TIGER

Journal Articles: 36 results
The Mechanism of Covalent Bonding: Analysis within the Hückel Model of Electronic Structure  Sture Nordholm, Andreas Bäck, and George B. Bacskay
Hckel molecular orbital theory is shown to be uniquely useful in understanding and interpreting the mechanism of covalent bonding. Using the Hckel model it can be demonstrated that the dynamical character of the molecular orbitals is related simultaneously to the covalent bonding mechanism and to the degree of delocalization of the electron dynamics.
Nordholm, Sture; Bäck, Andreas; Bacskay, George B. J. Chem. Educ. 2007, 84, 1201.
Covalent Bonding |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Electronic Structure Principles and Aromaticity  P. K. Chattaraj, U. Sarkar, and D. R. Roy
Electronic structure principles dictate that aromatic molecules are associated with low energy, polarizability, and electrophilicity but high hardness values, while antiaromatic molecules possess the opposite characteristics. These relationships are demonstrated through B3LYP/6-311G** calculations on benzene and cyclobutadiene.
Chattaraj, P. K.; Sarkar, U.; Roy, D. R. J. Chem. Educ. 2007, 84, 354.
Aromatic Compounds |
Molecular Properties / Structure |
Quantitative Analysis |
Theoretical Chemistry |
Alkenes |
Quantum Chemistry
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property  Arnd H. Jungermann
A quantum physical approach relying on energy quantization leads to three simple rules which are the key to understanding the physical property described by molar entropy values.
Jungermann, Arnd H. J. Chem. Educ. 2006, 83, 1686.
Alcohols |
Alkanes / Cycloalkanes |
Carboxylic Acids |
Covalent Bonding |
Ionic Bonding |
Physical Properties |
Quantum Chemistry |
Thermodynamics
Probing the Orbital Energy of an Electron in an Atom  James L. Bills
This article answers an appeal for simple theoretical interpretations of atomic properties. A theoretical snapshot of an atom, showing the screened nuclear charge and the electron to be ionized at its radius of zero kinetic energy, enables anyone to approximate its ionization energy.
Bills, James L. J. Chem. Educ. 2006, 83, 473.
Atomic Properties / Structure |
Main-Group Elements |
Periodicity / Periodic Table |
Physical Properties |
Quantum Chemistry |
Theoretical Chemistry
Why Chemical Reactions Happen (James Keeler and Peter Wothers)  John Krenos
By concentrating on a limited number of model reactions, this book presents chemistry as a cohesive whole by tying together the fundamentals of thermodynamics, chemical kinetics, and quantum chemistry, mainly through the use of molecular orbital interpretations.
Krenos, John. J. Chem. Educ. 2004, 81, 201.
Mechanisms of Reactions |
Thermodynamics |
Kinetics |
Quantum Chemistry |
MO Theory
Understanding and Interpreting Molecular Electron Density Distributions  C. F. Matta and R. J. Gillespie
A simple introduction to the electron densities of molecules and how they can be analyzed to obtain information on bonding and geometry.
Matta, C. F.; Gillespie, R. J. J. Chem. Educ. 2002, 79, 1141.
Covalent Bonding |
Molecular Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Atomic Properties / Structure |
Molecular Modeling |
VSEPR Theory
Response to Lowe's Potential-Energy-Only Models  Lowe, John P.
Discussion of the suitability of a potential-only model for the successive ionization energies of sulfur for an introductory chemistry course.
Lowe, John P. J. Chem. Educ. 2002, 79, 430.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Response to Lowe's Potential-Energy-Only Models (re J. Chem. Educ. 2000, 77, 155-156)  Frank Rioux and Roger L. DeKock
Discussion of the suitability of a potential-only model for the successive ionization energies of sulfur for an introductory chemistry course.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 2002, 79, 429.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Response to Potential-Energy-Only Models (re J. Chem. Educ. 2000, 77, 155-156)  Frank Rioux and Roger L. DeKock
Example of buffering power in deviations of the pH of sodium acetate from calculated values.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 2002, 79, 29.
Acids / Bases |
Carboxylic Acids |
pH |
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Lewis Structures in General Chemistry: Agreement between Electron Density Calculations and Lewis Structures  Gordon H. Purser
The internuclear electron densities of a series of X-O bonds (where X = P, S, or Cl) are calculated using quantum mechanics and compared to Lewis structures for which the formal charges have been minimized; a direct relationship is found between the internuclear electron density and the bond order predicted from Lewis structures in which formal charges are minimized.
Purser, Gordon H. J. Chem. Educ. 2001, 78, 981.
Covalent Bonding |
Computational Chemistry |
Molecular Properties / Structure |
Lewis Structures |
Quantum Chemistry
Have Orbitals Really Been Observed? (re J. Chem. Educ. 2000, 77, 1492-1494)  John C. H. Spence, M. O'Keefe, and J. M. Zuo
Clarification of work described in a previous article.
