TIGER

Journal Articles: 174 results
Fog Machines, Vapors, and Phase Diagrams  Ed Vitz
This series of demonstrations elucidate the operation of commercial fog machines using common laboratory materials and can be adapted for elementary through tertiary levels. The formation of fogs is discussed in terms of the phase diagram for water and other chemical principles.
Vitz, Ed. J. Chem. Educ. 2008, 85, 1385.
Liquids |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Water / Water Chemistry
Polymeric, Metallic and Other Glasses in Introductory Chemistry  Stephen J. Hawkes
Polymeric, metallic, and other glasses and their importance are described in a manner suitable for introductory chemistry.
Hawkes, Stephen J. J. Chem. Educ. 2008, 85, 1377.
Consumer Chemistry |
Materials Science |
Phases / Phase Transitions / Diagrams |
Solids
Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties  Robert M. Hanson, Patrick Riley, Jeff Schwinefus, and Paul J. Fischer
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level.
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J. J. Chem. Educ. 2008, 85, 1142.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics
Understanding the Clausius–Clapeyron Equation by Employing an Easily Adaptable Pressure Cooker  Monica Galleano, Alberto Boveris, and Susana Puntarulo
Describes a laboratory exercise to understand the effect of pressure on phase equilibrium as described by the ClausiusClapeyron equation. The equipment required is a pressure cooker adapted with a pressure gauge and a thermometer in the lid, allowing the measurement of the pressure and the temperature of the chamber containing the water heated until vaporization.
Galleano, Monica; Boveris, Alberto; Puntarulo, Susana. J. Chem. Educ. 2008, 85, 276.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry
Effects of a Cooperative Learning Strategy on Teaching and Learning Phases of Matter and One-Component Phase Diagrams  Kemal Doymus
Describes a study whose objective was to determine the effects of cooperative learning (using the jigsaw method) on students' achievement in a general chemistry course.
Doymus, Kemal. J. Chem. Educ. 2007, 84, 1857.
Gases |
Liquids |
Phases / Phase Transitions / Diagrams |
Solids
Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories  Melissa P. Prado, Annie Pham, Robert E. Ferazzi, Kimberly Edwards, and Kenneth C. Janda
Presents a procedure for preparing and studying propane clathrate hydrate. This experiment introduces students to this unusual solid while stimulating a discussion of the interplay of intermolecular forces, thermodynamics, and solid structure.
Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C. J. Chem. Educ. 2007, 84, 1790.
Alkanes / Cycloalkanes |
Applications of Chemistry |
Calorimetry / Thermochemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry |
Hydrogen Bonding
Freezing Point of Milk: A Natural Way To Understand Colligative Properties  Mercedes Novo, Belén Reija, and Wajih Al-Soufi
Presents a laboratory experiment that illustrates the use of freezing point measurements to control milk quality and determine molecular weight.
Novo, Mercedes; Reija, Belén; Al-Soufi, Wajih. J. Chem. Educ. 2007, 84, 1673.
Consumer Chemistry |
Food Science |
Natural Products |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents
"Concept Learning versus Problem Solving": Does Particle Motion Have an Effect?  Michael J. Sanger, Eddie Campbell, Jeremy Felker, and Charles Spencer
210 students were asked to answer a static, particulate-level, multiple-choice question concerning gas properties. Then they viewed an animated version of the question and answered the multiple-choice question again. The distribution of responses changed significantly after students viewed the animation.
Sanger, Michael J.; Campbell, Eddie; Felker, Jeremy; Spencer, Charles. J. Chem. Educ. 2007, 84, 875.
Gases |
Kinetic-Molecular Theory |
Qualitative Analysis |
Quantitative Analysis |
Phases / Phase Transitions / Diagrams
What Are Students Thinking When They Pick Their Answer?  Michael J. Sanger and Amy J. Phelps
330 students were asked to answer a multiple-choice question concerning gas properties at the microscopic level and explain their reasoning. Of those who selected the correct answer, 80% provided explanations consistent with the scientifically accepted answer, while 90% of the students who picked an incorrect choice provided explanations with at least one misconception.
Sanger, Michael J.; Phelps, Amy J. J. Chem. Educ. 2007, 84, 870.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams |
Qualitative Analysis
Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus  Rubin Battino, David A. Dolson, Michael R. Hall, and Trevor M. Letcher
Describes an inexpensive apparatus for the determination of the vapor pressure of a liquid as a function of temperature for the purpose of calculating enthalpy changes of vaporization. Also described are a simple air thermostat and an inexpensive temperature controller based on an integrated temperature sensor.
Battino, Rubin; Dolson, David A.; Hall, Michael R.; Letcher, Trevor M. J. Chem. Educ. 2007, 84, 822.
Gases |
Laboratory Equipment / Apparatus |
Lipids |
Phenols |
Physical Properties |
Thermodynamics |
Liquids |
Phases / Phase Transitions / Diagrams
Introducing New Learning Tools into a Standard Classroom: A Multi-Tool Approach to Integrating Fuel-Cell Concepts into Introductory College Chemistry   Matthew J. DAmato, Kenneth W. Lux, Kenneth A. Walz, Holly Walter Kerby, and Barbara Anderegg
Describes an approach to deliver the science and engineering concepts involved in fuel-cell technology to the introductory college chemistry classroom using traditional lectures, multimedia learning objects, and a lab activity to enhance student learning in a hands-on, interactive manner.
DAmato, Matthew J.; Lux, Kenneth W.; Walz, Kenneth A.; Kerby, Holly Walter; Anderegg, Barbara. J. Chem. Educ. 2007, 84, 248.
Electrochemistry |
Materials Science |
Nanotechnology |
Oxidation / Reduction |
Membranes
Endothermic Chemical and Physical Changes: An Introductory Chemistry Experiment  Margaret J. Steffel
Each of eleven unidentified compounds is heated in a test tube to determine whether the endothermic change each undergoes is a chemical or a physical change.
Steffel, Margaret J. J. Chem. Educ. 2006, 83, 1185.
Descriptive Chemistry |
Physical Properties |
Reactions |
Phases / Phase Transitions / Diagrams
Molecular Handshake: Recognition through Weak Noncovalent Interactions  Parvathi S. Murthy
This article traces the development of our thinking about molecular recognition through noncovalent interactions, highlights their salient features, and suggests ways for comprehensive education on this important concept.
Murthy, Parvathi S. J. Chem. Educ. 2006, 83, 1010.
Applications of Chemistry |
Biosignaling |
Membranes |
Molecular Recognition |
Noncovalent Interactions |
Chromatography |
Molecular Properties / Structure |
Polymerization |
Reactions
Popping Popcorn Kernels: Expanding Relevance with Linear Thinking  Jordan L. Bennett, Michael M. Fuson, and Thomas A. Evans
Graphing skills and an understanding of linear relationships are developed in the context of popping of individual popcorn kernels. Introductory-level chemistry students determine mass changes as the result of popping along with the volume and density of the popcorn flakes produced.
Bennett, Jordan L.; Fuson, Michael M.; Evans, Thomas A. J. Chem. Educ. 2006, 83, 414.
Carbohydrates |
Food Science |
Phases / Phase Transitions / Diagrams |
Physical Properties
Theoretical Insights for Practical Handling of Pressurized Fluids  Alfonso Aranda and María del Prado Rodríguez
Introduces the basic considerations for managing pressurized fluids, mainly liquefied and compressed gases.
Aranda, Alfonso; Rodríguez, María del Prado. J. Chem. Educ. 2006, 83, 93.
Applications of Chemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics
The Nature of Hydrogen Bonding  Emeric Schultz
Students use toy connecting blocks and Velcro to investigate weak intermolecular interactions, specifically hydrogen bonds.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 400A.
Noncovalent Interactions |
Hydrogen Bonding |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Covalent Bonding |
Molecular Modeling |
Molecular Properties / Structure
Colors in Liquid Crystals  George Lisensky and Elizabeth Boatman
This activity is suitable for exploring relationships between color, wavelength, reflection, and transmission and illustrates how temperature changes the liquid crystal's Bragg reflection wavelength.
Lisensky, George; Boatman, Elizabeth. J. Chem. Educ. 2005, 82, 1360A.
Nanotechnology |
Phases / Phase Transitions / Diagrams |
Spectroscopy |
Fatty Acids
Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy. An Experiment for the Physical Chemistry Laboratory  Madalena S. C. Dionísio, Hermínio P. Diogo, J. P. S. Farinha, and Joaquim J. Moura-Ramos
In this article we present a laboratory experiment for an undergraduate physical chemistry course. The purpose of this experiment is the study of molecular mobility in a crystal using the technique of dielectric relaxation spectroscopy. The experiment illustrates important physical chemistry concepts. The background of the experimental technique deals with the concepts of orientational and induced polarization and frequency-dependent relative permittivity (or dielectric constant). The kinetic concepts of temperature-dependent relaxation time, activation energy, and activation entropy are involved in the concept of molecular mobility.
