deterrent to the study of electrochemistry.
Moran, P. J.; Gileadi, E. J. Chem. Educ. 1989, 66, 912.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Electrochemistry of the zinc-silver oxide system. Part 2. Practical measurements of energy conversion using commercial miniature cells  Smith, Michael J.; Vincent, Colin A.
Experiments in which "button cells" are discharged and charged under controlled conditions so that practical energy conversions and a number of other parameters may be studied.
Smith, Michael J.; Vincent, Colin A. J. Chem. Educ. 1989, 66, 683.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
A versatile compact reference electrode  Kusuda, Kousuke
Construction of a compact saturated calomel electrode.
Kusuda, Kousuke J. Chem. Educ. 1989, 66, 531.
Laboratory Equipment / Apparatus |
Electrochemistry
Using a projecting voltmeter to introduce voltaic cells  Solomon, Sally; Lee, Jeffrey; Schnable, Joseph; Wirtel, Anthony
Using a transparent "projecting" voltmeter and assembling a zinc versus copper cell one component at a time allows students to develop a more concrete notion of the nature of a voltaic cell and the potential it produces.
Solomon, Sally; Lee, Jeffrey; Schnable, Joseph; Wirtel, Anthony J. Chem. Educ. 1989, 66, 510.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Transformation of old two-electrode polarographs into three-electrode systems  Papadopoulos, N.; Linardis, P.
In this work a simple circuit is proposed that can transform a two-electrode polarograph into a three-electrode system.
Papadopoulos, N.; Linardis, P. J. Chem. Educ. 1989, 66, 419.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Laboratory Equipment / Apparatus
A simple explanation of the salt water oscillator  Noyes, Richard M.
Yoshikawa et al. have described a simple device that undergoes repeated oscillations and that can also illustrate some of the principles essential to the oscillators driven by chemical reactions.
Noyes, Richard M. J. Chem. Educ. 1989, 66, 207.
Laboratory Equipment / Apparatus |
Thermodynamics |
Equilibrium
Amusement with a salt-water oscillator  Yoshikawa, Kenichi; Nakata, Satoshi; Yamanaka, Masahiro; Waki, Takeshi
Rhythmic oscillations of water flow are generated when a vertically oriented hypodermic syringe, with the plunger removed, is filled with salt water and partially submerged in a beaker of pure water.
Yoshikawa, Kenichi; Nakata, Satoshi; Yamanaka, Masahiro; Waki, Takeshi J. Chem. Educ. 1989, 66, 205.
Thermodynamics |
Equilibrium |
Laboratory Equipment / Apparatus
The interconversion of electrical and chemical energy: The electrolysis of water and the hydrogen-oxygen fuel cell  Roffia, Sergio; Concialini, Vittorio; Paradisi, Carmen
Presentation of a simple apparatus that allows an instructor to perform the electrolysis of water and the back conversion of the products to water while overcoming some typical drawbacks encountered in this process.
Roffia, Sergio; Concialini, Vittorio; Paradisi, Carmen J. Chem. Educ. 1988, 65, 725.
Water / Water Chemistry |
Electrochemistry
Soap bubbles and precipitate membranes: Two historical semipermeability experiments adapted for teaching purposes  Nicolini, Nicoletta; Pentella, Antonio
These demonstrations are based on the historical experiments that established our understanding of semipermeability and osmosis.
Nicolini, Nicoletta; Pentella, Antonio J. Chem. Educ. 1988, 65, 614.
Gases |
Surface Science |
Transport Properties |
Electrochemistry
Acid pickling with amines: an experiment in applied chemistry for high school or freshman chemistry   Spears, Steven G.; Spears, Larry G.; Spears, Joycelyn C.
A brief description of the removal of corrosion products and millscale from the surface of ferrous metals by acid pickling.
Spears, Steven G.; Spears, Larry G.; Spears, Joycelyn C. J. Chem. Educ. 1988, 65, 457.
Oxidation / Reduction |
Acids / Bases |
Amines / Ammonium Compounds |
Electrochemistry
Electrochemical cells using sodium silicate   Rapp, Bernard, FSC
A procedure of assembly and execution of a demonstration of an electrochemical cell using sodium silicate.
Rapp, Bernard, FSC J. Chem. Educ. 1988, 65, 358.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The interconversion of electrical and chemical energy: The electrolysis of water and the hydrogen oxygen fuel cell  Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen
The authors discuss some common drawbacks to typical electrolysis demonstrations and present an apparatus that overcomes these drawbacks.
Roffia, Sergio; Conciallini, Vittorio; Paradisi, Carmen J. Chem. Educ. 1988, 65, 272.
Laboratory Equipment / Apparatus |
Stoichiometry |
Electrochemistry
Thermodynamics should be built on energy-not on heat and work  Barrow, Gordon M.
This author looks closely at the concepts of heat, work, energy, and the laws of thermodynamics to back up his title argument.
Barrow, Gordon M. J. Chem. Educ. 1988, 65, 122.
Thermodynamics
Principles of electronegativity Part I. General nature  Sanderson, R. T.
The concept of electronegativity has been modified, expanded, and debated. The concept can be used to help students gain valuable insights and understanding of the cause-and-effect relationship between atomic structure and compound properties. This is the first in a series of articles that explores the important concept of electronegativity.
Sanderson, R. T. J. Chem. Educ. 1988, 65, 112.
Electrochemistry |
Periodicity / Periodic Table |
Noncovalent Interactions |
Atomic Properties / Structure |
Physical Properties |
Enrichment / Review Materials
Electrochemistry demonstrations with an overhead projector  Ward, Charles R.; Greenbowe, Thomas J.
A template designed to fit on the surface of an overhead projector and demonstrate electrochemical phenomena.
Ward, Charles R.; Greenbowe, Thomas J. J. Chem. Educ. 1987, 64, 1021.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Converting sunlight to mechanical energy: A polymer example of entropy  Mathias, Lon J.
Demonstrating entropy using an elastomer and a virtual foolproof "light engine".
Mathias, Lon J. J. Chem. Educ. 1987, 64, 889.
Thermodynamics
Outmoded terminology: The normal hydrogen electrode  Ramette, R. W.
As educators, we should not confuse the "normal hydrogen electrode" with the "standard hydrogen electrode".
Ramette, R. W. J. Chem. Educ. 1987, 64, 885.
Electrochemistry |
Nomenclature / Units / Symbols
The entropy of dissolution of urea  Pickering, Miles
This experiment combines colorimetric techniques, thermochemical techniques, some volumetric work, and actual measurements of entropy.
Pickering, Miles J. Chem. Educ. 1987, 64, 723.