Spence, John C. H.; O'Keefe, M.; Zuo, J. M. J. Chem. Educ. 2001, 78, 877.
Computational Chemistry |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Have Orbitals Really Been Observed?  Eric R. Scerri
Recent reports claiming to have observed textbook d orbitals are analyzed and it is argued that what was observed indirectly, and not for the first time, was actually electron density. It is also suggested that the tendency to use the terms electron density and orbital to mean the same thing will give rise to confusion in chemical education.
Scerri, Eric R. J. Chem. Educ. 2000, 77, 1492.
Computational Chemistry |
MO Theory |
Quantum Chemistry |
Theoretical Chemistry
Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure  Gordon H. Purser
This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure.
Purser, Gordon H. J. Chem. Educ. 1999, 76, 1013.
Molecular Properties / Structure |
Covalent Bonding |
Computational Chemistry |
Quantum Chemistry |
MO Theory |
Learning Theories |
Lewis Structures |
Molecular Modeling
How Good Is the Quantum Mechanical Explanation of the Periodic System?  Eric R. Scerri
The use of quantum mechanics, or more specifically, orbitals and electronic configurations in teaching general chemistry is now such a widespread trend that it would be utterly futile to try to reverse it. Moreover, orbitals and configurations have been extremely useful in providing a theoretical framework for the unification of a multitude of chemical facts.
Scerri, Eric R. J. Chem. Educ. 1998, 75, 1384.
Periodicity / Periodic Table |
Quantum Chemistry |
Theoretical Chemistry
Deducing the Shell Model from Ionization Energies and the Use of Models in Introductory Chemistry  Ronald J. Gillespie, Richard S. Moog, and James N. Spencer
A major objection of Rioux and DeKock is the statement in the authors' earlier paper that electron repulsion is responsible for the relative ionization energies of H and He. The commentators work clearly shows that a quantum mechanical treatment of this problem reveals that kinetic energy considerations play a crucial role in these values. However, although their criticism is appropriate in the context of this more sophisticated QM treatment, it does not in any way invalidate the authors original paper, the goal of which was to provide a model, namely the shell model, for the electronic structure of atoms that is consistent with experimental ionization energies.
Gillespie, Ronald J.; Moog, Richard S.; Spencer, James N. J. Chem. Educ. 1998, 75, 539.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
The Crucial Role of Kinetic Energy in Interpreting Ionization Energies  Frank Rioux and Roger L. DeKock
The experimental ratio of the ionization energies of H and He is 1.81. The authors show that it is not correct to interpret this ratio using a classical Coulombic potential energy model. Rather a quantum mechanical model is required in which both kinetic and potential energy play a role.
Rioux, Frank; DeKock, Roger L. J. Chem. Educ. 1998, 75, 537.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry
Teaching Chemistry with Electron Density Models  Gwendolyn P. Shusterman and Alan J. Shusterman
This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, developed and used for several years in general chemistry and organic chemistry courses, relies on computer-generated three-dimensional models of electron density distributions.
Shusterman, Gwendolyn P.; Shusterman, Alan J. J. Chem. Educ. 1997, 74, 771.
Learning Theories |
Computational Chemistry |
Molecular Modeling |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Put the Body to Them!  Perkins, Robert R.
Examples of chemistry demonstrations involving student participation, including quantized states and systems, boiling point trends, intermolecular vs. intramolecular changes, polar/nonpolar molecules, enantiomers and diastereomers, and chromatography.
Perkins, Robert R. J. Chem. Educ. 1995, 72, 151.
Chromatography |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Molecular Properties / Structure |
Chirality / Optical Activity |
Quantum Chemistry |
Diastereomers |
Enantiomers
Pictorial analogies VII: Quantum numbers and orbitals   Fortman, John J.
Quantum number n is related to the size of a house, l is related to the shape of a house, and m is compared to the direction the house is facing. Pictures are included.
Fortman, John J. J. Chem. Educ. 1993, 70, 649.
Quantum Chemistry |
Atomic Properties / Structure
The nature of the chemical bond-Once more (2).  Scott, J. M. W.
The mathematical description of chemical phenomena via quantum mechanics is no less obscure than its purely verbal counterpart, for at some point, the abstract mathematics must be translated into terms familiar to chemists or remain at a level of abstraction that is virtually useless to the chemist working at the bench.
Scott, J. M. W. J. Chem. Educ. 1992, 69, 600.
Quantum Chemistry
The nature of the chemical bond-Once more (1).  Edmiston, Clyde.
The original article is a classic case of incorrect conclusions drawn from largely correct facts.
Edmiston, Clyde. J. Chem. Educ. 1992, 69, 600.