Dionísio, Madalena S. C.; Diogo, Hermínio P.; Farinha, J. P. S.; Moura-Ramos, Joaquim J. J. Chem. Educ. 2005, 82, 1355.
Kinetics |
Phases / Phase Transitions / Diagrams |
Solids |
Crystals / Crystallography
Chemistry of Moth Repellents  Gabriel Pinto
A real-life example consisting of the study of the different substances used as moth repellents is presented to introduce students to miscellaneous topics such as sublimation, intermolecular forces, insecticides, and the effect of moths on clothes. A set of questions about the most common moth repellents, well known to students, is used to motivate them to understand several everday phenomena through chemistry concepts.
Pinto, Gabriel. J. Chem. Educ. 2005, 82, 1321.
Noncovalent Interactions |
Applications of Chemistry |
Phases / Phase Transitions / Diagrams |
Solids |
Physical Properties |
Consumer Chemistry
A Passive Sampler for Determination of Nitrogen Dioxide in Ambient Air  Dan Xiao, Lianzhi Lin, Hongyan Yuan, Martin M. F. Choi, and Winghong Chan
This article describes the use of a passive sampler for detecting and collecting nitrogen dioxide, NO2, in ambient air. This device is based on microporous PTFE membranes that allow air samples to diffuse through and subsequently react with an absorbing reagent solution. The absorbance value of this reagent is proportional to the NO2 concentration in ambient air. It has been successfully applied to determine the NO2 concentrations in various sampling sites.
Xiao, Dan; Lin, Lianzhi; Yuan, Hongyan; Choi, Martin M. F.; Chan, Winghong. J. Chem. Educ. 2005, 82, 1231.
Calibration |
Membranes |
UV-Vis Spectroscopy |
Amines / Ammonium Compounds |
Coordination Compounds |
Gases |
Laboratory Equipment / Apparatus |
Nonmajor Courses |
Quantitative Analysis
Some Insights Regarding a Popular Introductory Gas Law Experiment  Ed DePierro and Fred Garafalo
This paper alerts readers to a potential source of error in one approach to the Dumas method as it is often practiced in introductory chemistry laboratories. The room-temperature vapor pressures of volatile compounds that might be considered as unknowns for the experiment lead to determined molar masses that are too low. The greater the vapor pressure of the compound, the lower the determined molar mass will be, when compared to the accepted value.
DePierro, Ed; Garafalo, Fred. J. Chem. Educ. 2005, 82, 1194.
Gases |
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Physical Properties
The q/T Paradox: Which "Contains More Heat", a Cup of Coffee at 95°C or a Liter of Icewater?  Ed Vitz and Michael J. Schuman
In this demonstration, heat is removed from 10 cm3 of water at ~95C and 42 cm3 of water at ~0C by adding each to a measured sample of liquid nitrogen. The heat removed from the water boils the N2(l), and the quantity of liquid nitrogen that is evaporated by boiling is determined. The quantity of heat that was absorbed is calculated from the heat of vaporization of liquid nitrogen and found to be about 10,000 J in the case of the hot water and 25,000 J in the case of the icewater.
Vitz, Ed; Schuman, Michael J. J. Chem. Educ. 2005, 82, 856.
Calorimetry / Thermochemistry |
Heat Capacity |
Phases / Phase Transitions / Diagrams |
Thermodynamics
Simple Dynamic Models for Hydrogen Bonding Using Velcro-Polarized Molecular Models  Emeric Schultz
This article describes the use of models that dynamically illustrate the unique characteristics of weak intermolecular interactions, specifically hydrogen bonds. The models clearly demonstrate that H-bonds can break and reform while covalent bonds stay intact. The manner in which the models form and break H-bonds reflects the geometric and statistical manner in which H-bonding actually occurs and is not contrived. The use of these models addresses a significant area of student misconceptions. The construction of these molecular models is described.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 401.
Molecular Properties / Structure |
Molecular Modeling |
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
Fractional Distillation of Air and Other Demonstrations with Condensed Gases  Maria Oliver-Hoyo and William L. Switzer, III
This demonstration builds upon the commonly performed liquefaction of air not only to show the presence of nitrogen and oxygen, but also the presence of two other components, carbon dioxide and water. Several extensions are suggested: one to show boiling point elevation in solution and another to show the elevation of both boiling point and sublimation point with pressure. No special apparatus is required permitting presentations to audiences in a variety of settings. These demonstrations give the opportunity to discuss properties of gases, solution chemistry, and phase equilibria.
Oliver-Hoyo, Maria; Switzer, William L., III. J. Chem. Educ. 2005, 82, 251.
Gases |
Qualitative Analysis |
Atmospheric Chemistry |
Phases / Phase Transitions / Diagrams |
Separation Science
Use of a Tea Infuser To Submerge Low-Density Dry Ice  Carl P. Fictorie
A tea infuser is used as a container to hold low-density dry ice. When used with the classic demonstration where dry ice is used to acidify a solution in a graduated cylinder, the dry ice is suspended in the middle of the cylinder, allowing the solution in the upper half of the cylinder to change color while the lower half remains unchanged. Phase changes, acidbase chemistry, and diffusion phenomena are all illustrated.
Fictorie, Carl P. J. Chem. Educ. 2004, 81, 1473.
Acids / Bases |
Aqueous Solution Chemistry |
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
Boiling Point versus Mass  Michael Laing
I am very pleased that Ronald Rich has written making these comments, because he is pre-eminent in this field, beginning with his early book, Periodic Correlations.
Laing, Michael. J. Chem. Educ. 2004, 81, 642.
Atomic Properties / Structure |
Molecular Properties / Structure |
Noncovalent Interactions |
Liquids |
Phases / Phase Transitions / Diagrams
Boiling Point versus Mass   Ronald L. Rich
Laing gave a useful examination of the boiling points of small molecules versus molecular mass. However, a molecule escaping from a liquid is not closely analogous to a satellite breaking free from the earths gravitational field with the requirement of a minimum escape velocity, such that the required kinetic energy is proportional to the mass of the satellite at that escape velocity.
Rich, Ronald L. J. Chem. Educ. 2004, 81, 642.
Molecular Properties / Structure |
Atomic Properties / Structure |
Liquids |
Noncovalent Interactions |
Phases / Phase Transitions / Diagrams
Using Science Fiction To Teach Thermodynamics: Vonnegut, Ice-nine, and Global Warming  Charles A. Liberko
When covering the topic of thermodynamics at the introductory level, an example from Kurt Vonnegut, Jr's, fictional novel, Cat's Cradle, is used to take what the students have learned and apply it to a new situation.
Liberko, Charles A. J. Chem. Educ. 2004, 81, 509.
Thermodynamics |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams |
Noncovalent Interactions |
Calorimetry / Thermochemistry
Three-Dimensional Model for Water: Magnets as Dipoles  Samuel H. Yalkowsky and Jennifer L. H. Johnson
Reply to comments on original article.
Yalkowsky, Samuel H.; Johnson, Jennifer L. H. J. Chem. Educ. 2004, 81, 34.
Aqueous Solution Chemistry |
Noncovalent Interactions |
Hydrogen Bonding |
Lipids |
Liquids |
Molecular Modeling |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents |
Water / Water Chemistry
Three-Dimensional Model for Water: Magnets as Chemical Bonds  Roy W. Clark
Concerns over students confusing electrical and magnetic fields.
Clark, Roy W. J. Chem. Educ. 2004, 81, 34.
Aqueous Solution Chemistry |
Noncovalent Interactions |
Hydrogen Bonding |
Lipids |
Liquids |
Molecular Modeling |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents |
Water / Water Chemistry
Colorful Iodine  Richard W. Ramette
Design for an iodine thermometer, demonstrating sublimation of iodine.
Ramette, Richard W. J. Chem. Educ. 2003, 80, 878.
Main-Group Elements |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry
Uncle Tungsten  Martin E. Fuller
Design for an iodine thermometer, demonstrating sublimation of iodine.
Fuller, Martin E. J. Chem. Educ. 2003, 80, 878.
Main-Group Elements |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry
Using Ice-Cooled Condensers in Chemistry Laboratory  Sally Solomon, Bryan Brook, Susan Rutkowsky, and Joseph Bennet
Using ice-cooled condensers in the chemistry laboratory; includes two simple experimental applications.