Thermodynamics
Safe and reliable electrode storage  Williams, Howard P.
A container that prevents evaporation and keeps electrodes ready for use.
Williams, Howard P. J. Chem. Educ. 1987, 64, 556.
Laboratory Equipment / Apparatus |
Laboratory Management |
Electrochemistry |
Ion Selective Electrodes
Enthalpy and Hot Wheels: An analogy  Bonneau, Marcia C.
Demonstrating the relationship between activation energy and the heat of a reaction using a "Hot Wheels" track and car to simulate a potential energy diagram.
Bonneau, Marcia C. J. Chem. Educ. 1987, 64, 486.
Kinetics |
Calorimetry / Thermochemistry |
Thermodynamics
Using NASA and the space program to help high school and college students learn chemistry. Part II. The current state of chemistry in the space program  Kelter, Paul B.; Snyder, William E.; Buchar, Constance S.
Examples and classroom applications in the areas of spectroscopy, materials processing, and electrochemistry.
Kelter, Paul B.; Snyder, William E.; Buchar, Constance S. J. Chem. Educ. 1987, 64, 228.
Astrochemistry |
Spectroscopy |
Materials Science |
Electrochemistry |
Crystals / Crystallography
Thermodynamics and the bounce  Carraher, Charles E., Jr.
Explaining the bouncing of a rubber ball using the laws of thermodynamics.
Carraher, Charles E., Jr. J. Chem. Educ. 1987, 64, 43.
Thermodynamics
Thermodynamics and reactions in the dry way  Tykodi, Ralph J.
In dealing with reactions in the dry way, we can actually "see" in detail the workings of the thermodynamic machinery responsible for moving the reaction in the spontaneous direction. This note presents ideas at the general chemistry level.
Tykodi, Ralph J. J. Chem. Educ. 1986, 63, 107.
Thermodynamics |
Oxidation / Reduction
Goals in teaching electrochemistry  Maloy, J. T.
Important concepts regarding the subject of electrochemistry.
Maloy, J. T. J. Chem. Educ. 1985, 62, 1018.
Electrochemistry
Energy interconversions in photosynthesis  Bering, Charles L.
Reviews the energetics of the light reactions of photosynthesis.
Bering, Charles L. J. Chem. Educ. 1985, 62, 659.
Photosynthesis |
Photochemistry |
Thermodynamics |
Bioenergetics
Estimating the one electron reduction potential for vanadium (V) by chemical techniques: An experiment for general chemistry  Wentworth, R. A. D.
Procedure requires no electrochemical equipment because the method depends solely upon observations of the spontaneity of the reactions of V(V) with a series of potential reducing agents and V(IV) with a series of potential oxidizing agents.
Wentworth, R. A. D. J. Chem. Educ. 1985, 62, 440.
Oxidation State |
Oxidation / Reduction |
Electrochemistry
Constant properties of systems: A rationale for the inclusion of thermodynamics in a high school chemistry course  Schultz, Ethel L.
Using the zinc / copper system to illustrate how the thermodynamic functions can be introduced gradually and naturally into a course of study.
Schultz, Ethel L. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
Should thermodynamics be X-rated?  Bent, Henry A.
The benefits and detractions of teaching thermodynamics in high school and introductory college courses.
Bent, Henry A. J. Chem. Educ. 1985, 62, 228.
Thermodynamics
A gas kinetic explanation of simple thermodynamic processes  Waite, Boyd A.
Proposes a simplified, semi-quantitative description of heat, work, and internal energy from the viewpoint of gas kinetic theory; both heat and work should not be considered as forms of energy but rather as different mechanisms by which internal energy is transferred from system to surroundings.
Waite, Boyd A. J. Chem. Educ. 1985, 62, 224.
Gases |
Kinetic-Molecular Theory |
Thermodynamics
An inexpensive, very high impedance digital voltmeter for selective electrodes  Caceci, Marco S.
Design and construction of an instrument that exceeds in accuracy and input impedance most expensive commercial pH meters and potentiometers.
Caceci, Marco S. J. Chem. Educ. 1984, 61, 935.
Laboratory Equipment / Apparatus |
Electrochemistry |
pH
Further reflections on heat  Hornack, Frederick M.
Confusion regarding the nature of heat and thermodynamics.
Hornack, Frederick M. J. Chem. Educ. 1984, 61, 869.
Kinetic-Molecular Theory |
Thermodynamics |
Calorimetry / Thermochemistry
Thermodynamic changes, kinetics, equilibrium, and LeChatelier's principle  Hansen, Robert C.
A series of demonstrations in which water in beakers and the flow of water between beakers is used to represent the components of an exothermic chemical reaction and the flow and quantity of thermal energy involved in chemical changes.
Hansen, Robert C. J. Chem. Educ. 1984, 61, 804.
Equilibrium |
Kinetics |
Thermodynamics
Photoelectrochemical solar cells  McDevitt, John T.
An introduction to photoelectrochemical cells and topics pertaining to solar energy conversion.
McDevitt, John T. J. Chem. Educ. 1984, 61, 217.
Photochemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Semiconductors |
Applications of Chemistry
Error in the minimum free energy curve  Willis, Grover; Ball, David
Correction to the minimum free energy curve shown in some general chemistry texts.
Willis, Grover; Ball, David J. Chem. Educ. 1984, 61, 173.
Thermodynamics
Metal-ligand complexes-a calculation challenge  Ramette, R. W.
The purpose of this paper is to illustrate one of the most important experimental methods for studying complex equilibria and to present synthetic data as a challenge to the many sophisticated calculation procedure that enjoy various degrees of loyalty around the world.
Ramette, R. W. J. Chem. Educ. 1983, 60, 946.
Equilibrium |
Metals |
Electrochemistry |
Oxidation / Reduction |
Coordination Compounds
THERMPRO - A thermodynamics program   Joshi, Bhairav D.
44. Bits and pieces, 16. THERMPRO is an interactive screen-oriented computer program written in BASICA for an IBM-PC with a graphics capability. It represents a general method of calculating standard thermodynamic properties of chemical reactions from heat capacity data for reactants and products.
Joshi, Bhairav D. J. Chem. Educ. 1983, 60, 733.
Thermodynamics
Understanding electrochemistry: Some distinctive concepts  Faulkner, Larry R.
This article addresses a few basic ideas about electrochemical systems that cause confusion among novice students. From State-of-the-Art Symposium: Electrochemistry, ACS meeting, Kansas City, 1982.
Faulkner, Larry R. J. Chem. Educ. 1983, 60, 262.
