TIGER

Journal Articles: 303 results
Forecasting Periodic Trends: A Semester-Long Team Exercise for Nonscience Majors  John Tierney
Teams of students in a course for nonscience majors identify trends among the properties of elements in the periodic table, use Excel to plot and produce best-fit equations to describe relationships among those properties, and apply the resulting formulas to predict and justify the properties of missing elements.
Tierney, John. J. Chem. Educ. 2008, 85, 1215.
Atomic Properties / Structure |
Computational Chemistry |
Main-Group Elements |
Nonmetals |
Periodicity / Periodic Table |
Metals |
Student-Centered Learning
Construction of a Polyaniline Nanofiber Gas Sensor  Shabnam Virji, Bruce H. Weiller, Jiaxing Huang, Richard Blair, Heather Shepherd, Tanya Faltens, Philip C. Haussmann, Richard B. Kaner, and Sarah H. Tolbert
The objectives of this lab are to synthesize different diameter polyaniline nanofibers and compare them as sensor materials. Its advantages include simplicity and low cost, making it suitable for both high school and college students, particularly in departments with modest means.
Virji, Shabnam; Weiller, Bruce H.; Huang, Jiaxing; Blair, Richard; Shepherd, Heather; Faltens, Tanya; Haussmann, Philip C.; Kaner, Richard B.; Tolbert, Sarah H. J. Chem. Educ. 2008, 85, 1102.
Acids / Bases |
Aromatic Compounds |
Conductivity |
Hydrogen Bonding |
Oxidation / Reduction |
Oxidation State |
pH |
Polymerization |
Synthesis
Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery  Hiromasa Goto, Hiroyuki Yoneyama, Fumihiro Togashi, Reina Ohta, Akitsu Tsujimoto, Eiji Kita, and Ken-ichi Ohshima
The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level.
Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi. J. Chem. Educ. 2008, 85, 1067.
Aromatic Compounds |
Conductivity |
Electrochemistry |
Materials Science |
Oxidation / Reduction |
Polymerization
Sampling the Soils Around a Residence Containing Lead-Based Paints: An X-ray Fluorescence Experiment  Steven J. Bachofer
A soil sampling experiment using field portable instruments was conducted at a pre-1950 construction known to have lead-based paint. Students collected data following regulatory protocols at multiple locations within and outside of the house's dripline, reported their results, and provided the owner advice on methods to minimize contact with contaminated soil.
Bachofer, Steven J. J. Chem. Educ. 2008, 85, 980.
Applications of Chemistry |
Fluorescence Spectroscopy |
Instrumental Methods |
Nonmajor Courses |
Spectroscopy |
Toxicology |
Metals
A Simplified Synthetic Experiment of YBa2Cu3O7–x Superconductor for First-Year Chemistry Laboratory  Jui-Lin She and Ru-Shi Liu
In this first-year chemistry experiment, a simplified synthetic superconductor is prepared to demonstrate high temperature superconductivity and the Meissner effect.
She, Jui-Lin; Liu, Ru-Shi. J. Chem. Educ. 2008, 85, 825.
Materials Science |
Solid State Chemistry |
Superconductivity |
X-ray Crystallography
A Simple Penny Analysis  Nicholas C. Thomas and Stephen Faulk
Describes a simple procedure for determining the zinc composition of U.S. pennies in which the penny zinc core is dissolved in acid and the evolved hydrogen gas is collected by water displacement.
Thomas, Nicholas C.; Faulk, Stephen. J. Chem. Educ. 2008, 85, 817.
Acids / Bases |
Gases |
Gravimetric Analysis |
Metals |
Stoichiometry
Potassium Metal Is Explosive—Do Not Use It!  Andreas Grubelnik, Veronika R. Meyer, Peter Bützer, and Urban W. Schönenberger
The reaction of sodium with water is a spectacular and essential classroom demonstration. Many teachers want to show also the more violent reaction of potassium. We propose not to do so because explosions can happen even before the metal is in contact with water.
Grubelnik, Andreas; Meyer, Veronika R.; Bützer, Peter; Schönenberger, Urban W. J. Chem. Educ. 2008, 85, 634.