Solomon, Sally; Brook, Bryan; Rutkowsky, Susan; Bennet, Joseph. J. Chem. Educ. 2003, 80, 299.
Laboratory Equipment / Apparatus |
Microscale Lab |
Laboratory Management |
Separation Science |
Phases / Phase Transitions / Diagrams
An After-Dinner Trick   JCE Editorial Staff
Using freezing-point depression to lift an ice cube out of a glass of water with a thread.
JCE Editorial Staff. J. Chem. Educ. 2002, 79, 480A.
Aqueous Solution Chemistry |
Consumer Chemistry |
Phases / Phase Transitions / Diagrams
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Gases
A Three-Dimensional Model for Water  J. L. H. Johnson and S. H. Yalkowsky
Using Molymod spheres and magnets to simulate the structure and properties of water and aqueous systems.
Johnson, J. L. H.; Yalkowsky, S. H. J. Chem. Educ. 2002, 79, 1088.
Aqueous Solution Chemistry |
Covalent Bonding |
Lipids |
Liquids |
Solutions / Solvents |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
Is Salt Melting When It Dissolves in Water?  Alan Goodwin
Analysis of the chemical meaning of the terms melting and dissolving.
Goodwin, Alan. J. Chem. Educ. 2002, 79, 393.
Liquids |
Solids |
Phases / Phase Transitions / Diagrams
The Purification of Water by Freeze-Thaw or Zone Melting  James Oughton, Silas Xu, and Rubin Battino
Quantitative investigation of the purification of slat water solutions through the process of partial freezing.
Oughton, James; Xu, Silas; Battino, Rubin. J. Chem. Educ. 2001, 78, 1373.
Conductivity |
Phases / Phase Transitions / Diagrams |
Separation Science |
Quantitative Analysis |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Solutions / Solvents
Are Fizzing Drinks Boiling? A Chemical Insight from Chemical Education Research  Alan Goodwin
The suggestion that fizzing drinks are examples of liquids boiling at room temperature has proved to be controversial among both chemists and chemical educators. This paper presents a case for believing this everyday system to be a good example of a boiling solution and the consequent separation of carbon dioxide from the solution to exemplify fractional distillation.
Goodwin, Alan. J. Chem. Educ. 2001, 78, 385.
Aqueous Solution Chemistry |
Kinetic-Molecular Theory |
Equilibrium |
Gases |
Solutions / Solvents |
Phases / Phase Transitions / Diagrams
JCE Classroom Activity: Out of "Thin Air": Exploring Phase Changes  John J. Vollmer
This Activity illustrates sublimation/deposition with para-dichlorobenzene (mothballs) and evaporation/condensation with water.
Vollmer, John J. J. Chem. Educ. 2000, 77, 488A.
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Physical Properties |
Solids |
Gases
Ultramicro-Boiling-Point Determination--A Modification  Henry Brouwer
The determination of microscale boiling points in a melting-point tube may be simplified by replacing the micro-bell bubbler with an ultrathin capillary tube bubbler.
Brouwer, Henry. J. Chem. Educ. 2000, 77, 1480.
Laboratory Equipment / Apparatus |
Microscale Lab |
Phases / Phase Transitions / Diagrams
Thermodynamics of Water Superheated in the Microwave Oven  B. H. Erné
Water is conveniently heated above its normal boiling point in a microwave oven in a glass microwave oven teapot. Water stops boiling soon after heating is interrupted, but subsequently added rough particles can still act as nucleation centers for a brief, spectacular burst of steam bubbles. The heat to make those steam bubbles obviously comes from the water itself, so that one can conclude that the boiling water was superheated, which is confirmed with a thermometer.
Erné, B. H. J. Chem. Educ. 2000, 77, 1309.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Liquids
Glass Doesn't Flow and Doesn't Crystallize and It Isn't a Liquid  Stephen J. Hawkes
It is widely believed that glass flows in historic time and it is often asserted that glass is a liquid. The evidence of archeology, geology, and viscosity and of research on glass structure and on conservation of antique glass is examined and the conclusion in the title is reached. These fallacies should not be taught.
Hawkes, Stephen J. J. Chem. Educ. 2000, 77, 846.
Geochemistry |
Phases / Phase Transitions / Diagrams |
Solid State Chemistry
A Closer Look at Phase Diagrams for the General Chemistry Course  Stephen A. Gramsch
The information provided by the high-pressure phase diagrams of some simple systems (carbon dioxide, water, hydrogen, and iron) can provide a useful extension to the traditional discussion of phase diagrams in the general chemistry course. At the same time, it can prepare students for a more illuminating presentation of the concept of equilibrium than is possible through the discussion of gas phase, acid-base, and solubility product equilibria alone.
Gramsch, Stephen A. J. Chem. Educ. 2000, 77, 718.
Equilibrium |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Geochemistry
Illustrating Thermodynamic Concepts Using a Hero's Engine  Pedro L. Muiño and James R. Hodgson
A modified Hero's engine is used to illustrate concepts of thermodynamics and engineering design suitable for introductory chemistry courses and more advanced physical chemistry courses. This demonstration is suitable to illustrate concepts like gas expansion, gas cooling through expansion, conversion of heat to work, interconversion between kinetic energy and potential energy, and feedback mechanisms.
Muio, Pedro L.; Hodgson, James R. J. Chem. Educ. 2000, 77, 615.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
Crystals Out of "Thin Air"  John J. Vollmer
In this experiment crystals of para-dichlorobenzene form readily and efficiently from mothballs in a safe setting, using canning jars with ice cubes. The experiment can serve as an introduction to the concept of molecules, especially when combined with the condensation of liquids and the perception of odors.
Vollmer, John J. J. Chem. Educ. 2000, 77, 486.
Consumer Chemistry |
Descriptive Chemistry |
Phases / Phase Transitions / Diagrams |
Physical Properties
Entropy, Disorder, and Freezing  Brian B. Laird
It is argued that the usual view that entropy is a measure of "disorder" is problematic and that there exist systems at high density, for which packing considerations dominate, where a spatially ordered state has a higher entropy than a disordered one.
Laird, Brian B. J. Chem. Educ. 1999, 76, 1388.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Statistical Mechanics
An Inexpensive Microscale Method for Measuring Vapor Pressure, Associated Thermodynamic Variables, and Molecular Weight  Jason C. DeMuro, Hovanes Margarian, Artavan Mkhikian, Kwang Hi No, and Andrew R. Peterson
Existing methods for measuring vapor pressure are too expensive or not quantitative enough for chemistry classes in secondary schools. Our method measures the vapor pressure inside a bubble trapped in a graduated microtube made from a disposable 1-mL glass pipet.
DeMuro, Jason C.; Margarian, Hovanes; Mkhikian, Artavan; No, Kwang Hi; Peterson, Andrew R. J. Chem. Educ. 1999, 76, 1113.
Aqueous Solution Chemistry |
Gases |
Microscale Lab |
Phases / Phase Transitions / Diagrams
A More Dramatic Container to Crush by Atmospheric Pressure  Robert D. Meyers and Gordon T. Yee
The familiar demonstration of collapsing a can by filling it with water vapor and then sealing it and allowing it to cool is improved by performing it with a 20-L steel solvent drum instead.
Meyers, Robert D.; Yee, Gordon T. J. Chem. Educ. 1999, 76, 933.
Gases |
Phases / Phase Transitions / Diagrams
Correction to The Bobbing Bird  Gesser, Hyman D.
Problem with demonstration if humidity is high and correction for this.
Gesser, Hyman D. J. Chem. Educ. 1999, 76, 757.
Phases / Phase Transitions / Diagrams
The Physics Teacher  Volker B. E. Thomsen
Selected articles with a chemistry emphasis.
Thomsen, Volker B. E. J. Chem. Educ. 1999, 76, 18.
Spectroscopy |
Phases / Phase Transitions / Diagrams
Integrating Computers into the First-Year Chemistry Laboratory: Application of Raoult's Law to a Two-Component System  R. Viswanathan and G. Horowitz
First-year chemistry students are introduced to a spreadsheet program to calculate the boiling points of a two-component solution containing a volatile solute. The boiling points are predicted by combining the Clausius-Clapeyron equation and Raoult's law. A simple experimental setup is used to measure the boiling points of solutions of varying compositions.
Viswanathan, Raji; Horowitz, Gail. J. Chem. Educ. 1998, 75, 1124.
Laboratory Computing / Interfacing |
Physical Properties |
Solutions / Solvents |
Phases / Phase Transitions / Diagrams
Teaching Distillation Knowledge: A Video Film about Distillation Bridging a Gap Between Theory and Practice  Martin J. Goedhart, Hanno van Keulen, Theo M. Mulder, Adri H. Verdonk, and Wobbe De Vos
The authors observed that first year students hardly used their knowledge of phase theory in the design and performance of distillations. They therefore developed a video in which they confront students with the boiling properties of liquid mixtures.