Electrochemistry
Electrochemistry in the general chemistry curriculum  Chambers, James Q.
Students in introductory chemistry courses at large universities do not develop sufficient understanding of electrochemical phenomenon. From State-of-the-Art Symposium: Electrochemistry, ACS meeting, Kansas City, 1982.
Chambers, James Q. J. Chem. Educ. 1983, 60, 259.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Solar energy experiment for beginning chemistry  Davis, Clyde E.
This article introduces an experiment that incorporates chemical applications of solar energy into the curriculum.
Davis, Clyde E. J. Chem. Educ. 1983, 60, 158.
Thermodynamics |
Applications of Chemistry
Reduction potentials and hydrogen overvoltage: An overhead projector demonstration  Ramette, Richard W.
Relates the scale of standard reduction potentials to the observed behavior of metals in their reactions with hydrogen ion to produce hydrogen gas.
Ramette, Richard W. J. Chem. Educ. 1982, 59, 866.
Electrochemistry |
Metals |
Oxidation / Reduction
Potential uses for broken or worn-out glass or combination electrodes  Boring, Wayne C.; Winchell, Deborah L.
When a glass or combination electrode is no longer useful for pH measurements, it can be used in at least two ways.
Boring, Wayne C.; Winchell, Deborah L. J. Chem. Educ. 1982, 59, 425.
Laboratory Equipment / Apparatus |
Laboratory Management |
Electrochemistry
Calculation of statistical thermodynamic properties  Vicharelli, P. A.; Collins, C. B.
25. Bits and pieces, 9. A computer program for the calculation of specific heat, entropy, enthalpy, and Gibbs free energy of polyatomic molecules.
Vicharelli, P. A.; Collins, C. B. J. Chem. Educ. 1982, 59, 131.
Calorimetry / Thermochemistry |
Thermodynamics |
Chemometrics
Red cabbage and the electrolysis of water  Skinner, James F.
The demonstration profiled here has proven effective in bringing together concepts from acid-base chemistry and electrochemistry.
Skinner, James F. J. Chem. Educ. 1981, 58, 1017.
Electrochemistry |
Water / Water Chemistry |
Acids / Bases
Red cabbage and the electrolysis of water  Skinner, James F.
The demonstration profiled here has proven effective in bringing together concepts from acid-base chemistry and electrochemistry.
Skinner, James F. J. Chem. Educ. 1981, 58, 1017.
Electrochemistry |
Water / Water Chemistry |
Acids / Bases
Theory and practical use of an hydrogen electrode in aqueous-organic media  Letellier, P.; Millot, F.; Baffier, N.; Combes, R.
These authors make a case for a greater use of hydrogen electrodes for acidity measurements in student laboratory courses.
Letellier, P.; Millot, F.; Baffier, N.; Combes, R. J. Chem. Educ. 1981, 58, 576.
Acids / Bases |
Electrochemistry |
Oxidation / Reduction
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Maxwell's demon  Schmuckler, Joseph S.

Schmuckler, Joseph S. J. Chem. Educ. 1981, 58, 183.
Reactions |
Thermodynamics |
Precipitation / Solubility |
Calorimetry / Thermochemistry |
Kinetics |
Rate Law
Electrical energy from cells - A corridor demonstration  Gilbert, George L.
A display that demonstrates the charge and discharge of a solar cell, fuel cell, and storage cell.
Gilbert, George L. J. Chem. Educ. 1980, 57, 216.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Paradigms and paradoxes  Campbell, J. A.
Examines the commonly held tenets "systems tend to a minimum potential energy," "the entropy of a shuffled deck of cards is greater than that of a new deck," and "energy is the ability to do work."
Campbell, J. A. J. Chem. Educ. 1980, 57, 41.
Thermodynamics
Corrosion: A Waste of energy  J. Chem. Educ. Staff
Thermodynamics and electrochemical aspects of corrosion, and inhibition of the corrosion process.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 673.
Oxidation / Reduction |
Applications of Chemistry |
Metals |
Thermodynamics |
Electrochemistry
Why thermodynamics should not be taught to freshmen, or who owns the problem?  Battino, Rubin
Thermodynamics should not be taught to freshmen - there are better things to do with the time.
Battino, Rubin J. Chem. Educ. 1979, 56, 520.
Thermodynamics
What thermodynamics should be taught to freshmen, or what is the goal?  Campbell, J. A.
The great majority of students in first-year college courses must try to work problems involving changes in enthalpy, entropy, and Gibbs Free Energy.
Campbell, J. A. J. Chem. Educ. 1979, 56, 520.
Thermodynamics
Compact Compacts  Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F.
A collection of three suggestions regarding demonstrating the oxidation of hydrocarbons and the primary, secondary, and tertiary structure of proteins and the first law of thermodynamics as applied to air conditioning.
Huebner, Jay S.; Shiflett, R. B.; Blanck, Harvey F. J. Chem. Educ. 1979, 56, 389.
Oxidation / Reduction |
Alkanes / Cycloalkanes |
Molecular Properties / Structure |
Proteins / Peptides |
Thermodynamics
An apparent contradiction in the application of the principle of Le Chtelier  Mellon, E. K.
Unless some care is exercised, the application of free energy concepts in situations where marked temperature changes occur can lead to apparent contradictions like the one described in this paper.
Mellon, E. K. J. Chem. Educ. 1979, 56, 380.
Equilibrium |
Thermodynamics
The electrophoresis of indicators: An analogy to isoenzyme separation  Daugherty, N. A.; Lavallee, D. K.
A lecture demonstration that illustrates the principles involved in the separation of isoenzymes but avoids the problems inherent in isoenzyme separations.
Daugherty, N. A.; Lavallee, D. K. J. Chem. Educ. 1979, 56, 353.
Electrochemistry |
Electrophoresis |
Dyes / Pigments |
Enzymes |
Separation Science
Thermodynamics and solubilities of salts of dipositive ions  Riley, Gary F.; Eberhardt, William H.
Used to illustrate the application of the principle that a decrease in free energy is a criterion for the spontaneity of a chemical reaction.
Riley, Gary F.; Eberhardt, William H. J. Chem. Educ. 1979, 56, 206.
Thermodynamics |
Precipitation / Solubility |
Physical Properties |
Reactions
I. How much work can a person do?  Bent, Henry A.
This article relates concepts of work and energy by walking through a calculation of how much work is produced during exercise. [Debut]
Bent, Henry A. J. Chem. Educ. 1978, 55, 456.
Thermodynamics |
Biophysical Chemistry
Hammond's postulate and the slinky  Macomber, Roger S.