Metals
Metal Electrodeposition on an Integrated, Screen-Printed Electrode Assembly  Yieu Chyan and Oliver Chyan
Screen-printed, carbon strip electrodes illustrate the essential concepts of electrochemistry and electrodeposition; their light weight facilitates sensitive measurements of electrodeposited metal, allowing for the exploration of Faraday's law and electrodeposition efficiency.
Chyan, Yieu; Chyan, Oliver. J. Chem. Educ. 2008, 85, 565.
Electrochemistry |
Metals |
Oxidation / Reduction |
Quantitative Analysis
Flames Tests with Flair  Nicholas C. Thomas
When conducted in a suitable fume hood, spraying hydrogen-filled balloons with aqueous solutions of metal salts provides a simple and safe method for demonstrating flame tests.
Thomas, Nicholas C. J. Chem. Educ. 2008, 85, 521.
Atomic Properties / Structure |
Atomic Spectroscopy |
Gases |
Metals
Using Hydrogen Balloons To Display Metal Ion Spectra  James H. Maynard
Describes a procedure for igniting hydrogen-filled balloons containing metal salts to obtain the brightest possible flash while minimizing the quantity of airborne combustion products.
Maynard, James H. J. Chem. Educ. 2008, 85, 519.
Atomic Properties / Structure |
Atomic Spectroscopy |
Gases |
Metals |
Solutions / Solvents
Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Close-Packed Structure  John A. Hawkins, Linda M. Soper, Jeffrey L. Rittenhouse, and Robert C. Rittenhouse
Examines the pedagogical advantages in presenting the primitive rhombohedral unit cell as a means of helping students to gain greater insight into the nature of the cubic close-packed structure.
Hawkins, John A.; Soper, Linda M.; Rittenhouse, Jeffrey L.; Rittenhouse, Robert C. J. Chem. Educ. 2008, 85, 90.
Crystals / Crystallography |
Metals |
Solids
Stuffed Derivatives of Close-Packed Structures  Bodie E. Douglas
Examines a variety of stuffed silica crystal structures in terms of the close-packing of one set of atoms or ions (P sites) with other atoms or ions in tetrahedral (T) or octahedral (O) sites and filled or partially filled layers in the regular pattern, PTOT.
Douglas, Bodie E. J. Chem. Educ. 2007, 84, 1846.
Crystals / Crystallography |
Group Theory / Symmetry |
Materials Science |
Metals |
Solid State Chemistry |
Solids
Modifying Optical Properties of ZnO Films by Forming Zn1-xCoxO Solid Solutions via Spray Pyrolysis  Anne K. Bentley, Gabriela C. Weaver, Cianán B. Russell, William L. Fornes, Kyoung-Shin Choi, and Susan M. Shih
Presents a simple experiment demonstrating the presence of an energy band gap in a semiconductor and its relationship to the material's composition through observed color and UVvis absorption.
Bentley, Anne K.; Weaver, Gabriela C.; Russell, Cianán B.; Fornes, William L.; Choi, Kyoung-Shin; Shih, Susan M. J. Chem. Educ. 2007, 84, 1183.
Materials Science |
Semiconductors |
Solid State Chemistry |
UV-Vis Spectroscopy
Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors  Jeffrey D. Weidenhamer
The analysis for lead through atomic absorption spectroscopy applied to the qualitative screening of circuit boards and the quantitative analysis of environmental samples demonstrates the potential hazards of improper disposal of used electronic equipment.
Weidenhamer, Jeffrey D. J. Chem. Educ. 2007, 84, 1165.
Applications of Chemistry |
Atomic Spectroscopy |
Metals |
Nonmajor Courses |
Quantitative Analysis
Primo Levi and The Periodic Table: Teaching Chemistry Using a Literary Text  Viktoria Klara Lakatos Osorio, Peter Wilhelm Tiedemann, and Paulo Alves Porto
Describes the use of a problem-solving activity with first-year undergraduate students based on an excerpt from Primo Levi's book The Periodic Table.
Osorio, Viktoria Klara Lakatos; Tiedemann, Peter Wilhelm; Porto, Paulo Alves. J. Chem. Educ. 2007, 84, 775.
