TIGER

Journal Articles: 13 results
The Correlation of Binary Acid Strengths with Molecular Properties in First-Year Chemistry  Travis D. Fridgen
This article replaces contradictory explanations for the strengths of different binary acids in first-year chemistry textbooks with a single explanation that uses a BornHaber cycle involving homolyic bond dissociation energies, electron affinities, and ion solvation enthalpies to rationalize trends in the strengths of all binary acids.
Fridgen, Travis D. J. Chem. Educ. 2008, 85, 1220.
Acids / Bases |
Atomic Properties / Structure |
Aqueous Solution Chemistry |
Physical Properties |
Thermodynamics
Factors That Influence Relative Acid Strength in Water: A Simple Model  Michael J. Moran
The pKa's of diverse aqueous acids HA correlate well with the sum of two gas-phase properties: the HA bond-dissociation enthalpy and the electron affinity of the A radical. It is suggested that rather than bond strength alone or bond polarity, the sum of the enthalpies of these two steps is a fairly good indicator of relative acidity.
Moran, Michael J. J. Chem. Educ. 2006, 83, 800.
Acids / Bases |
Aqueous Solution Chemistry |
Atomic Properties / Structure |
Free Radicals
How We Teach Molecular Structure to Freshmen  Michael O. Hurst
Examination of how textbooks discuss various aspects of molecular structure; conclusion that much of general chemistry is taught the way it is for historical and not pedagogical reasons.
Hurst, Michael O. J. Chem. Educ. 2002, 79, 763.
Covalent Bonding |
Atomic Properties / Structure |
Molecular Properties / Structure |
Lewis Structures |
VSEPR Theory |
Valence Bond Theory |
MO Theory
The Genius of Slater's Rules  James L. Reed
With only a few modifications a procedure has been developed that yields the one-electron energies for atoms and ions with a level of detail very well suited for instruction in the structure and properties of atoms. It provides for the computation of very reasonable values for such properties as ionization energies, electron affinities, promotion energies, electronic transitions, and even XPS and ESCA spectra.
Reed, James L. J. Chem. Educ. 1999, 76, 802.
Atomic Properties / Structure |
Quantum Chemistry |
Theoretical Chemistry |
Spectroscopy
Electron Affinities of the Alkaline Earth Metals and the Sign Convention for Electron Affinity  John C. Wheeler
It has been known since 1987, both theoretically and experimentally, that the ion Ca- is stable. It is now certain that Sr-, Ba-, and Ra- are also stable, and accurate values for the electron affinities of Ca-, Sr-, and Ba- have been determined. Recommended values for these electron affinities, in the units commonly employed in introductory texts and with the sign convention used here, are 2.37, 5.03, and 13.95 kJ/mol for Ca, Sr, and Ba, respectively.
Wheeler, John C. J. Chem. Educ. 1997, 74, 123.
Metals |
Atomic Properties / Structure
Periodic chart pedagogy  Yoder, Claude H.; Yoder, Carolyn S.
Questions based upon a hypothetical set of quantum numbers and their relationships; includes answers.
Yoder, Claude H.; Yoder, Carolyn S. J. Chem. Educ. 1990, 67, 759.
Periodicity / Periodic Table |
Atomic Properties / Structure
The periodicity of electron affinity  Myers, R. Thomas
In general, the values of electron affinity for the elements can be understood in terms of their ground state electron configuration, and the screening (effective nuclear charge) exerted on the added electron by the electrons already present in the neutral atom.
Myers, R. Thomas J. Chem. Educ. 1990, 67, 307.
Atomic Properties / Structure |
Periodicity / Periodic Table
Principles of electronegativity Part I. General nature  Sanderson, R. T.
The concept of electronegativity has been modified, expanded, and debated. The concept can be used to help students gain valuable insights and understanding of the cause-and-effect relationship between atomic structure and compound properties. This is the first in a series of articles that explores the important concept of electronegativity.
Sanderson, R. T. J. Chem. Educ. 1988, 65, 112.
Electrochemistry |
Periodicity / Periodic Table |
Noncovalent Interactions |
Atomic Properties / Structure |
Physical Properties |
Enrichment / Review Materials
The experimental values of atomic electron affinities. Their selection and periodic behavior  Chen, E. C. M.; Wentworth, W. E.
Presents experimental values of atomic electron affinities and discusses their determination.
Chen, E. C. M.; Wentworth, W. E. J. Chem. Educ. 1975, 52, 486.
Atomic Properties / Structure |
Periodicity / Periodic Table
Electron affinity. The zeroth ionization potential  Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C.
It is the purpose of this article to present the merits of adopting the terminology zeroth ionization potential to describe the energy change that occurs when a gaseous anion loses an electron.
Brooks, David W.; Meyers, Edward A.; Sicilio, Fred; Nearing, James C. J. Chem. Educ. 1973, 50, 487.
Atomic Properties / Structure |
Nomenclature / Units / Symbols
Interpretation of oxidation-reduction  Goodstein, Madeline P.
Presents an interpretation of the oxidation number system based upon the electronegativity principle, thus removing the adjective "arbitrary" frequently found in the descriptions of oxidation number.
Goodstein, Madeline P. J. Chem. Educ. 1970, 47, 452.
Oxidation / Reduction |
Oxidation State |
Atomic Properties / Structure |
Reactions
The use of tables of data in teaching: The students discover laws about ionization potentials  Haight, G. P., Jr.
Students are asked to see what they can discover in a table of ionization potentials of the elements like that presented in most general chemistry textbooks.
Haight, G. P., Jr. J. Chem. Educ. 1967, 44, 468.
Atomic Properties / Structure |
Periodicity / Periodic Table
A complete table of electronegativities  Little, Elbert J., Jr.; Jones, Mark M.
Provides a complete periodic table of electronegativity values.
Little, Elbert J., Jr.; Jones, Mark M. J. Chem. Educ. 1960, 37, 231.
Periodicity / Periodic Table |
Atomic Properties / Structure