The transition state of a one-step chemical reaction is one of the most fundamental concepts in chemistry. The author shares an in-class analogy that can be used to help students understand this concept better.
Macomber, Roger S. J. Chem. Educ. 1978, 55, 449.
Thermodynamics
General chemistry thermodynamics experiment  Beaulieu, Lynn P., CPT
An experiment is outlined here that provides students with an opportunity to do experimental thermodynamics, and to calculate those thermodynamic values which usually cannot be determined with the simple equipment available in a general chemistry laboratory.
Beaulieu, Lynn P., CPT J. Chem. Educ. 1978, 55, 53.
Thermodynamics
Teaching about "why do chemical reactions occur": Gibbs free energy  Vamvakis, Steven N.; Schmuckler, Joseph S.
Approaching the topic of Gibbs free energy from the student's prior experience in algebra and geometry, it is possible to construct a proof that should enable students to explain the derivation of G = H - TS.
Vamvakis, Steven N.; Schmuckler, Joseph S. J. Chem. Educ. 1977, 54, 757.
Thermodynamics |
Reactions
Lecture table experimental demonstration of entropy  Dole, Malcolm
Apparatus for demonstrating entropy that involves heating a stretched rubber band with hot steam.
Dole, Malcolm J. Chem. Educ. 1977, 54, 754.
Thermodynamics
Electrochemical demonstration: Motor driven by a simple galvanic cell  Skinner, J. F.
A Zn / Zn 2+ Cu 2+ / Cu (Daniel) cell operates a small motor.
Skinner, J. F. J. Chem. Educ. 1977, 54, 619.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry
Lecture demonstration digital multimeter  Myers, Gardiner H.; Dugan, Robert J.
Plans for a Lecture Demonstration Digital Multimeter used to measure and display electric potential, current, temperature, pressure, and pH.
Myers, Gardiner H.; Dugan, Robert J. J. Chem. Educ. 1977, 54, 495.
Laboratory Equipment / Apparatus |
pH |
Electrochemistry
Using oxidation state diagrams to teach thermodynamics and inorganic chemistry  Friedel, A.; Murray, R.
Using oxidation state diagrams is suggested as a means of solving some of the problems associated with the teaching of thermodynamics and inorganic group chemistry.
Friedel, A.; Murray, R. J. Chem. Educ. 1977, 54, 485.
Thermodynamics |
Oxidation State
Free energy surfaces and transition state theory  Cruickshank, F. R.; Hyde, A. J.; Pugh, D.
130/131. Unless free energy diagrams are very precisely labeled and explained they are seriously misleading and often incorporate a major error of principle. [Note: This should be #130 in the series, as shown in the table of contents. But p. 288 shows #131. The error was not caught, so the next one in the series is #132. The present article is both #130 and #131.]
Cruickshank, F. R.; Hyde, A. J.; Pugh, D. J. Chem. Educ. 1977, 54, 288.
Thermodynamics
What the standard state doesn't say about temperature and phase  Carmichael, Halbert
125. The author develops the concept of the "standard state" in a manner that is more robust than typical textbook treatment.
Carmichael, Halbert J. Chem. Educ. 1976, 53, 695.
Thermodynamics |
Phases / Phase Transitions / Diagrams
Freezing ice cream and making caramel topping  Plumb, Robert C.; Olson, John Otto; Bowman, Leo H.
The obscurity of "colligative properties" can be dispelled by this ice cream example.
Plumb, Robert C.; Olson, John Otto; Bowman, Leo H. J. Chem. Educ. 1976, 53, 49.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics |
Applications of Chemistry
Deflection of falling solvents by an electric field  Brindle, I. D.; Tomlinson, R. H.
Using the deflection of a falling liquid by an electrically charged rod to demonstrate the polarity of molecules is misleading at best.
Brindle, I. D.; Tomlinson, R. H. J. Chem. Educ. 1975, 52, 382.
Molecular Properties / Structure |
Electrochemistry
Brief introduction to the three laws of thermodynamics  Stevenson, Kenneth L.
Brief descriptions of the three laws of thermodynamics.
Stevenson, Kenneth L. J. Chem. Educ. 1975, 52, 330.
Thermodynamics
P-Chem crossword puzzle  Snead, Claybourne C.
A physical chemistry crossword puzzle. The answer from p. 174 is reproduced in this PDF.
Snead, Claybourne C. J. Chem. Educ. 1975, 52, 158.
Thermodynamics
A lab to motivate weak students  Loveridge, Glen
A lab activity on the electrolysis of water. [Debut]
Loveridge, Glen J. Chem. Educ. 1975, 52, 102.
Electrochemistry
A lab to motivate weak students  Loveridge, Glen
A lab activity on the electrolysis of water. [Debut]
Loveridge, Glen J. Chem. Educ. 1975, 52, 102.
Electrochemistry
Electrochemistry in organisms. Electron flow and power output  Chirpich, Thomas P.
Electrochemical calculations at an elementary level can be readily applied to living organisms and generate further student interest in electrochemistry.
Chirpich, Thomas P. J. Chem. Educ. 1975, 52, 99.
Electrochemistry |
Bioenergetics
Corrosion  Slabaugh, W. H.
The topic of corrosion extends several basic concepts of electrochemistry with which students can relate. This article outlines: standard electrochemical potentials; corrosion of iron' corrosion of aluminum; application of electrochemical concepts; and ideas for some experiments.
Slabaugh, W. H. J. Chem. Educ. 1974, 51, 218.
Oxidation / Reduction |
Consumer Chemistry |
Electrochemistry
Reference electrodes  Caton, Roy D., Jr.
Examines reference electrodes, including both aqueous and nonaqueous reference electrodes.
Caton, Roy D., Jr. J. Chem. Educ. 1973, 50, A571.
Electrochemistry |
Instrumental Methods
Racing car batteries  Plumb, Robert C.; Combs, R. E.; Connelly, J. M.
Illustrating the Nernst equation and Faraday's laws using the example of the silver-zinc batteries used in racing cars.
Plumb, Robert C.; Combs, R. E.; Connelly, J. M. J. Chem. Educ. 1973, 50, 857.
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Computer-enhanced laboratory experience. An example of a totally integrated approach  Davis, Leslie N.; Coffey, Charles E.; Macero, Daniel J.
A gas law experiment (Boyle's Law) adapted to make use of computer assisted instruction.
Davis, Leslie N.; Coffey, Charles E.; Macero, Daniel J. J. Chem. Educ. 1973, 50, 711.
Gases |
Thermodynamics
Syphon and the potential energy diagrams  Sarbolouki, M. N.