Metals |
Periodicity / Periodic Table |
Reactions |
Student-Centered Learning
Preparation of CdS Nanoparticles by First-Year Undergraduates  Kurt Winkelmann, Thomas Noviello, and Steven Brooks
First-year undergraduate students prepare bulk and nanometer-sized cadmium sulfide clusters within water-in-oil micelles and calculate particle size using the effective mass model.
Winkelmann, Kurt; Noviello, Thomas; Brooks, Steven. J. Chem. Educ. 2007, 84, 709.
Colloids |
Materials Science |
Nanotechnology |
Micelles |
Semiconductors |
UV-Vis Spectroscopy
Turning Plastic Into Gold: An Analogy To Demonstrate the Rutherford Gold Foil Experiment  Robert B. Gregory
Describes an in-class demonstration designed to be an analogy to the RutherfordGeigerMarsden gold foil experiment that requires only a laser pointer, two picture frames, and a sheet of plastic.
Gregory, Robert B. J. Chem. Educ. 2007, 84, 626.
Atomic Properties / Structure |
Lasers |
Metals
A Simple and Inexpensive Salt Bridge for Demonstrations Involving a Galvanic Cell  Charles A. Liberko
A saturated sponge is a quick, economical, and reliable way to allow ions to transfer between the two half cells in a galvanic cell.
Liberko, Charles A. J. Chem. Educ. 2007, 84, 597.
Conductivity |
Electrochemistry |
Laboratory Equipment / Apparatus
Magnesium  Jay A. Young
The hazards of magnesium are discussed.
Young, Jay A. J. Chem. Educ. 2007, 84, 411.
Laboratory Management |
Metals
Lead  Jay A. Young
The hazards of lead are discussed.
Young, Jay A. J. Chem. Educ. 2007, 84, 225.
Laboratory Management |
Metals
Effectiveness of a MORE Laboratory Module in Prompting Students To Revise Their Molecular-Level Ideas about Solutions  Lydia T. Tien, Melonie A. Teichert, and Dawn Rickey
This study investigates the effectiveness of a ModelObserveReflectExplain (MORE) laboratory module in prompting three different populations of general chemistry students to revise their molecular-level ideas regarding chemical compounds dissolved in water.
Tien, Lydia T.; Teichert, Melonie A.; Rickey, Dawn. J. Chem. Educ. 2007, 84, 175.
Aqueous Solution Chemistry |
Conductivity |
Ionic Bonding |
Solutions / Solvents
Density Visualization  Richard L. Keiter, Whitney L. Puzey, and Erin A. Blitz
Metal rods of high purity for several elements can be used to construct a display in which their relative densities may be assessed visually.
Keiter, Richard L.; Puzey, Whitney L.; Blitz, Erin A. J. Chem. Educ. 2006, 83, 1629.
Metals |
Physical Properties |
X-ray Crystallography
Predicting Inorganic Reaction Products: A Critical Thinking Exercise in General Chemistry  David G. DeWit
Describes a course module designed to afford practice in applying the principles encountered throughout the general chemistry sequence to understanding and predicting chemical reactivity and the products of simple inorganic reactions.
DeWit, David G. J. Chem. Educ. 2006, 83, 1625.
Acids / Bases |
Descriptive Chemistry |
Learning Theories |
Metals |
Nonmetals |
Oxidation / Reduction |
Periodicity / Periodic Table |
Reactions
Dulong and Petit's Law: We Should Not Ignore Its Importance  Mary Laing and Michael Laing
This article describes two student exercises: the determination of the specific heat of a metal and hence its atomic weight and a graphical study of specific heat versus atomic weight for different groups of metals and the confirmation of Dulong and Petit's law.
Laing, Mary; Laing, Michael. J. Chem. Educ. 2006, 83, 1499.
Calorimetry / Thermochemistry |
Heat Capacity |
Metals |
Periodicity / Periodic Table
Copper  Jay A. Young
The hazards of copper are discussed.
Young, Jay A. J. Chem. Educ. 2006, 83, 1460.
Laboratory Management |
Metals
The Synthesis of Copper(II) Carboxylates Revisited  Kevin Kushner, Robert E. Spangler, Ralph A. Salazar, Jr., and J. J. Lagowski
Describes an electrochemical synthesis of copper(II) carboxylates for use in the general chemistry laboratory course for chemistry majors.