Quantum Chemistry |
MO Theory
The correct interpretation of Hund's rule as applied to "uncoupled states" orbital diagrams  Campbell, Mark L.
The application of Hund's rule by general chemistry students is appropriate as long as Hund's rule is interpreted correctly.
Campbell, Mark L. J. Chem. Educ. 1991, 68, 134.
Atomic Properties / Structure |
Quantum Chemistry
There are no such things as orbitals-Act two!  Simons, Jack
What is the role of molecular orbital theory in chemistry instruction?
Simons, Jack J. Chem. Educ. 1991, 68, 131.
MO Theory |
Atomic Properties / Structure |
Quantum Chemistry
The nature of the chemical bond--1990: There are no such things as orbitals!  Ogilivie, J. F.
The author discusses the fundamental principles of quantum mechanics, the laws and theories, and the relationship of quantum-mechanics to atomic and molecular structure, as well as their relevance to chemical education.
Ogilivie, J. F. J. Chem. Educ. 1990, 67, 280.
Quantum Chemistry |
Atomic Properties / Structure |
Molecular Properties / Structure
Introduction to atomic structure: Demonstrations and labs  Ciparick, Joseph D.
This paper presents a sequence of demonstrations and activities that help offer evidence to students to scaffold an understanding of atomic structure.
Ciparick, Joseph D. J. Chem. Educ. 1988, 65, 892.
Atomic Properties / Structure |
Quantum Chemistry
The theoretical emperor is wearing the proper clothing! A detailed defense of teaching quantum chemical ideas in undergraduate chemistry courses   Edmiston, Clyde K.
The author of this provocative opinion piece defends current standard practice in teaching quantum chemistry.
Edmiston, Clyde K. J. Chem. Educ. 1988, 65, 219.
Quantum Chemistry
Is the theoretical emperor really wearing any clothes?   Sanderson, R. T.
The author asserts that general chemistry material both pushes material of doubtful value and omits material that is useful to many.
Sanderson, R. T. J. Chem. Educ. 1986, 63, 845.
Theoretical Chemistry |
Quantum Chemistry |
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Noncovalent Interactions
Developing models: What is the atom really like?  Records, Roger M.
Using physical and computer models to illustrate historical changes in our view of the atom.
Records, Roger M. J. Chem. Educ. 1982, 59, 307.
Atomic Properties / Structure |
Quantum Chemistry
Quantum chemistry  Davenport, Richard P., Capt.
Videocassette on quantum numbers.
Davenport, Richard P., Capt. J. Chem. Educ. 1982, 59, 260.
Quantum Chemistry |
Atomic Properties / Structure
Particles, waves, and the interpretation of quantum mechanics  Christoudouleas, N. D.
A brief description of the conceptual basis of quantum mechanics and the Copenhagen interpretation.
Christoudouleas, N. D. J. Chem. Educ. 1975, 52, 573.
Quantum Chemistry
A general chemistry molecular orbital computer project  Campbell, J. H.
The author introduces a computer project that may aid in helping students learn about linear combination of atomic orbitals.
Campbell, J. H. J. Chem. Educ. 1974, 51, 673.
MO Theory |
Quantum Chemistry
Quantum mechanics in a course required of all freshmen  Barnes, Donald G.
The author describes a new courses which provides a common introductory experience for student who will eventually major in science and those who will not.
Barnes, Donald G. J. Chem. Educ. 1974, 51, 396.
Quantum Chemistry
Educational film loops on atomic and molecular structure  Wahl, Arnold C.; Blukis, Uldis
Describes six films dealing with fundamental principles of atomic and molecular structure.
Wahl, Arnold C.; Blukis, Uldis J. Chem. Educ. 1968, 45, 787.
Atomic Properties / Structure |
Molecular Properties / Structure |
Quantum Chemistry
Basic concepts in quantum mechanics (Kompaneyets, Alexander)  Bent, Henry A.

Bent, Henry A. J. Chem. Educ. 1967, 44, A80.
Quantum Chemistry
Atomic orbitals: Limitations and variations  Cohen, Irwin; Bustard, Thomas
The three most widely used methods of arriving at a set of atomic orbitals afford respective hydrogen-like orbitals, self-consistent field orbitals, and various analytical approximations such as the Slater or Morse orbitals, all of which may differ greatly in shape and size from each other.
Cohen, Irwin; Bustard, Thomas J. Chem. Educ. 1966, 43, 187.
Atomic Properties / Structure |
Quantum Chemistry
Concepts of species and state in chemistry and molecular physics  Goodfriend, P. L.
This article examines the concepts of species and state in chemistry and molecular physics.
Goodfriend, P. L. J. Chem. Educ. 1966, 43, 95.
Quantum Chemistry |
Diastereomers |
Molecular Properties / Structure