Goedhart, Martin J.; van Keulen, Hanno; Mulder, Theo M.; Verdonk, Adri H.; De Vos, Wobbe. J. Chem. Educ. 1998, 75, 378.
Learning Theories |
Phases / Phase Transitions / Diagrams |
Separation Science |
Liquids |
Physical Properties
Thermochromic Solids  Jeffrey G. Hughes
The preparation of thermochromic compounds and various ways to use them.
Hughes, Jeffrey G. J. Chem. Educ. 1998, 75, 57.
Coordination Compounds |
Phases / Phase Transitions / Diagrams
Experiments of Modern Chemistry: Simultaneous Recording of Multiple Cooling Curves  Ronald A. Bailey, Sudhen B. Desai, Norbert F. Hepfinger, Henry B. Hollinger, Peter S. Locke, Kenneth J. Miller, James J. Deacutis, Donald R. VanSteele
An apparatus for simultaneous recording of six heating/cooling curves of metallic mixtures is described. Data are recorded using computer data acquisition and temperature-time data displayed and printed out for evaluation.
Bailey, Ronald A.; Desai, Sudhen B.; Hepfinger, Norbert F.; Hollinger, Henry B.; Locke, Peter S.; Miller, Kenneth J.; Deacutis, James J.; VanSteele, Donald R. J. Chem. Educ. 1997, 74, 732.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
Air Stream-Assisted Sublimation on a Microscale: A Rapid Procedure Suitable for Sophomore Laboratory  Prem D. Sattsangi
Using familiar apparatus, such as a 3-mL reaction vial, an air condenser, a stream of clean air/nitrogen/argon, an aluminum heating block and a hot plate, several compounds in the microscale amounts (50 mg), with its melting points ranging from 50-240 C, have been successfully sublimed in 40 minutes.
Sattsangi, Prem D. J. Chem. Educ. 1996, 73, A3.
Microscale Lab |
Separation Science |
Phases / Phase Transitions / Diagrams |
Solids |
Physical Properties
A Simple Experiment for Demostration of Phase Diagram of Carbon Dioxide   Van T. Lieu
The experiment involves the compression of small pieces of dry ice and carbon dioxide gas mixture in a 1-mL tuberculin syringe with the needle end of the syringe sealed.
J. Chem. Educ. 1996, 73, 837.
Equilibrium |
Phases / Phase Transitions / Diagrams
Demonstration of the Plasma State  Joachim P. Schreckenbach and Klaus Rabending
Important basic properties of the plasma state are recognized in a simple experimental arrangement described in this article.
Schreckenbach, Joachim P.; Rabending, Klaus. J. Chem. Educ. 1996, 73, 782.
Phases / Phase Transitions / Diagrams |
Conductivity |
Electrolytic / Galvanic Cells / Potentials
Iodine Demonstration of Sublimation  Robert H. Goldsmith
Simple sublimation demonstration using iodine and an overhead projector.
Goldsmith, Robert H. J. Chem. Educ. 1995, 72, 1132.
Main-Group Elements |
Phases / Phase Transitions / Diagrams
Dynamite Demo?  Dale D. Clyde
Caution for boiling-water-with-ice demonstration.
Clyde, Dale D. J. Chem. Educ. 1995, 72, 1130.
Phases / Phase Transitions / Diagrams |
Liquids |
Gases
Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Course   Susan M. Temme
Using differential scanning calorimetry (DSC) in AP chemistry.
Temme, Susan M. J. Chem. Educ. 1995, 72, 916.
Calorimetry / Thermochemistry |
Calorimetry / Thermochemistry |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Thermal Analysis |
Thermodynamics
Osmotic Pressure and Electrochemical Potential--A Parallel   Rainer Bausch
Comparison of osmotic pressure and electrochemical potential.
Bausch, Rainer. J. Chem. Educ. 1995, 72, 713.
Electrochemistry |
Solutions / Solvents |
Membranes |
Transport Properties
Kinetics in Thermodynamic Clothing: Fun with Cooling Curves: A First-Year Undergraduate Chemistry Experiment  Casadonte, Dominick J., Jr.
A series of experiments examining the phenomenon of cooling by producing part of the cooling curve for water at different initial temperatures, focussing on the fact that the curve is nonlinear (unlike the information presented in many texts).
Casadonte, Dominick J., Jr. J. Chem. Educ. 1995, 72, 346.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Kinetics
Put the Body to Them!  Perkins, Robert R.
Examples of chemistry demonstrations involving student participation, including quantized states and systems, boiling point trends, intermolecular vs. intramolecular changes, polar/nonpolar molecules, enantiomers and diastereomers, and chromatography.
Perkins, Robert R. J. Chem. Educ. 1995, 72, 151.
Chromatography |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Molecular Properties / Structure |
Chirality / Optical Activity |
Quantum Chemistry |
Diastereomers |
Enantiomers
The phases of sulfur  Birdwhistell, Kurt R.
Demonstrating the phases of sulfur through viscosity differences.
Birdwhistell, Kurt R. J. Chem. Educ. 1995, 72, 56.
Phases / Phase Transitions / Diagrams |
Physical Properties
Journey around a Phase Diagram  Kildahl, Nicholas K.
This paper deals in depth with questions that arise from phase diagrams in an introductory level chemistry course.
Kildahl, Nicholas K. J. Chem. Educ. 1994, 71, 1052.
Phases / Phase Transitions / Diagrams |
Gases |
Liquids
The Wonder in Spider Thread Chemistry  Glickstein, Neil
The interdisciplinary unit described here leads students into an investigation of the complexities of silk generation through literature, visual arts, natural history, and mythology.
Glickstein, Neil J. Chem. Educ. 1994, 71, 948.
Natural Products |
Phases / Phase Transitions / Diagrams
A Melting Point Depression Activity Using Two Inorganic Substances  DeMeo, Stephen
Measuring melting point depression using iodine and sulfur.
DeMeo, Stephen J. Chem. Educ. 1994, 71, 796.
Physical Properties |
Phases / Phase Transitions / Diagrams
Nickel-Titanium Memory Metal: A "Smart" Material Exhibiting a Solid-State Phase Change and Superelasticity  Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C.
Several simple experiments that illustrate the shape-memory, mechanical, and acoustical properties of Nitinol.
Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C. J. Chem. Educ. 1994, 71, 334.
Solid State Chemistry |
Phases / Phase Transitions / Diagrams |
Materials Science |
Applications of Chemistry
Cryophori, Hot Molecules, and Frozen Nitrogen  Hunter, Paul W. W.; Knoespel, Sheldon L.
Freezing water and nitrogen at low atmospheric pressure.
Hunter, Paul W. W.; Knoespel, Sheldon L. J. Chem. Educ. 1994, 71, 67.
Thermodynamics |
Phases / Phase Transitions / Diagrams
Critical point phase separation in binary liquid mixtures   Bowen, L. H.; Benevides, M. L.
Critical point demonstrations are not usually practical to perform. This author provides a suggestions using hexane, nitrobenzene, triethylamine, water and phenolphthalein.
Bowen, L. H.; Benevides, M. L. J. Chem. Educ. 1993, 70, 775.
Phases / Phase Transitions / Diagrams
Phase diagrams of one-compound systems: What most textbooks don't say, but should!  Peckham, Gavin D.; McNaught, Ian J.
High school and introductory chemistry texts contain errors and omissions in phase diagrams.
Peckham, Gavin D.; McNaught, Ian J. J. Chem. Educ. 1993, 70, 560.
Phases / Phase Transitions / Diagrams
Molecular dynamics simulator  Matthews, G. Peter, Heald, Emerson F.
A review of a computer program that provides a display of molecular motion in a solid, liquid, or gas.
Matthews, G. Peter, Heald, Emerson F. J. Chem. Educ. 1993, 70, 387.
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams
Understanding the fate of petroleum hydrocarbons in the subsurface environment  Chen, Chien T.
This article reviews our current understanding and then specifies the requirements for research that will improve our ability to detect hydrocarbons and predict their fate in the subsurface environment.
Chen, Chien T. J. Chem. Educ. 1992, 69, 357.
Alkanes / Cycloalkanes |
Phases / Phase Transitions / Diagrams
Boiling and freezing simultaneously - with a feeble vacuum pump!   Ellison, Mike
The author uses this demonstration of freezing and boiling at reduced pressure to reinforce concepts about energy effects in phase changes.