Kushner, Kevin; Spangler, Robert E.; Salazar, Ralph A., Jr.; Lagowski, J. J. J. Chem. Educ. 2006, 83, 1042.
Carboxylic Acids |
Coordination Compounds |
Electrochemistry |
Metals |
Solutions / Solvents |
Transition Elements |
Undergraduate Research |
Synthesis
Chemistry of Electronic Gases  James R. Clark
The chemistry of electronic gases can be used in the classroom to provide many interesting examples of molecular structures, chemical reactions, periodic trends, and environmental chemistry.
Clark, James R. J. Chem. Educ. 2006, 83, 857.
Applications of Chemistry |
Gases |
Industrial Chemistry |
Semiconductors |
Solid State Chemistry
What Happens When Chemical Compounds Are Added to Water? An Introduction to the Model–Observe–Reflect–Explain (MORE) Thinking Frame  Adam C. Mattox, Barbara A. Reisner, and Dawn Rickey
This article describes a laboratory designed to help students understand how different compounds behave when dissolved in water, and introduces the modelobservereflectexplain (MORE) thinking frame, an instructional tool that encourages students to connect macroscopic observations with their understanding of the behavior of particles at the molecular level.
Mattox, Adam C.; Reisner, Barbara A.; Rickey, Dawn. J. Chem. Educ. 2006, 83, 622.
Aqueous Solution Chemistry |
Conductivity |
Ionic Bonding |
Solutions / Solvents |
Stoichiometry
The Reaction Quotent Is Unnecessary To Solve Equilibrium Problems. The Limitation of a Qualitative Reasoning—Editor's Note  John W. Moore
Discusses the relationship between the concentration of an aqueous solution of acetic acid, its ion concentration, and its equivalent conductance.
Moore, John W. J. Chem. Educ. 2006, 83, 384.
Aqueous Solution Chemistry |
Equilibrium |
Conductivity |
Mathematics / Symbolic Mathematics
The Reaction Quotent Is Unnecessary To Solve Equilibrium Problems. The Limitation of a Qualitative Reasoning  Rob Lederer
Discusses the relationship between the concentration of an aqueous solution of acetic acid, its ion concentration, and its equivalent conductance.
Lederer, Rob. J. Chem. Educ. 2006, 83, 384.
Aqueous Solution Chemistry |
Equilibrium |
Mathematics / Symbolic Mathematics |
Conductivity
The Reaction Quotent Is Unnecessary To Solve Equilibrium Problems. The Limitation of a Qualitative Reasoning  Paul Matsumoto
Discusses the relationship between the concentration of an aqueous solution of acetic acid, its ion concentration, and its equivalent conductance.
Matsumoto, Paul. J. Chem. Educ. 2006, 83, 383.
Equilibrium |
Mathematics / Symbolic Mathematics |
Aqueous Solution Chemistry |
Conductivity
The Reaction Quotent Is Unnecessary To Solve Equilibrium Problems. The Limitation of a Qualitative Reasoning  Michiel Vogelezang
Discusses the relationship between the concentration of an aqueous solution of acetic acid, its ion concentration, and its equivalent conductance.
Vogelezang, Michiel. J. Chem. Educ. 2006, 83, 383.
Aqueous Solution Chemistry |
Equilibrium |
Mathematics / Symbolic Mathematics |
Conductivity
The Reaction Quotent Is Unnecessary To Solve Equilibrium Problems. The Limitation of a Qualitative Reasoning  Michiel Vogelezang
Discusses the relationship between the concentration of an aqueous solution of acetic acid, its ion concentration, and its equivalent conductance.
Vogelezang, Michiel. J. Chem. Educ. 2006, 83, 383.
Aqueous Solution Chemistry |
Equilibrium |
Mathematics / Symbolic Mathematics |
Conductivity
Teaching Chemistry Laboratory Skills in Industrial Contexts  Julianne M. Braun and Carol White
A recently completed project has produced a compilation of 40 laboratory experiments presented within the contexts of five major industries. This article provides a summary of these experiments, along with a discussion of ancillary materials.
Braun, Julianne M.; White, Carol. J. Chem. Educ. 2006, 83, 353.