An analogy between the operation of a syphon and potential energy diagrams.
Sarbolouki, M. N. J. Chem. Educ. 1973, 50, 245.
Reactions |
Thermodynamics
Physical chemistry of the drinking duck  Plumb, Robert C.; Wagner, Robert E.
The operation of the drinking bird is easily understood in terms of a few elementary physical chemistry principles.
Plumb, Robert C.; Wagner, Robert E. J. Chem. Educ. 1973, 50, 213.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Equilibrium
Free energies of formation measurements on solid-state electrochemical cells  Rollino, J. A.; Aronson, S.
This experiment demonstrates in a direct fashion the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell.
Rollino, J. A.; Aronson, S. J. Chem. Educ. 1972, 49, 825.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Solid State Chemistry |
Organometallics
Edison's chemical meter  Vanderbilt, Byron M.
Thomas Edison invented the chemical meter to measure the rate at which electricity was being used.
Vanderbilt, Byron M. J. Chem. Educ. 1972, 49, 626.
Applications of Chemistry |
Electrochemistry
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
Durable chrome plating  Plumb, Robert C.; Saur, Roger L.
How chrome plating works to protect bumpers from corrosion.
Plumb, Robert C.; Saur, Roger L. J. Chem. Educ. 1972, 49, 626.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Kinetics
Electrochemical reactions in batteries. Emphasizing the MnO2 cathode of dry cells  Kozawa, Akiya; Powers, R. A.
The purpose of this article is to make a simplified, but current presentation of the electrochemical reactions in batteries, particularly those of the manganese dioxide cathode of dry cells.
Kozawa, Akiya; Powers, R. A. J. Chem. Educ. 1972, 49, 587.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
The presentation of electrode potentials using an energy level diagram  Pinfold, T. A.
The tabular form in which standard electrode potentials are usually presented often leads to confusion that can be diminished by representing the electrochemical series on an energy diagram like that provided.
Pinfold, T. A. J. Chem. Educ. 1972, 49, 506.
Electrochemistry |
Oxidation / Reduction |
Electrolytic / Galvanic Cells / Potentials
Computer evaluation of titrations by Gran's method. An analytical chemistry experiment  MacDonald, Timothy J.; Barker, Barbara J.; Caruso, Joseph A.
A computer program has been developed for the evaluation of potentiometric redox titration data by Gran's method.
MacDonald, Timothy J.; Barker, Barbara J.; Caruso, Joseph A. J. Chem. Educ. 1972, 49, 200.
Titration / Volumetric Analysis |
Quantitative Analysis |
Oxidation / Reduction |
Electrochemistry |
Acids / Bases
The effervescence of ocean surf  Plumb, Robert C.; Blanchard, Duncan C.; Bilofsky, Howard S.; Bridgman, Wilbur B.
A pure liquid will not foam, but all true solutions will, as dictated by the fundamental concepts of surface thermodynamics enunciated by Gibbs.
Plumb, Robert C.; Blanchard, Duncan C.; Bilofsky, Howard S.; Bridgman, Wilbur B. J. Chem. Educ. 1972, 49, 29.
Water / Water Chemistry |
Aqueous Solution Chemistry |
Gases |
Solutions / Solvents |
Thermodynamics
When your car rusts out  Knockemus, Ward
Explains the rusting of a car by considering electrochemical corrosion and the Nernst equation.
Knockemus, Ward J. Chem. Educ. 1972, 49, 29.
Electrochemistry |
Oxidation / Reduction |
Applications of Chemistry |
Reactions
Miscellanea No. 6  Eberhardt, W. H.
A collection of clarified, underemphasized, and misunderstood topics, including cell electromotive force and disproportionate reactions; partially miscible liquids and upper consolute temperatures; enthalpy and free energy of formation; and magnetic moment.
Eberhardt, W. H. J. Chem. Educ. 1971, 48, 829.
Electrochemistry |
Solutions / Solvents |
Thermodynamics |
Magnetic Properties
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Strong, Laurence E.
(1) What evidence, understandable and acceptable to students, do most teachers cite to describe the transfer of charge from one electrode to another in the direct current electrolysis of an electrolyte solution? (2) What is a compound? - answer by Strong. (3) What is a molecule? - answer by Strong.
Young, J. A.; Malik, J. G.; Strong, Laurence E. J. Chem. Educ. 1970, 47, 523.
Electrochemistry |
Aqueous Solution Chemistry |
Stoichiometry |
Molecular Properties / Structure
An alternative to free energy for undergraduate instruction  Strong, Laurence E.; Halliwell, H. Frank
It is the purpose of this paper to question the usefulness of the Gibbs function for the student and to propose an alternative based on the use of entropy functions that help the student to focus more sharply on the features of a system that relate to its capacity to change.
Strong, Laurence E.; Halliwell, H. Frank J. Chem. Educ. 1970, 47, 347.
Thermodynamics
Our freshmen like the second law  Craig, Norman C.
The author affirms the place of thermodynamics in the introductory chemistry course and outlines a presentation that has been used with students at this level.
Craig, Norman C. J. Chem. Educ. 1970, 47, 342.
Thermodynamics
The second law - How much, how soon, to how many?  Bent, Henry A.
Discussion of the conceptual components of thermodynamics, their mathematical requirements, and where they might be best placed in the curriculum.
Bent, Henry A. J. Chem. Educ. 1970, 47, 337.
Thermodynamics |
Calorimetry / Thermochemistry
The snowmaking machines  Plumb, Robert C.
Illustrating principles of thermodynamics in gas expansions and phase changes.
Plumb, Robert C. J. Chem. Educ. 1970, 47, 176.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
Chemical principles exemplified  Plumb, Robert C.
Introduction to a new series, containing "exempla" (brief anecdotes about materials and phenomena which exemplify chemical principles). [Debut]
Plumb, Robert C. J. Chem. Educ. 1970, 47, 175.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Equilibrium |
Photochemistry |
Applications of Chemistry
Transistorized power sources for constant current coulometric titration  Stock, John T.
This coulometric titrator uses a complementary pair of transistors to minimize heating affects and improve stability with respect to temperature; an example of experimental use for the apparatus is included.
Stock, John T. J. Chem. Educ. 1969, 46, 858.
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis |
Aqueous Solution Chemistry |
Quantitative Analysis |
Instrumental Methods |
Electrochemistry
Potentiometric determination of solubility product constants: A laboratory experiment  Tackett, Stanford L.
This paper describes an experiment in which measured potentials and calculated activity coefficients are used to obtain the solubility product constants of silver halides.
Tackett, Stanford L. J. Chem. Educ. 1969, 46, 857.