Ellison, Mike J. Chem. Educ. 1992, 69, 325.
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Thermodynamics
Vapor pressure demonstrations using a butane lighter  Delumyea, R. Del
The concept of the change of state of matter and particularly the volatitlity of liquids is an important concept taught in introductory chemistry courses.
Delumyea, R. Del J. Chem. Educ. 1992, 69, 321.
Gases |
Physical Properties |
Liquids |
Phases / Phase Transitions / Diagrams
An Ace reducing adapter for screw vials.  Canela, Ramon; Balcells, Merce.
Using this device, solvents contained in vials can be evaporated quickly without problems.
Canela, Ramon; Balcells, Merce. J. Chem. Educ. 1992, 69, 244.
Laboratory Equipment / Apparatus |
Solutions / Solvents |
Phases / Phase Transitions / Diagrams
Freezing point depression in a bottle of soda   Bare, William D.
The "ravenous consumption of soda" by today's students makes an interesting model with which to demonstrate the effect of solute concentration on the freezing point of an aqueous solution.
Bare, William D. J. Chem. Educ. 1991, 68, 1038.
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry
Wet dry ice   Becker, Robert
A method for demonstrating the triple point of carbon dioxide in a safe way.
Becker, Robert J. Chem. Educ. 1991, 68, 782.
Phases / Phase Transitions / Diagrams
A computer-aided optical melting point device  Masterov, Michael; Pierre-Louis, Bredy; Chuang, Raymond
The device should improve the precision of these determinations by eliminating human judgement from the process.
Masterov, Michael; Pierre-Louis, Bredy; Chuang, Raymond J. Chem. Educ. 1990, 67, A75.
Phases / Phase Transitions / Diagrams |
Physical Properties
A vapor pressure demonstration   Sears, Jerry A.
The fact that all liquids exert a vapor pressure is an abstract concept that many students have difficulty understanding. The following demonstration offers dramatic, visual evidence of the pressure exerted by the vapor of a liquid.
Sears, Jerry A. J. Chem. Educ. 1990, 67, 427.
Alkanes / Cycloalkanes |
Phases / Phase Transitions / Diagrams |
Liquids
Heat of solution and colligative properties: An illustration of enthalpy and entropy   Mundell, Donald W.
This demonstration provides a means for challenging the students to interpret some examples where both enthalpy and entropy are possible.
Mundell, Donald W. J. Chem. Educ. 1990, 67, 426.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents
The liquid phase of carbon dioxide: A simple lecture demonstration  Andrews, Lester
Demonstrating that liquid CO2 can exist at higher pressures.
Andrews, Lester J. Chem. Educ. 1989, 66, 597.
Liquids |
Phases / Phase Transitions / Diagrams
Interfacial phenomena   Anwander, Alberto E.; Grant, Richard P. J. S.; Letcher, Trevor M.
The interfaces between liquids, and liquids and gases, have a number of possible permutations that lead to exotic phenomenon such as antibubbles, floating drops, boules, polyaphrons, and hanging air bubbles. The authors give directions for demonstrating these in the classroom or lab.
Anwander, Alberto E.; Grant, Richard P. J. S.; Letcher, Trevor M. J. Chem. Educ. 1988, 65, 608.
Surface Science |
Liquids |
Gases |
Physical Properties |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams
Heating values of fuels: An introductory experiment  Rettich, Timothy R.; Battino, Rubin; Karl, David J.
This experiment is a simple, inexpensive way for students to determine the heats of combustion of common solid, liquid, and gaseous fuels.
Rettich, Timothy R.; Battino, Rubin; Karl, David J. J. Chem. Educ. 1988, 65, 554.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry
Preparation of a simple thermochromic solid  Van Oort, Michiel J. M.
An easy, dramatic, and effective laboratory introduction to solid-solid phase transitions, thermochromism, and color changes associated with changes in ligand coordination suitable for undergraduate students in physical and general chemistry.
Van Oort, Michiel J. M. J. Chem. Educ. 1988, 65, 84.
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Coordination Compounds |
Metals |
Thermodynamics
Computer-Assisted Blackboard (Soltzberg, L. J.)  Kruger, J. D.
8-disk set of programs (Apple II) designed to help a lecturer illustrate gas laws, the Rutherford atomic model, quantization in a Bohr atom, wave-functions and orbitals, heat and changes in state, kinetics and simple reaction mechanisms, equilibrium, acid-base reactions, and titrations.
Kruger, J. D. J. Chem. Educ. 1987, 64, A135.
Acids / Bases |
Gases |
Atomic Properties / Structure |
Phases / Phase Transitions / Diagrams |
Kinetics |
Mechanisms of Reactions |
Equilibrium |
Titration / Volumetric Analysis
Heat of vaporization of nitrogen  Hamlet, Peter
A very simple procedure for measuring the heat of vaporization of nitrogen.
Hamlet, Peter J. Chem. Educ. 1987, 64, 1060.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Calorimetry / Thermochemistry
Demonstration of vapor pressure  Richardson, W. S.
Demonstrating the vapor pressure of several different materials using a water manometer.
Richardson, W. S. J. Chem. Educ. 1987, 64, 968.
Gases |
Phases / Phase Transitions / Diagrams |
Liquids
A safe cell for viewing the critical point of CO2  Botch, Beatrice; Battino, Rubin
Design, construction, and use of a safe cell for viewing the critical point of CO2.
Botch, Beatrice; Battino, Rubin J. Chem. Educ. 1987, 64, 347.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Gases |
Liquids
Carbon dioxide: Its principal properties displayed and discussed  Bent, Henry A.
The principal properties of carbon dioxide demonstrated and discussed.
Bent, Henry A. J. Chem. Educ. 1987, 64, 167.
Physical Properties |
Phases / Phase Transitions / Diagrams |
Gases |
Kinetic-Molecular Theory
Demonstration of condensation-vaporization  Ackerson, Rex D.
Demonstrating the condensation and vaporization of Freon-12 using dry ice.
Ackerson, Rex D. J. Chem. Educ. 1987, 64, 70.
Phases / Phase Transitions / Diagrams |
Physical Properties
Guided inquiry laboratory  Allen, J. B.; Barker, L. N.; Ramsden, J. H.
The primary purpose of this article is to illustrate the concepts involved in converting a traditional "verification" experiment to a "guided inquiry" experiment.
Allen, J. B.; Barker, L. N.; Ramsden, J. H. J. Chem. Educ. 1986, 63, 533.
Phases / Phase Transitions / Diagrams |
Physical Properties
Simple demonstrations of the liquefaction of gases  Marzzacco, Charles J.
This demonstration uses simple hydrocarbons to demonstrate the important ideas of states of matter and changes in state.
Marzzacco, Charles J. J. Chem. Educ. 1986, 63, 436.
Phases / Phase Transitions / Diagrams
Molecular association and structure of hydrogen peroxide  Gigure, Paul A.
The typical textbook treatment of molecular association and structure of hydrogen peroxide, and the implications of these concepts for the physical properties of hydrogen peroxide tend to be oversimplified and inaccurate.
Gigure, Paul A. J. Chem. Educ. 1983, 60, 399.
Molecular Properties / Structure |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Hydrogen Bonding
Inorganic thermochromism: A lecture demonstration of a solid state phase transition  Willett, Roger D.
A description of an activity using thermochromic material is an easy way to demonstrate solid state phase transition.
Willett, Roger D. J. Chem. Educ. 1983, 60, 355.
Phases / Phase Transitions / Diagrams |
Solid State Chemistry |
Coordination Compounds
Vapor pressure apparatus for general chemistry  Long, Joseph W.
A simple apparatus for collecting vapor pressure data; relies on a mercury manometer.
Long, Joseph W. J. Chem. Educ. 1982, 59, 933.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Gases
Collapsing can  Sands, Richard D.
Demonstrates the solubility of ammonia gas in water.
Sands, Richard D. J. Chem. Educ. 1982, 59, 866.
Gases |
Phases / Phase Transitions / Diagrams |
Precipitation / Solubility |
Aqueous Solution Chemistry
A convenient melting/freezing point depression apparatus  Singman, Charles; Sophianopoulos, Judy; Johnson, Ronald
Incorporates an easily read digital thermometer.
Singman, Charles; Sophianopoulos, Judy; Johnson, Ronald J. Chem. Educ. 1982, 59, 682.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Physical Properties
A simple experiment for determining vapor pressure and enthalpy of vaporization of water  Levinson, Gerald S.
It is possible to determine the vapor pressure of water using only a tall beaker, a graduated cylinder, and a thermometer.
Levinson, Gerald S. J. Chem. Educ. 1982, 59, 337.