Applications of Chemistry |
Industrial Chemistry |
Metals |
Polymerization |
Water / Water Chemistry
Filling in the Hexagonal Close-Packed Unit Cell  Robert C. Rittenhouse, Linda M. Soper, and Jeffrey L. Rittenhouse
The illustrations of the hcp unit cell that are used in textbooks at all levels and also in crystallography and solid-state reference works are incomplete, in that they fail to include fractions of middle layer atomic spheres with centers lying outside of the unit cell.
Rittenhouse, Robert C.; Soper, Linda M.; Rittenhouse, Jeffrey L. J. Chem. Educ. 2006, 83, 175.
Crystals / Crystallography |
Metals |
Solids
Sedimentation Time Measurements of Soil Particles by Light Scattering and Determination of Chromium, Lead, and Iron in Soil Samples via ICP  Patricia Metthe Todebush and Franz M. Geiger
In this two-part general chemistry laboratory activity, students study soil samples from home and from campus. In part one, the samples are placed in water and the suspended colloid fraction is separated using filtration, followed by a determination of colloid sedimentation rates via light scattering. In part two, the solid phase of the soil samples is dissolved in acid and analyzed for chromium, lead, and iron using an inductively coupled plasma spectrometer. The experiment can be expanded to include arsenic. Through these experiments students can draw conclusions about the physical and chemical behavior of solid components in soil, paying particular attention to their propensity for transporting and chemically transforming pollutants in the environment.
Todebush, Patricia Metthe; Geiger, Franz M. J. Chem. Educ. 2005, 82, 1542.
Colloids |
Geochemistry |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Solids |
Surface Science |
Metals
Zinc (dust and bulk)  Jay A. Young
The hazards of zinc (dust and bulk) are discussed.
Young, Jay A. J. Chem. Educ. 2005, 82, 1143.
Laboratory Management |
Metals |
Physical Properties
Revisiting the Electric Pickle Demonstration  Michelle M. Rizzo, Tracy A. Halmi, Alan J. Jircitano, Martin G. Kociolek, and Jerry A. Magraw
The electric pickle demonstration has long been used to explore the atomic emission of sodium ions, which emit a brilliant yelloworange glow. The emission from other metal ions including lithium, potassium, strontium, and barium can also be demonstrated by pickling cucumbers with the corresponding chloride salt.
Rizzo, Michelle M.; Halmi, Tracy A.; Jircitano, Alan J.; Kociolek, Martin G.; Magraw, Jerry A. J. Chem. Educ. 2005, 82, 545.
Atomic Properties / Structure |
Metals
More Elementary Riddles  Kevin Cunningham
Four chemical riddles are presented, each highlighting an element (hydrogen, arsenic, selenium, and beryllium) and some of its significant properties. Each riddle is accompanied by a full explanation of its clues and their relationship to characteristics of that element.
Cunningham, Kevin. J. Chem. Educ. 2005, 82, 539.
Main-Group Elements |
Metals |
Nonmetals |
Periodicity / Periodic Table |
Physical Properties
Cadmium  Jay A. Young
The hazards of cadmium are discussed.
Young, Jay A. J. Chem. Educ. 2005, 82, 521.
Metals |
Laboratory Equipment / Apparatus
Lithium  Jay A. Young
The hazards of lithium are discussed.
Young, Jay A. J. Chem. Educ. 2005, 82, 520.
Metals |
Laboratory Equipment / Apparatus
Mercury  Jay A. Young
The hazards of mercury are discussed.
Young, Jay A. J. Chem. Educ. 2005, 82, 203.
Metals |
Laboratory Management
Color My Nanoworld  Adam D. McFarland, Christy L. Haynes, Chad A. Mirkin, Richard P. Van Duyne, and Hilary A. Godwin
This activity begins with the synthesis of 13 nm-diameter gold nanoparticles by reduction of a gold salt. The students use the resulting nanoparticle solution to explore the size-dependent optical properties of gold nanoparticles.
McFarland, Adam D.; Haynes, Christy L.; Mirkin, Chad A.; Van Duyne, Richard P.; Godwin, Hilary A. J. Chem. Educ. 2004, 81, 544A.