Instrumental Methods |
Electrochemistry |
Precipitation / Solubility |
Aqueous Solution Chemistry |
Solutions / Solvents
The standard electrode potential of the silver-silver bromide electrode  Venable, R. L.; Roach, D. V.
Calculations of the standard electrode potential of the silver-silver bromide electrode indicate that many values listed in textbooks are incorrect.
Venable, R. L.; Roach, D. V. J. Chem. Educ. 1969, 46, 741.
Electrochemistry |
Aqueous Solution Chemistry |
Quantitative Analysis
A simple amperostat for coulometric titration  Vincent, Colin A.; Ward, J. G.
Describes the circuit, assembly, and performance of a simple amperostat for coulometric titration.
Vincent, Colin A.; Ward, J. G. J. Chem. Educ. 1969, 46, 613.
Laboratory Equipment / Apparatus |
Titration / Volumetric Analysis |
Quantitative Analysis |
Oxidation / Reduction |
Electrochemistry
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A.
(1) Suggestions for presenting the relationship between the Fahrenheit and Celsius temperature scales. (2) Why are 4s rather than 3d electrons involved in the first and second ionizations of the first row transition elements? - answer by Haight. (3) The basis for the mnemonic ordering of atomic orbitals. (4) What is a liquid-liquid membrane electrode? Is it the same as an ion-selective electrode? - answer by Rechnitz.
Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A. J. Chem. Educ. 1969, 46, 444.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Transition Elements |
Periodicity / Periodic Table |
Electrochemistry |
Ion Selective Electrodes |
Membranes
Indirect calorimetry by computer in the general chemistry course  DeMattia, Dennis; Gruhn, Thomas; Gorman, Mel
Describes the use of a Fortran IV program to stimulate student interest in the applications and potential of computer techniques in chemistry.
DeMattia, Dennis; Gruhn, Thomas; Gorman, Mel J. Chem. Educ. 1969, 46, 398.
Calorimetry / Thermochemistry |
Thermodynamics
Quantities of work in thermodynamic equations  Wright, P. G.
Examines distinctions to be made between work done by forces exerted by external bodies and acting on a system with work done by forces exerted by the system on external bodies.
Wright, P. G. J. Chem. Educ. 1969, 46, 380.
Thermodynamics
Thermochemistry of hypochlorite oxidations  Bigelow, M. Jerome
Students mix various proportions of aqueous sodium hypochlorite and sodium sulfite and plot the change in temperature to determine the stoichiometry of the reaction.
Bigelow, M. Jerome J. Chem. Educ. 1969, 46, 378.
Calorimetry / Thermochemistry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Stoichiometry |
Thermodynamics |
Mechanisms of Reactions
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Quagliano, James V.; Danehy, James P.
(1) Why different potential for copper/zinc cells when using nitrates vs. sulfates? Why is neither cell potential as large as predicted by Nerst equation? (2) Do elements in the zinc subgroup belong to the transition series? - answer by Quagliano. (3) How can the 2,4,5-trichloro derivative of phenoxyacetic acid be prepared? - answer by Danehy.
Young, J. A.; Malik, J. G.; Quagliano, James V.; Danehy, James P. J. Chem. Educ. 1969, 46, 227.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Periodicity / Periodic Table |
Metals |
Synthesis |
Aromatic Compounds
The cell potential and the distance between electrodes  Lauren, Paul M.
This demonstration illustrates the importance of the role played by ion diffusion in determining the magnitude of the emf of a primary cell.
Lauren, Paul M. J. Chem. Educ. 1968, 45, A691.
Aqueous Solution Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Oxidation of copper by hydrochloric acid  Walker, Noojin; George, Donald L.
Demonstrates the oxidation of copper by hydrochloric acid.
Walker, Noojin; George, Donald L. J. Chem. Educ. 1968, 45, A429.
Oxidation / Reduction |
Acids / Bases |
Electrochemistry
Verification of the form of the Nernst equation: An experiment for introductory chemistry  Evans, James S.
In this experiment, students record data for the concentration dependence of the ferrous-ferric half-cell potential at a platinum electrode, using a silver-silver ion reference electrode, a salt bridge, and a voltmeter.
Evans, James S. J. Chem. Educ. 1968, 45, 532.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Effect of complexing agents on oxidation potentials  Helsen, Jef
A short note on a simple experiment to demonstrate the effect of complexing agents on the oxidation-reduction properties of redox couples such as Fe3+/Fe2+.
Helsen, Jef J. Chem. Educ. 1968, 45, 518.
Coordination Compounds |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Electrochemistry
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.
(1) How can half-reactions be added to determine potentials? (2) What is the approximate size and weight of uranium-235 necessary for a chain reaction to occur? (3) What is the distinction between an inhibitor and a negative catalyst?
Young, J. A.; Malik, J. G. J. Chem. Educ. 1968, 45, 477.
Electrochemistry |
Nuclear / Radiochemistry |
Catalysis
Why does methane burn?  Sanderson, R. T.
A thermodynamic explanation for why methane burns.
Sanderson, R. T. J. Chem. Educ. 1968, 45, 423.
Thermodynamics |
Reactions |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Covalent Bonding |
Ionic Bonding
Energy cycles  Haight, G. P., Jr.
Points out limitations and potential pitfalls associated with the use energy cycles to show the atomic and molecular energy factors that may influence an observable chemical property.
Haight, G. P., Jr. J. Chem. Educ. 1968, 45, 420.
Thermodynamics
Chemical dynamics for college freshmen  Hammond, George S.; Gray, Harry B.
Suggestions for topics regarding chemical dynamics to be considered in freshman chemistry.
Hammond, George S.; Gray, Harry B. J. Chem. Educ. 1968, 45, 354.
Thermodynamics |
Kinetics |
Reactions |
Mechanisms of Reactions |
Rate Law
Energy and Entropy in Chemistry (Wyatt, P. A. H.)  Strong, Laurence E.

Strong, Laurence E. J. Chem. Educ. 1968, 45, 71.
Thermodynamics
Biological oxidations and energy conservation  Kirschbaum, Joel
Examines the oxidative steps leading to the synthesis of ATP in living organisms and their metabolic control.
Kirschbaum, Joel J. Chem. Educ. 1968, 45, 28.
Bioenergetics |
Oxidation / Reduction |
Thermodynamics |
Metabolism
Letter to the editor  Brescia, Frank
Calls on instructors not to confuse students with inappropriate definitions of work.
Brescia, Frank J. Chem. Educ. 1967, 44, 771.
Thermodynamics |
Nomenclature / Units / Symbols
A simple analogy of the relationship of ?G to the position of equilibrium  Marks, D. J.