Water / Water Chemistry |
Gases |
Phases / Phase Transitions / Diagrams
Entropy and its role in introductory chemistry  Bickford, Franklin R.
The concept of entropy as it applies to phase changes.
Bickford, Franklin R. J. Chem. Educ. 1982, 59, 317.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Solids |
Liquids |
Gases
Stormy weather  Taylor, Thomas E.
Question regarding the formation of rain clouds and the exothermic process of condensation.
Taylor, Thomas E. J. Chem. Educ. 1980, 57, 732.
Thermodynamics |
Atmospheric Chemistry |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
Measuring the heat of vaporization using the Clausius-Clapeyron equation  Driscoll, Jerry A.
Uses toluene, methylcyclohexane, or piperidine to measure the heat of vaporization using the Clausius-Clapeyron equation.
Driscoll, Jerry A. J. Chem. Educ. 1980, 57, 667.
Phases / Phase Transitions / Diagrams
Convenient freezing point depression apparatus  Marzzacco, Charles; Collins, Marie
Uses a magnetic stirrer to continuously mix the sample being measured.
Marzzacco, Charles; Collins, Marie J. Chem. Educ. 1980, 57, 650.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
The experimental determination of the heat of vaporization of volatile liquids  Chames, Frances; Farver, Nina; Grieve, Catherine; Lynche, Archie; Mac, Michelle; Rickel, Renee; Sears, Jerry
An experiment whereby the heat of vaporization of a volatile liquid can be determined from an Arrhenius plot.
Chames, Frances; Farver, Nina; Grieve, Catherine; Lynche, Archie; Mac, Michelle; Rickel, Renee; Sears, Jerry J. Chem. Educ. 1980, 57, 362.
Calorimetry / Thermochemistry |
Liquids |
Phases / Phase Transitions / Diagrams
Illustrating chemical concepts through food systems: Introductory chemistry experiments  Chamber, IV, E.; Setser, C. S.
Illustrating the vaporization of liquids, reaction rates, adsorption, properties of solutions, colloidal dispersions, suspensions, and hydrogen ion concentration using foods.
Chamber, IV, E.; Setser, C. S. J. Chem. Educ. 1980, 57, 312.
Food Science |
Applications of Chemistry |
Liquids |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents |
Colloids |
Acids / Bases
Solar energy storage: A demonstration experiment  Kimmel, Howard S.; Tomkins, Reginald P. T.
A demonstration of a phase transition that can be used for heat storage.
Kimmel, Howard S.; Tomkins, Reginald P. T. J. Chem. Educ. 1979, 56, 615.
Phases / Phase Transitions / Diagrams |
Calorimetry / Thermochemistry |
Applications of Chemistry
Lecture demonstration of vanishing meniscus in vapor liquid transition  Duus, H. C.
Shows how the interface between vapor and liquid propane vanishes.
Duus, H. C. J. Chem. Educ. 1979, 56, 614.
Liquids |
Gases |
Phases / Phase Transitions / Diagrams
Toys in the chemistry classroom  Ziegler, Gene R.
Using toys to teach chemical principles; lists common toys and their potential applications.
Ziegler, Gene R. J. Chem. Educ. 1977, 54, 629.
Applications of Chemistry |
Phases / Phase Transitions / Diagrams
Questions [and] Answers  Campbell, J. A.
303-308. Six practical, environmental chemistry application questions and their answers. Q303 submitted by Jerry Ray Dias.
Campbell, J. A. J. Chem. Educ. 1977, 54, 369.
Enrichment / Review Materials |
Metals |
Toxicology |
Coordination Compounds |
Membranes |
Aqueous Solution Chemistry |
Atomic Properties / Structure
Le Chtelier's principle: A laboratory exercise  Friedman, Frederica
Le Chtelier's principle can be demonstrated by showing that water can boil at temperatures below 100C due to reduced vapor pressure.
Friedman, Frederica J. Chem. Educ. 1977, 54, 236.
Equilibrium |
Phases / Phase Transitions / Diagrams |
Gases |
Water / Water Chemistry
Molecular membrane model  Huebner, J. S.
Making a model of a lipid bilayer using polystyrene balls and pipe cleaners.
Huebner, J. S. J. Chem. Educ. 1977, 54, 171.
Membranes |
Lipids |
Molecular Modeling |
Proteins / Peptides |
Dyes / Pigments
What the standard state doesn't say about temperature and phase  Carmichael, Halbert
125. The author develops the concept of the "standard state" in a manner that is more robust than typical textbook treatment.
Carmichael, Halbert J. Chem. Educ. 1976, 53, 695.
Thermodynamics |
Phases / Phase Transitions / Diagrams
A computer program for calculation of boiling points at sub- and super-atmospheric pressures  Davis, Charles C.; Wright, C. David
An interactive program has been written in Fortran IV for the IBM 370/125 which will compute the boiling points of organic compounds at a range of pressures.
Davis, Charles C.; Wright, C. David J. Chem. Educ. 1976, 53, 355.
Laboratory Computing / Interfacing |
Phases / Phase Transitions / Diagrams |
Gases
A computer program for calculation of boiling points at sub- and super-atmospheric pressures  Davis, Charles C.; Wright, C. David
An interactive program has been written in Fortran IV for the IBM 370/125 which will compute the boiling points of organic compounds at a range of pressures.
Davis, Charles C.; Wright, C. David J. Chem. Educ. 1976, 53, 355.
Laboratory Computing / Interfacing |
Phases / Phase Transitions / Diagrams |
Gases
Freezing ice cream and making caramel topping  Plumb, Robert C.; Olson, John Otto; Bowman, Leo H.
The obscurity of "colligative properties" can be dispelled by this ice cream example.
Plumb, Robert C.; Olson, John Otto; Bowman, Leo H. J. Chem. Educ. 1976, 53, 49.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics |
Applications of Chemistry
Footnote to the drinking duck exemplum  Plumb, Robert C.; Cross, Judson B.; Keil, Robert G.
Variations on the drinking bird demonstration.
Plumb, Robert C.; Cross, Judson B.; Keil, Robert G. J. Chem. Educ. 1975, 52, 728.
Thermodynamics |
Phases / Phase Transitions / Diagrams
A timesharing computer program for a general chemistry laboratory  Cutler, Gary L.; Drum, Donald A.
Determining the heat of vaporization of a volatile substance from experimental data using timesharing techniques.
Cutler, Gary L.; Drum, Donald A. J. Chem. Educ. 1975, 52, 529.
Laboratory Management |
Physical Properties |
Phases / Phase Transitions / Diagrams
Phase changes of hexachloroethane  Shavitz, Richard
A demonstration of the sublimation of hexachloroethane.
Shavitz, Richard J. Chem. Educ. 1975, 52, 231.
Phases / Phase Transitions / Diagrams |
Physical Properties
A relevant sublimation experiment  Mitchell, R. H.; Scott, W. A.; West, P. R.
The new "solid state" air fresheners provide the basis of an interesting sublimation experiment for the first assignment of a non-majors laboratory entitled "Physical Constants."
Mitchell, R. H.; Scott, W. A.; West, P. R. J. Chem. Educ. 1974, 51, 683.
Nonmajor Courses |
Phases / Phase Transitions / Diagrams
A practical energy experiment or lecture demonstration  Garin, David L.
Presents two demonstrations: one involves heating different volumes of water on the same heater and measuring their temperatures; the other involves heating different volumes of water on the same heater and calculating the heat of vaporization.
Garin, David L. J. Chem. Educ. 1973, 50, 497.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Thermodynamics
Physical chemistry of the drinking duck  Plumb, Robert C.; Wagner, Robert E.
The operation of the drinking bird is easily understood in terms of a few elementary physical chemistry principles.
Plumb, Robert C.; Wagner, Robert E. J. Chem. Educ. 1973, 50, 213.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Equilibrium
Enthalpy and entropy of evaporation from measured vapor pressure using a programmable desk calculator  McEachern, Douglas M.
A program for a calculator that calculates the heat of evaporation of a solid or a liquid and the corresponding entropy change.
McEachern, Douglas M. J. Chem. Educ. 1973, 50, 190.
Calorimetry / Thermochemistry |
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Chemometrics
Lecture demonstration of a phase transition in a solid  Kennedy, John H.; Chen, Fred
The solid-solid phase transition between two different allotropes of silver iodide.
Kennedy, John H.; Chen, Fred J. Chem. Educ. 1973, 50, 109.
Phases / Phase Transitions / Diagrams |
Solids |
Physical Properties
Faster dinner via molecular potential energy  Modestino, Sherwood A.
The cooking time for a beef roast can be reduced by using a device that acts as a heat pipe.