Colloids |
Materials Science |
Nanotechnology |
UV-Vis Spectroscopy |
Metals
Copper Metal from Malachite circa 4000 B.C.E.  Gordon T. Yee, Jeannine E. Eddleton, and Cris E. Johnson
The experiment starts with a naturally occurring ore, malachite, essentially pure Cu2CO3(OH)2, which is readily available at modest cost in bead form from jewelry stores. Using only a Bunsen burner, a porcelain crucible, and a charcoal briquette, the experiment demonstrates two steps in the ancient processing of copper ore: roasting and reduction. The product is a shiny copper metal bead that can then be hammered, polished, and shown to be electrically conductive.
Yee, Gordon T.; Eddleton, Jeannine E.; Johnson, Cris E. J. Chem. Educ. 2004, 81, 1777.
Metals |
Oxidation / Reduction |
Solids
Tin  Jay A. Young
The hazards of tin are discussed.
Young, Jay A. J. Chem. Educ. 2004, 81, 1562.
Metals |
Laboratory Equipment / Apparatus
Demonstrating and Measuring Relative Molar Magnetic Susceptibility Using a Neodymium Magnet  Charles J. Malerich and Patrica K. Ruff
A method for demonstrating and measuring the magnetic attraction between a paramagnetic substance and a neodymium magnet is described and evaluated. The experiment measures the maximum angle that the magnet can deflect a paramagnetic compound from the vertical. The apparatus to make this measurement is easy to set up and is low-cost.
Malerich, Charles J.; Ruff, Patrica K. J. Chem. Educ. 2004, 81, 1155.
Magnetic Properties |
Metals |
Transition Elements |
Computational Chemistry
Isolation of Copper from a 5–Cent Coin. An Example of Electrorefining  Steven G. Sogo
The United States 5cent coin, commonly known as a "nickel", is made of an alloy containing 75% copper and 25% nickel. The experiment is a visually appealing illustration of the process of electrorefining using selective reduction.
Sogo, Steven G. J. Chem. Educ. 2004, 81, 530.
Electrochemistry |
Oxidation / Reduction |
Metals
Calcium  Jay A. Young
Properties, hazards, and storage requirements for calcium.
Young, Jay A. J. Chem. Educ. 2004, 81, 479.
Laboratory Management |
Physical Properties |
Metals |
Laboratory Equipment / Apparatus
Silver  Jay A. Young
Properties, hazards, and storage requirements for silver.
Young, Jay A. J. Chem. Educ. 2004, 81, 478.
Laboratory Management |
Physical Properties |
Metals |
Laboratory Equipment / Apparatus
The Preparation and Testing of a Common Emulsion and Personal Care Product: Lotion  Suzanne T. Mabrouk
First-year chemistry students can readily prepare lotion from the emulsification of deionized water, humectant, emulsifier, emollients, thickener, and preservative. Three different lotion formulations are prepared so that students can study the effects of different emulsifiers and emollients on the quality of the final product. The purpose of the ingredients is discussed.
Mabrouk, Suzanne T. J. Chem. Educ. 2004, 81, 83.
Colloids |
Conductivity |
Consumer Chemistry |
Industrial Chemistry |
Nonmajor Courses |
Applications of Chemistry
Low-Voltage Conductivity Device. Editor's Note about Using Conductivity Devices in Nonaqueous Solutions  Ed Vitz and Melissa Kistler
A conductivity demonstration device is described which operates on 12V and yet will illuminate a bulb brightly enough for use in a lecture hall, even when used with solutions of low conductivity.
Vitz, Ed; Kistler, Melissa. J. Chem. Educ. 2004, 81, 63.
Conductivity |
Laboratory Equipment / Apparatus
Determination of Avogadro's Number by Improved Electroplating  Carlos A. Seiglie
Electroplating procedure to accurately determine Avogadro's number or Faraday's constant.
Seiglie, Carlos A. J. Chem. Educ. 2003, 80, 668.
Electrochemistry |
Metals |
Quantitative Analysis |
Stoichiometry
A Concept-Based Environmental Project for the First-Year Laboratory: Remediation of Barium-Contaminated Soil by In Situ Immobilization  Heather D. Harle, Phyllis A. Leber, Kenneth R. Hess, and Claude H. Yoder
Simulating the detection and remediation of lead-contaminated soil using barium.