This short note describes a simple demonstration to serve as an analogy of the relationship of ?G to the position of equilibrium.
Marks, D. J. J. Chem. Educ. 1967, 44, 402.
Thermodynamics |
Equilibrium
Textbooks errors. Miscellanea no. 5  Mysels, Karol J.
Considers inconsistencies in the units involved in thermodynamic expressions, incorrect units given for equivalent conductivity, oscillations in polargraphic measurements, and inconsistencies in dealing with catalysis.
Mysels, Karol J. J. Chem. Educ. 1967, 44, 44.
Nomenclature / Units / Symbols |
Thermodynamics |
Catalysis
Lectures on Matter and Equilibrium (Hill, Terrell L.)  Rosenburg, Robert

Rosenburg, Robert J. Chem. Educ. 1966, 43, A1086.
Thermodynamics |
Enrichment / Review Materials
The fundamental assumptions of chemical thermodynamics  MacRae, Duncan
Examines the fundamental terms, definitions, and assumptions of chemical thermodynamics.
MacRae, Duncan J. Chem. Educ. 1966, 43, 586.
Thermodynamics
Electro-osmosis as a demonstration experiment. Coupled irreversible effects and direct energy conversion  Dixon, John R.; Schafer, Frank W.
When a stream of water is forced through a porous pug or other resistance associated with a pressure drop, an electrical potential is developed between the high and low pressure sides of the resistance.
Dixon, John R.; Schafer, Frank W. J. Chem. Educ. 1966, 43, 380.
Electrochemistry
Simple experiments in amperometry. Determination of acids, oxidizing agents  Feldman, Frederic J.
Amperometry, the measurement of current resulting from an electrochemical reaction at the electrode, is a simple means of determining the concentration of an electroactive species. An experiment is described here for the determination of acids or oxidizing agents by amperometry.
Feldman, Frederic J. J. Chem. Educ. 1966, 43, 378.
Quantitative Analysis |
Electrochemistry
Electrical conductance apparatus  Steinberg, Edwin E.; Nordmann, J.
A circuit diagram for an electrical conductance apparatus that is safe, accurate, and allows for qualitative measurements.
Steinberg, Edwin E.; Nordmann, J. J. Chem. Educ. 1966, 43, 309.
Electrochemistry |
Conductivity |
Laboratory Equipment / Apparatus
The enigmatic polymorphism of iron  Myers, Clifford E.
Unusual and nontypical, elemental iron can provide the impetus for discussing important chemical principles and properties, including basic thermodynamic concepts and the phenomenon and theory of ferromagnetism.
Myers, Clifford E. J. Chem. Educ. 1966, 43, 303.
Thermodynamics |
Magnetic Properties
The use and misuse of the laws of thermodynamics  McGlashan, M. L.
Examines the first and second laws, the usefulness of thermodynamics, the calculation of equilibrium constants, and what entropy does not mean.
McGlashan, M. L. J. Chem. Educ. 1966, 43, 226.
Thermodynamics
Demonstrating concepts of statistical thermodynamics: More on the Maxwell Demon bottle  Sussman, M. V.
The Maxwell Demon bottle can illustrate the nature of entropy, the difference between a work effect and a heat effect, the difference between reversible and irreversible work effects, the mechanical equivalent of heat, and similar intangibles.
Sussman, M. V. J. Chem. Educ. 1966, 43, 105.
Thermodynamics
Electrode potentials  Shombert, Donald
Changes in the potential observed for two Daniell cells are due to changes in ion concentrations.
Shombert, Donald J. Chem. Educ. 1965, 42, A215.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry |
Equilibrium
Thermodynamics of the ionization of acetic and chloroacetic acids  Neidig, H. A., Yingling, R. T.
Students are asked to determine the effect of the structure of acetic, chloroacetic, dichloroacetic, and trichloroacetic acid on equilbria and to discuss the observed effects in terms of standard free energy, enthalpy, and entropy changes.
Neidig, H. A., Yingling, R. T. J. Chem. Educ. 1965, 42, 484.
Acids / Bases |
Thermodynamics |
Aqueous Solution Chemistry
Several designs for constructing potentiometers  Battino, Rubin
This paper describes several designs for constructing inexpensive potentiometers that possess a practical degree of precision.
Battino, Rubin J. Chem. Educ. 1965, 42, 211.
Electrochemistry |
Instrumental Methods |
Laboratory Equipment / Apparatus
Concerning equilibrium, free energy changes, LeChatelier's Principle. III. Halide-halate equilibria  Eberhardt, William H.
Compares four equilibria: KI + KIO3, KI + KBrO3, KBR + KBrO3, and KBr + KIO3.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A883.
Equilibrium |
Aqueous Solution Chemistry |
Thermodynamics
Concerning equilibrium, free energy changes, Le Châtelier's principle II  Eberhardt, William H.
This demonstration involves a reversible, temperature-based transformation from blue tetrahedrally coordinated Co2+ to pink sixfold coordinated Co2+.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A591.
Equilibrium |
Thermodynamics |
Aqueous Solution Chemistry |
Coordination Compounds
Electrolysis: H2O and H2O2  Eberhardt, William H.
This demonstration involves the concurrent electrolysis of water and hydrogen peroxide.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A591.
Electrochemistry |
Water / Water Chemistry
Metallic reduction of aqueous hydrogen chloride  Walker, Noojin, Jr.
Calcium reacts with HCl to liberate hydrogen gas.
Walker, Noojin, Jr. J. Chem. Educ. 1964, 41, A477.
Reactions |
Oxidation / Reduction |
Metals |
Electrochemistry
Concerning equilibrium, free energy changes, Le Chtelier's principle  Eberhardt, William H.
Aqueous KI is added to a solution of CuSO4 in a separatory funnel; adding more CuSO4 demonstrates an equilibrium sift.
Eberhardt, William H. J. Chem. Educ. 1964, 41, A477.
Equilibrium |
Thermodynamics |
Reactions
A simple quantitative electrolysis experiment for first year chemistry  Petrucci, Ralph H.; Moews, P. C., Jr.
This simple and inexpensive electrolysis experiment for first year chemistry allows a quantitative application of Faraday's laws without the need for analytical balances.
Petrucci, Ralph H.; Moews, P. C., Jr. J. Chem. Educ. 1964, 41, 552.
Electrochemistry
Reversible and irreversible work: A lecture demonstration  Eberhardt, William H.
This lecture demonstration illustrates the concepts of reversible and irreversible work using a pendulum and attached pan balance.