Modestino, Sherwood A. J. Chem. Educ. 1972, 49, 706.
Heat Capacity |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry |
Consumer Chemistry
Freezing curves for Salol  Laswick, Patty Hall
The convenient freezing temperature of salol (40-43 C) means that students can easily and safely melt the material using warm water
Laswick, Patty Hall J. Chem. Educ. 1972, 49, 537.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Nonmajor Courses |
Kinetic-Molecular Theory
Squeak, skid and glide - The unusual properties of snow and ice  Plumb, Robert C.; Fletcher, N. H.
The Clapeyron equation controls the behavior of ice under varying conditions of temperature and pressure.
Plumb, Robert C.; Fletcher, N. H. J. Chem. Educ. 1972, 49, 179.
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams |
Equilibrium
Squeak, skid and glide - The unusual properties of snow and ice  Plumb, Robert C.; Fletcher, N. H.
The Clapeyron equation controls the behavior of ice under varying conditions of temperature and pressure.
Plumb, Robert C.; Fletcher, N. H. J. Chem. Educ. 1972, 49, 179.
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams |
Equilibrium
Evaporation rate: A beginning chemistry experiment  Feinstein, H. I.; Walters, C.
A simple procedure for determining the evaporation rate of volatile solvents.
Feinstein, H. I.; Walters, C. J. Chem. Educ. 1972, 49, 135.
Phases / Phase Transitions / Diagrams
Entropy Makes Water Run Uphill - in Trees  Stevenson, Philip E.
Explains how Sequoias over 300 feet tall can draw water up to their topmost leaves.
Stevenson, Philip E. J. Chem. Educ. 1971, 48, 837.
Applications of Chemistry |
Thermodynamics |
Plant Chemistry |
Membranes |
Transport Properties |
Solutions / Solvents
Miscellaneous  Alyea, Hubert N.
13 demonstrations, including electrophoresis, electrolysis, corrosion inhibition, endothermic and exothermic reactions, crystals and crystallization, reactions with sodium, and the kinetics of H2O2 decomposition.
Alyea, Hubert N. J. Chem. Educ. 1970, 47, A387.
Electrophoresis |
Dyes / Pigments |
Electrochemistry |
Oxidation / Reduction |
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Reactions |
Crystals / Crystallography |
Kinetics
A classroom demonstration of exothermicity  Boschmann, Erwin
The heat generated by dissolving NaOH in water causes iodine crystals to sublime.
Boschmann, Erwin J. Chem. Educ. 1970, 47, A206.
Calorimetry / Thermochemistry |
Reactions |
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams
General chemistry experiments: Six short, inexpensive procedures  Heit, M. L.; Dauphinee, G. A.
These simple experiments involve conductivity comparisons of derivatives of the acetate ion, paper chromatography, sublimation, the effect of temperature on equilibrium, the detection of I-, and an example of an equilibrium shift.
Heit, M. L.; Dauphinee, G. A. J. Chem. Educ. 1970, 47, 532.
Electrochemistry |
Chromatography |
Phases / Phase Transitions / Diagrams |
Equilibrium |
Oxidation / Reduction
Cloud Caps on High Mountains  Stevenson, Philip E.
The formation of cloud caps on high mountains illustrates cooling in an adiabatic expansion and the change in vapor pressure of a liquid with temperature.
Stevenson, Philip E. J. Chem. Educ. 1970, 47, 272.
Atmospheric Chemistry |
Gases |
Applications of Chemistry |
Phases / Phase Transitions / Diagrams |
Thermodynamics
The snowmaking machines  Plumb, Robert C.
Illustrating principles of thermodynamics in gas expansions and phase changes.
Plumb, Robert C. J. Chem. Educ. 1970, 47, 176.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
Chemical principles exemplified  Plumb, Robert C.
Introduction to a new series, containing "exempla" (brief anecdotes about materials and phenomena which exemplify chemical principles). [Debut]
Plumb, Robert C. J. Chem. Educ. 1970, 47, 175.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Equilibrium |
Photochemistry |
Applications of Chemistry
An attachment for semiautomatic melting point determination  Vogel, George
This simple yet rugged device notifies the experimenter when a small crystalline sample in a capillary tube first begins to melt.
Vogel, George J. Chem. Educ. 1969, 46, 789.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Laboratory Management
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A.
(1) Suggestions for presenting the relationship between the Fahrenheit and Celsius temperature scales. (2) Why are 4s rather than 3d electrons involved in the first and second ionizations of the first row transition elements? - answer by Haight. (3) The basis for the mnemonic ordering of atomic orbitals. (4) What is a liquid-liquid membrane electrode? Is it the same as an ion-selective electrode? - answer by Rechnitz.
Young, J. A.; Malik, J. G.; Haight, Gilbert P., Jr.; Rechnitz, Garry A. J. Chem. Educ. 1969, 46, 444.
Nomenclature / Units / Symbols |
Atomic Properties / Structure |
Transition Elements |
Periodicity / Periodic Table |
Electrochemistry |
Ion Selective Electrodes |
Membranes
Group VI. The Sulfur Family D. Sulfur Dioxide  Alyea, Hubert N.
Seven demonstrations involving sulfur dioxide.
Alyea, Hubert N. J. Chem. Educ. 1968, 45, A977.
Phases / Phase Transitions / Diagrams |
Reactions |
Precipitation / Solubility |
Oxidation / Reduction
A modified micro-boiling-point technique  Bulbenko, George F.
A short note regarding the use of a commercial melting point tube as a fine capillary bubbler for micro-boiling-point determination.
Bulbenko, George F. J. Chem. Educ. 1968, 45, 43.
Phases / Phase Transitions / Diagrams |
Microscale Lab
A simple distillation apparatus  Fenster, A. N.
This short note presents a modified Kugelrohr-type short-path distillation apparatus.
Fenster, A. N. J. Chem. Educ. 1967, 44, 660.
Phases / Phase Transitions / Diagrams |
Laboratory Equipment / Apparatus
Laboratory demonstration of fractional distillation  Coleman, H. M.
The method described here permits a quick analysis of the several distillates by direct visualization of one of the two components of a binary mixture containing toluene and acetone.
Coleman, H. M. J. Chem. Educ. 1967, 44, 476.
Phases / Phase Transitions / Diagrams |
Separation Science
Microboiling point determination at atmospheric pressure  Chaco, M. C.
This microboiling point determination uses a melting-point capillary
Chaco, M. C. J. Chem. Educ. 1967, 44, 474.
Phases / Phase Transitions / Diagrams |
Microscale Lab |
Physical Properties
Capillary tube experiments for introductory chemistry laboratory  Gesser, H. D.; Lithown, Caroline; Brattston, D.; Thompson, Ian
Describes the use of a capillary tube to determine how vapor changes with temperature.
Gesser, H. D.; Lithown, Caroline; Brattston, D.; Thompson, Ian J. Chem. Educ. 1967, 44, 387.
Gases |
Phases / Phase Transitions / Diagrams
States of matter (Continued). D. Solid state  Owens, Charles; Klug, Evangeline B; Wnukowski, Lucian J.; Cooper, Edwin H.; Klug, Evangeline B.; Jackman, Kenneth; Alyea, Hubert N.; Young, James A.
Demonstrations include writing with alum crystals, the rate of crystallization and crystal size, purification by crystallization, growing salol crystals in a polarizer, growing crystal blossoms, the melting point of eutectic (salol + benzophenone) and butectic (p-toluidine + a-naphthol), sublimation of organic substances (methyl oxalate), and the pseudo-sublimation of naphthalene.
Owens, Charles; Klug, Evangeline B; Wnukowski, Lucian J.; Cooper, Edwin H.; Klug, Evangeline B.; Jackman, Kenneth; Alyea, Hubert N.; Young, James A. J. Chem. Educ. 1966, 43, A241.
Crystals / Crystallography |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Solids
Energy B. Heat energy   Klug, Evangeline B.; Hornbeck, Leroy G.; Alyea, Hubert N.
Demonstrations of the heat of crystallization (sodium acetate and Na2S2O3[5H2O]), heat of formation (ZnCl2), heat of hydration (CaO and CuSO4), heat of neutralization, heat of solvation (alcohols), evaporation of ether and methyl chloride, and heat of solution (NH4NO3).
Klug, Evangeline B.; Hornbeck, Leroy G.; Alyea, Hubert N. J. Chem. Educ. 1966, 43, A1079.
Reactions |
Calorimetry / Thermochemistry |
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Precipitation / Solubility
Hard sphere simulation of statistical mechanical behavior of molecules  Plumb, Robert C.