Harle, Heather D.; Leber, Phyllis A.; Hess, Kenneth R.; Yoder, Claude H. J. Chem. Educ. 2003, 80, 561.
Synthesis |
Stoichiometry |
Precipitation / Solubility |
Qualitative Analysis |
Quantitative Analysis |
Metals |
Aqueous Solution Chemistry |
Gravimetric Analysis |
Applications of Chemistry
Chemical Equilibria Involving Reactions of Silver(I) Ions  Roberto Zingales
Demonstrating a series of reactions involving silver(I) ions.
Zingales, Roberto. J. Chem. Educ. 2003, 80, 534.
Equilibrium |
Reactions |
Aqueous Solution Chemistry |
Qualitative Analysis |
Metals |
Precipitation / Solubility
Micelle-Mediated Extraction of Heavy Metals from Environmental Samples: An Environmental Green Chemistry Laboratory Experiment  Dimosthenis L. Giokas, Evangelos K. Paleologos, and Miltiades I. Karayannis
A laboratory focussing on the determination of metallic elements in drinking water through cloud-point extraction.
Giokas, Dimosthenis L.; Paleologos, Evangelos K.; Karayannis, Miltiades I. J. Chem. Educ. 2003, 80, 61.
Atomic Spectroscopy |
Metals |
Micelles |
Separation Science |
Green Chemistry |
Qualitative Analysis |
Quantitative Analysis
Simple Measurement of Magnetic Susceptibility with a Small Permanent Magnet and a Top-Loading Electronic Balance  Yoshinori Itami and Kozo Sone
Measuring magnetic susceptibility of solid transition metal salts using a simple, inexpensive, and easy-to-handle device.
Itami, Yoshinori; Sone, Kozo. J. Chem. Educ. 2002, 79, 1002.
Atomic Properties / Structure |
Magnetic Properties |
Transition Elements |
Laboratory Equipment / Apparatus |
Metals
Determination of the Empirical Formula of a Copper Oxide Salt Using Two Different Methods  Michael J. Sanger and Kimberly Geer
Converting copper oxide into copper metal using two different methods: reduction of copper oxide to copper metal using methane gas, and reduction of copper oxide to copper metal using aluminum in aqueous solution; the results are used to determine the empirical formula of copper oxide.
Sanger, Michael J.; Geer, Kimberly. J. Chem. Educ. 2002, 79, 994.
Oxidation / Reduction |
Stoichiometry |
Oxidation / Reduction |
Aqueous Solution Chemistry |
Metals
Iron, Nature's Universal Element: Why People Need Iron and Animals Make Magnets
   by Eugenie Vorburger Mielczarek and Sharon Bertsch McGrayne
  Linda H. Doerrer
History of iron and the role it plays in living systems.
Doerrer, Linda H. J. Chem. Educ. 2002, 79, 806.
Metals |
Geochemistry
The Chemical Adventures of Sherlock Holmes: The Case of Three  Thomas R. Rybolt and Thomas G. Waddell
A chemical mystery emphasizing simple physical properties (density) and chemical characterization of metals, featuring Sherlock Holmes and Dr. Watson.
Rybolt, Thomas R.; Waddell, Thomas G. J. Chem. Educ. 2002, 79, 448.
Enrichment / Review Materials |
Forensic Chemistry |
Metals |
Physical Properties
Chemical Laboratory Information Profile: Sodium  Jay A. Young
Properties, hazards, and storage requirements for sodium.
Young, Jay A. J. Chem. Educ. 2002, 79, 425.
Physical Properties |
Laboratory Management |
Metals
The Electrolytic Recovery of Copper from Brass. A Laboratory Simulation of an Industrial Application of Electrical Energy  Domenico Osella, Mauro Ravera, Cristina Soave, and Sonia Scorza
Procedure demonstrating the electrolytic purification of copper.
Osella, Domenico; Ravera, Mauro; Soave, Cristina; Scorza, Sonia. J. Chem. Educ. 2002, 79, 343.
Electrochemistry |
Materials Science |
Metals
Semimetallicity?  Stephen J. Hawkes
Analysis of whether semimetals are semiconductors and distinctions between metals, semimetals, and nonmetals.
Hawkes, Stephen J. J. Chem. Educ. 2001, 78, 1686.