Eberhardt, William H. J. Chem. Educ. 1964, 41, 483.
Thermodynamics
The Carnot cycle and Maxwell's relations  Nash, Leonard K.
Maxwells equations can be derived from nothing more than the Carnot cycle and the deployment of the simplest plane geometry.
Nash, Leonard K. J. Chem. Educ. 1964, 41, 368.
Thermodynamics |
Chemometrics
Teaching the entropy concept  Plumb, Robert C.
Presents a macroscopic lecture demonstration illustrating both potential energy and entropy driving forces and showing their interrelationship.
Plumb, Robert C. J. Chem. Educ. 1964, 41, 254.
Thermodynamics |
Statistical Mechanics
Work of compressing an ideal gas  Bauman, Robert P.
In formulating examples of compression problems there should be an explicit statement that the process is reversible, or at least slow.
Bauman, Robert P. J. Chem. Educ. 1964, 41, 102.
Thermodynamics |
Gases
Principles of chemical reaction  Sanderson, R. T.
The purpose of this paper is to examine the nature of chemical change in the hope of recognizing and setting forth the basic principles that help us to understand why they occur.
Sanderson, R. T. J. Chem. Educ. 1964, 41, 13.
Reactions |
Thermodynamics |
Mechanisms of Reactions |
Kinetics |
Synthesis |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding
Temperature dependence of equilibrium: A first experiment in general chemistry  Mahan, Bruce H.
This experiment uses cooling curves to derive the expression for the temperature dependence of the equilibrium constant.
Mahan, Bruce H. J. Chem. Educ. 1963, 40, 293.
Equilibrium |
Thermodynamics
A second lecture in thermodynamics  Burton, Milton
Outlines an introduction for the three laws of thermodynamics
Burton, Milton J. Chem. Educ. 1962, 39, 500.
Thermodynamics
The second law of thermodynamics: Introduction for beginners at any level  Bent, Henry A.
Examines and offers suggestions for dealing with some of the challenges in teaching thermodynamics at an introductory level.
Bent, Henry A. J. Chem. Educ. 1962, 39, 491.
Thermodynamics
Editorially Speaking  Kieffer, William F.
Discussion of the conventions, definitions, and symbols of thermodynamics.
Kieffer, William F. J. Chem. Educ. 1962, 39, 489.
Nomenclature / Units / Symbols |
Thermodynamics
How can you tell whether a reaction will occur?  MacWood, George E.; Verhoek, Frank H.
This paper attempts to answer the title question in a clear and direct fashion.
MacWood, George E.; Verhoek, Frank H. J. Chem. Educ. 1961, 38, 334.
Thermodynamics
Editorially speaking  Kieffer, William F.
Suggests that more should be done to teach introductory college chemistry students basic principles such as entropy and free energy.
Kieffer, William F. J. Chem. Educ. 1961, 38, 333.
Thermodynamics
Potentiometric measurements of equilibria: In general chemistry laboratory  Chesick, J. P.; Patterson, Andrew, Jr.
The authors describe an experiment in which the solubility product of silver chloride, the ionization constant of the silver-ammonia complex, and the ionization constant of acetic acid can be determined with one afternoon of work.
Chesick, J. P.; Patterson, Andrew, Jr. J. Chem. Educ. 1959, 36, 496.
Electrochemistry |
Equilibrium |
Precipitation / Solubility |
Aqueous Solution Chemistry |
Acids / Bases
The growth of lead trees in silicic acid gels  Hurd, Charles B.; Lamareaux, Harry F.
The fact that more active metals, such as zinc and cadmium, will replace lead in solutions of lead salts is well known; it is not so well known that the lead deposited will form an attractive, tree-like growth, particularly if supported in a gel.
Hurd, Charles B.; Lamareaux, Harry F. J. Chem. Educ. 1959, 36, 472.
Electrochemistry
Common sources of confusion; Electrode sign conventions  Anson, Fred C.
Examines common sources of confusion with respect to electrode signs and recommends new conventions.
Anson, Fred C. J. Chem. Educ. 1959, 36, 394.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Recent developments concerning the signs of electrode potentials  Licht, Truman S.; deBethune, Andre J.
It is the purpose of this paper to review recent developments concerning the signs of electrode potentials, particularly with respect to single electrode potential, half-reaction potential, and half-cell electromotive force.
Licht, Truman S.; deBethune, Andre J. J. Chem. Educ. 1957, 34, 433.
Electrochemistry |
Nomenclature / Units / Symbols |
Electrolytic / Galvanic Cells / Potentials
Some electrochemical experiments for freshmen  Gorman, Mel
The purpose of this discussion is to present an exercise for freshman laboratory work involving electrochemical unknowns and special electrode potential projects not usually studied in the first-year course.
Gorman, Mel J. Chem. Educ. 1957, 34, 409.
Electrochemistry |
Qualitative Analysis
Letters to the editor  Campbell, J. A.
The author includes an interpretation of the "Beating Heart Experiment" which was omitted in an earlier Journal article.
Campbell, J. A. J. Chem. Educ. 1957, 34, 362.
Oxidation / Reduction |
Electrochemistry
Nuclear batteries  Garrett, Alfred B.
Describes the structure, operation, and application of nuclear batteries.
Garrett, Alfred B. J. Chem. Educ. 1956, 33, 446.
Nuclear / Radiochemistry |
Electrochemistry
Why is hydrofluoric acid a weak acid? An answer based on a correlation of free energies, with electronegativities  Pauling, Linus
The puzzling behavior of hydrofluoric acid is explained by considering the factors that determine the free energy of hydrogen halogenide molecules and hydrohalogenide ions.
Pauling, Linus J. Chem. Educ. 1956, 33, 16.
Acids / Bases |
Aqueous Solution Chemistry |
Thermodynamics |
Atomic Properties / Structure
Letters  Hackney, J. C.
The author elaborates on the source of a fallacy in the calculation of an overall redox potential by combination of two half-cell potentials.
Hackney, J. C. J. Chem. Educ. 1952, 29, 472.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Aqueous Solution Chemistry |
Oxidation / Reduction
Letters  Angus, L. H.
Suggests a simple temperature-equilibrium demonstration.
Angus, L. H. J. Chem. Educ. 1952, 29, 472.
Thermodynamics
Combining half-reactions and their standard electrode potentials  Miller, Sidney I.
To increase the value of standard electrode potential tables, a new method of combination of half-cell reactions is proposed.
Miller, Sidney I. J. Chem. Educ. 1952, 29, 140.
Electrochemistry |
Aqueous Solution Chemistry |
Electrolytic / Galvanic Cells / Potentials