Describes the design and use of a demonstration device to illustrate the kinetic behavior of gases, liquids, and solids.
Plumb, Robert C. J. Chem. Educ. 1966, 43, 648.
Statistical Mechanics |
Gases |
Liquids |
Solids |
Kinetic-Molecular Theory |
Equilibrium |
Phases / Phase Transitions / Diagrams
A broad-surface condenser  Schultz, Harry P.
Describes a light, broad-surface condenser made from two Pyrex watch glasses whose edges have been sealed to one another with epoxy.
Schultz, Harry P. J. Chem. Educ. 1966, 43, 272.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
Melting point depression  Di Pippo', Ascanio G.; Joseph, Miriam
The eutectic temperature of the piperonal / resorcinol system is well below room temperature.
Di Pippo', Ascanio G.; Joseph, Miriam J. Chem. Educ. 1965, 42, A413.
Physical Properties |
Phases / Phase Transitions / Diagrams
Improvised melting point apparatus  Rogers, F. E.
A simple substitute for the Fisher-Johns melting point apparatus can be improvised using Wood's alloy.
Rogers, F. E. J. Chem. Educ. 1965, 42, 619.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
Melting point apparatus  Brown, Richard K.
Describes a simple melting point apparatus that relies on a soldering iron element for heat.
Brown, Richard K. J. Chem. Educ. 1965, 42, 433.
Phases / Phase Transitions / Diagrams |
Laboratory Equipment / Apparatus |
Physical Properties
A modified condensing apparatus for both refluxing and distilling  Goddard, Charles; Henry, Malcolm C.
The condenser described here can be pivoted from a vertical position (refluxing) to one approximately horizontal (distilling) without having to switch the inlet and outlet condensor connections.
Goddard, Charles; Henry, Malcolm C. J. Chem. Educ. 1965, 42, 221.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Laboratory Management
Sulfuric acid and the hydrated hydronium ion  Jurale, Bernard
Describes how the sulfuric acid-water system can be used to establish the identity of the hydronium and hydrated hydronium ions.
Jurale, Bernard J. Chem. Educ. 1964, 41, 573.
Acids / Bases |
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams
A thermal analysis experiment for introductory chemistry  Haworth, Daniel T.; McGrath, J. D.
This experiment involves the preparation of a tin-lead phase diagram.
Haworth, Daniel T.; McGrath, J. D. J. Chem. Educ. 1964, 41, 372.
Thermal Analysis |
Phases / Phase Transitions / Diagrams
The burning sugar cube: Still unexplained?  Doty, Gene
This brief note discusses possible explanations for the melting of a sugar cube where another rubbed with cigarette ashes burns.
Doty, Gene J. Chem. Educ. 1964, 41, 244.
Catalysis |
Oxidation / Reduction |
Phases / Phase Transitions / Diagrams
A eutectic experiment for general chemistry laboratory  Wise, John H.; Shillington, James K.; Watt, William J.; Whitaker, R. D.
This eutectic experiment examines the biphenyl-naphthalene system.
Wise, John H.; Shillington, James K.; Watt, William J.; Whitaker, R. D. J. Chem. Educ. 1964, 41, 96.
Physical Properties |
Phases / Phase Transitions / Diagrams
Demonstration notes: Fog formation  Benson, John E.
Suggests a modification to producing a cloud in a jar.
Benson, John E. J. Chem. Educ. 1963, 40, A477.
Gases |
Liquids |
Phases / Phase Transitions / Diagrams
Freezing point observations on micellar solutions  Hutchinson, Eric.; Tokiwa, Fumikatsu
Describes freezing point observations on solutions of p-methylphenyl glucose and p-butylphenylglucose.
Hutchinson, Eric.; Tokiwa, Fumikatsu J. Chem. Educ. 1963, 40, 472.
Micelles |
Phases / Phase Transitions / Diagrams |
Aqueous Solution Chemistry
Boiling point and molecular weight  Rich, Ronald
This short note points out that molecular weight, by itself, has negligible influence on boiling point.
Rich, Ronald J. Chem. Educ. 1962, 39, 454.
Phases / Phase Transitions / Diagrams |
Physical Properties
Magnetic stirring promotes smooth boiling  Bloomfield, Jordan J.
This short note indicates that the use of a magnetic stirrer effectively prevents violent bumping.
Bloomfield, Jordan J. J. Chem. Educ. 1962, 39, 355.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
Close packing of atoms: A lecture demonstration  Mellor, D. P.; Shuk, V.
This lecture demonstration illustrates the close packing of atoms and the effect of melting; it relies on steel balls and a permanent magnet.
Mellor, D. P.; Shuk, V. J. Chem. Educ. 1962, 39, 130.
Metals |
Phases / Phase Transitions / Diagrams
An apparatus for the continuous production of triple distilled water  Taylor, Jay E.
Presents the design of an apparatus for the continuous production of triple distilled water.
Taylor, Jay E. J. Chem. Educ. 1960, 37, 204.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
Determination of vapor pressure: A general chemistry laboratory experiment  Wolthuis, Enno; Brummel, Roger; Bout, Paul Vanden
Provides a method for obtaining good vapor pressure measurements using simple equipment.
Wolthuis, Enno; Brummel, Roger; Bout, Paul Vanden J. Chem. Educ. 1959, 36, 494.
Gases |
Liquids |
Phases / Phase Transitions / Diagrams
A boiling point apparatus  Lykos, Peter G.
A one-piece boiling-point apparatus that utilizes Cottrell's principle of spraying the thermometer with boiling liquid is described.
Lykos, Peter G. J. Chem. Educ. 1958, 35, 565.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
Letters  Copley, G. N.
The author proposes terms and symbolism to represent different phase changes.
Copley, G. N. J. Chem. Educ. 1958, 35, 528.
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
A temperature sensitive stirring rod: Liquefaction of NO2 as a student experiment  Eddy, Robert D.; Scholes, Samuel R., Jr.
NO2 is generated from Pb(NO3)2 and collected, condensed, and sealed in a hollow stirring rod, which is then observed in hot, cool, and cold water.
Eddy, Robert D.; Scholes, Samuel R., Jr. J. Chem. Educ. 1958, 35, 527.
Gases |
Phases / Phase Transitions / Diagrams
Molecular weight determination by boiling-point elevation: A freshman research project  Wolthuis, Enno; Visser, Marilyn; Oppenhuizen, Irene
Describes an investigation into factors influencing the results of molecular weight determination by boiling-point elevation and the procedure refined through these efforts.
Wolthuis, Enno; Visser, Marilyn; Oppenhuizen, Irene J. Chem. Educ. 1958, 35, 412.
Physical Properties |
Molecular Properties / Structure |
Undergraduate Research |
Phases / Phase Transitions / Diagrams
Nomenclature of phase transition  McDonald, James E.
Discusses the curious situation in which the terminology of chemistry and physics has only five words to describe the six possible transitions between three states of matter.
McDonald, James E. J. Chem. Educ. 1958, 35, 205.
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
Textbook errors: Guest column. XVI: The vapor pressure of hydrated cupric sulfate  Logan, Thomas S.
Examines variability in the values of pressures of water vapor in equilibrium with pairs of cupric sulfate in hydrates quoted in the literature and texts.
Logan, Thomas S. J. Chem. Educ. 1958, 35, 148.
Phases / Phase Transitions / Diagrams |
Equilibrium
The determination of normal boiling points at high altitudes  Levy, Luis; Proano, Oswaldo E.
A pressurized distillation apparatus is useful for the direct determination of the normal boiling point, regardless of the outside atmospheric pressure.
Levy, Luis; Proano, Oswaldo E. J. Chem. Educ. 1957, 34, 440.
Phases / Phase Transitions / Diagrams
A simple melting-point apparatus  Gero, Alexander
The melting-point apparatus described in this paper is distinguished by extreme simplicity of construction and negligible cost.
Gero, Alexander J. Chem. Educ. 1954, 31, 645.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Physical Properties
Letters to the editor  Lash, M. E.
The author clarifies the definition of critical temperature, which is often stated uncritically in textbooks.
Lash, M. E. J. Chem. Educ. 1954, 31, 102.
Gases |
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
The kinetic structure of gases  Slabaugh, W. H.
Describes a model that illustrates the kinetic properties of gases and ii use to demonstrate the effect of temperature changes on the motion of gas particles.
Slabaugh, W. H. J. Chem. Educ. 1953, 30, 68.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams
A method of estimating the boiling points of organic liquids  Pearson, D. E.
Discusses the relationship between the molecular structure of organic liquids and their boiling point.
Pearson, D. E. J. Chem. Educ. 1951, 28, 60.
Liquids |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Molecular Properties / Structure