Journal Articles: 18 results
Colorful Lather Printing  Susan A. S. Hershberger, Matt Nance, Arlyne M. Sarquis, and Lynn M. Hogue
Students explore the chemistry of polar and nonpolar substances and surfactants while marbling paper with shaving cream and food coloring.
Hershberger, Susan A. S.; Nance, Matt; Sarquis, Arlyne M.; Hogue, Lynn M. J. Chem. Educ. 2007, 84, 608A.
Applications of Chemistry |
Consumer Chemistry |
Noncovalent Interactions |
Physical Properties |
Surface Science |
Water / Water Chemistry
From "Greasy Chemistry" to "Macromolecule": Thoughts on the Historical Development of the Concept of a Macromolecule  Pedro J. Bernal
This paper presents a narrative about the historical development of the concept of a macromolecule. It does so to illustrate how the history of science might be used as a pedagogical tool to teach science, particularly to non-majors.
Bernal, Pedro J. J. Chem. Educ. 2006, 83, 870.
Colloids |
Nonmajor Courses |
Polymerization |
Molecular Properties / Structure |
Physical Properties
The Ultrasonic Soda Fountain: A Dramatic Demonstration of Gas Solubility in Aqueous Solutions  John E. Baur and Melinda B. Baur
An ultrasonic bath is used to accelerate the rate at which carbonated beverages equilibrate with the atmosphere. The resulting fountain, which can reach heights in excess of 3 meters, is a dramatic demonstration of the solubility of gases in liquids.
Baur, John E.; Baur, Melinda B. J. Chem. Educ. 2006, 83, 577.
Aqueous Solution Chemistry |
Kinetics |
Physical Properties |
Solutions / Solvents |
Precipitation / Solubility
The Concept of Density  Stephen J. Hawkes
Exercises in d = m/v fail to teach the concept of density as the denseness with which mass is packed. This paper presents non-mathematical illustrations of the concept of density.
Hawkes, Stephen J. J. Chem. Educ. 2004, 81, 14.
Physical Properties
Suspension of Drops of a Liquid in a Column of Water  Ahmad, Jamil
Procedure for producing drops of a liquid suspended in the middle of a column of another liquid, giving the illusion of violating Archimedes' principle.
Ahmad, Jamil J. Chem. Educ. 1995, 72, 178.
Physical Properties |
Aqueous Solution Chemistry
Mechanical Properties of Metals: Experiments with Steel, Copper, Tin, Zinc, and Soap Bubbles  Geselbracht, Margaret J.; Ellis, Arthur B.; Penn, Rona L.; Lisensky, George C.; Stone, Donald S.
Annealing, hardening, and tempering of metals; using bubbles to model the crystalline structure of metals.
Geselbracht, Margaret J.; Ellis, Arthur B.; Penn, Rona L.; Lisensky, George C.; Stone, Donald S. J. Chem. Educ. 1994, 71, 254.
Physical Properties |
Metals |
Crystals / Crystallography
Musical molecular weights revisited  Augustine, Frederick B.
A simple way of comparing the propagation of sound in two different gases.
Augustine, Frederick B. J. Chem. Educ. 1987, 64, 1053.
Gases |
Physical Properties
Physical and chemical properties  Boschmann, Erwin
A series of overhead demonstrations regarding physical and chemical properties.
Boschmann, Erwin J. Chem. Educ. 1987, 64, 891.
Physical Properties |
Liquids |
Precipitation / Solubility |
Magnetic Properties |
Kinetic-Molecular Theory |
Crystals / Crystallography |
An effective demonstration of some properties of real vapors  Metsger, D. Scott
The apparatus described in this article has been found by the authors to be the most effective in vividly illustrating the behavior of a nearly ideal gas to first year chemistry students.
Metsger, D. Scott J. Chem. Educ. 1983, 60, 67.
Laboratory Equipment / Apparatus |
Gases |
Physical Properties |
A discovery experiment. CO2 soap bubble dynamics  Millikan, Roger C.
Students often make a choice of major based upon the view of a subject that they derive from the beginning course. Rare are the chemistry courses that provide the excitement and chance for discovery, while providing a basic understanding of chemistry. This article describes an experiment that does provide such an opportunity.
Millikan, Roger C. J. Chem. Educ. 1978, 55, 807.
Gases |
Physical Properties |
Surface Science
Diphenyl ether. A versatile substance for laboratory demonstrations  Cases, Jaime C.
The purification, properties, and uses of diphenyl ether in a variety of demonstrations.
Cases, Jaime C. J. Chem. Educ. 1973, 50, 420.
Ethers |
Solid State Chemistry |
Physical Properties |
Aromatic Compounds
Density gradients in chemistry teaching  Miller, P. J.
Outlines experiments in which a density gradient may be used to advantage, including the analysis of organic compounds, aqueous solutions, binary mixtures of organic compounds, solids, and solvent extractions.
Miller, P. J. J. Chem. Educ. 1972, 49, 278.
Aqueous Solution Chemistry |
Solids |
Physical Properties |
Solutions / Solvents
The use of a dye in the Dumas method of determining molecular weight  Tibbetts, Donald L.; Salter, E. Mimie
Using iodine to color a liquid in order to determine when its vaporative heating must be stopped.
Tibbetts, Donald L.; Salter, E. Mimie J. Chem. Educ. 1972, 49, 182.
Dyes / Pigments |
Physical Properties |
Molecular Properties / Structure
The chemical pousse-caf  Worley, John David
Production of a density column with a series of liquids with varying densities.
Worley, John David J. Chem. Educ. 1970, 47, A389.
Liquids |
Physical Properties
A simple vacuum apparatus for lecture experiments  Peterson, L. K.; Ruddy, F. H.
Describes a simple vacuum apparatus and examples of its use in lecture situations.
Peterson, L. K.; Ruddy, F. H. J. Chem. Educ. 1968, 45, 742.
Laboratory Equipment / Apparatus |
Gases |
Liquids |
Physical Properties |
Transport Properties |
Stoichiometry |
Calorimetry / Thermochemistry
Letters  Gates, Henry S.
Brings the reader's attention to work done by Petit and Dulong in revising a large number of atomic weights in order to bring all of their reported atomic heat capacities into agreement with the hypothesis that atomic heat capacity is the same for all elements.
Gates, Henry S. J. Chem. Educ. 1964, 41, 575.
Atomic Properties / Structure |
Physical Properties
The physical and chemical character of graphite  Tee, Peter A. H.; Tonge, Brian L.
Examines the physical and chemical character of graphite, its occurrence and manufacture, and uses and future applications.
Tee, Peter A. H.; Tonge, Brian L. J. Chem. Educ. 1963, 40, 117.
Physical Properties
Vapor density apparatus for general chemistry laboratory  Masterton, W. L.; Williams, T. R.
Presents the design of an apparatus that eliminates errors due to absorption and evaporation in the determination of molecular weights of volatile liquids.
Masterton, W. L.; Williams, T. R. J. Chem. Educ. 1959, 36, 528.
Laboratory Equipment / Apparatus |
Gases |
Physical Properties |