Atomic Properties / Structure |
Metals |
Periodicity / Periodic Table |
Nonmetals |
Physical Properties |
Solid State Chemistry |
Conductivity
A Discovery-Based Experiment Illustrating How Iron Metal Is Used to Remediate Contaminated Groundwater  Barbara A. Balko and Paul G. Tratnyek
Procedure in which students investigate the chemistry of iron-permeable reactive barriers and their application to the remediation of contaminated groundwater.
Balko, Barbara A.; Tratnyek, Paul G. J. Chem. Educ. 2001, 78, 1661.
Kinetics |
Oxidation / Reduction |
Water / Water Chemistry |
Metals |
Applications of Chemistry |
Aqueous Solution Chemistry
Humic Acids: Marvelous Products of Soil Chemistry  Geoffrey Davies, Elham A. Ghabbour, and Cornelius Steelink
Classification, physical and chemical characteristics, formation, structure and sources of humic substances.
Davies, Geoffrey; Ghabbour, Elham A.; Steelink, Cornelius. J. Chem. Educ. 2001, 78, 1609.
Agricultural Chemistry |
Metals |
Natural Products |
Plant Chemistry |
Water / Water Chemistry |
Applications of Chemistry
Acid-Base Indicators: A New Look at an Old Topic  Ara S. Kooser, Judith L. Jenkins, and Lawrence E. Welch
An acid-base titration in which students choose the best indicator from a set of possibilities using a conductivity probe to help them make an informed choice.
Kooser, Ara S.; Jenkins, Judith L.; Welch, Lawrence E. J. Chem. Educ. 2001, 78, 1504.
Acids / Bases |
Conductivity |
Dyes / Pigments |
Laboratory Computing / Interfacing |
Titration / Volumetric Analysis |
Quantitative Analysis
The Purification of Water by Freeze-Thaw or Zone Melting  James Oughton, Silas Xu, and Rubin Battino
Quantitative investigation of the purification of slat water solutions through the process of partial freezing.
Oughton, James; Xu, Silas; Battino, Rubin. J. Chem. Educ. 2001, 78, 1373.
Conductivity |
Phases / Phase Transitions / Diagrams |
Separation Science |
Quantitative Analysis |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Solutions / Solvents
The Joy of Color in Ceramic Glazes with the Help of Redox Chemistry  Allen A. Denio
The chemistry of pottery, ceramic glazes, and the firing process.
Denio, Allen A. J. Chem. Educ. 2001, 78, 1298.
Oxidation / Reduction |
Geochemistry |
Applications of Chemistry |
Dyes / Pigments |
Metals
Melting Point, Density, and Reactivity of Metals  Michael Laing
Using melting points and densities to the predict the relative reactivities of metals.
Laing, Michael. J. Chem. Educ. 2001, 78, 1054.
Descriptive Chemistry |
Metals |
Periodicity / Periodic Table |
Physical Properties |
Reactions |
Thermodynamics |
Calorimetry / Thermochemistry |
Electrochemistry
The Conductivity of Molten Materials  Monica E. Thomas, Audrey A. Cleveland, Rubin Battino, David A. Dolson, and Michael R. Hall
Demonstrating the conductivity of molten ionic compounds; includes apparatus for demonstrating conductivity and suggested list of selected test materials and their melting points.
Thomas, Monica E.; Cleveland, Audrey A.; Battino, Rubin; Dolson, David A.; Hall, Michael R. J. Chem. Educ. 2001, 78, 1052.
Conductivity |
Metals |
Ionic Bonding |
Physical Properties
Is Every Transparent Liquid Water?  Muhamad Hugerat and Sobhi Basheer
Comparisons of the properties (polarity, electric conductivity, color change due to the presence of an acid-base indicator, and electrolysis) of three transparent and colorless liquids: water, glycerol, hexane, and ethanol.
Hugerat, Muhamad; Basheer, Sobhi. J. Chem. Educ. 2001, 78, 1041.
Acids / Bases |
Electrochemistry |
Oxidation / Reduction |
Conductivity |
Electrophoresis
LEDs: New Lamps for Old and a Paradigm for Ongoing Curriculum Modernization  S. Michael Condren, George C. Lisensky, Arthur B. Ellis, Karen J. Nordell, Thomas F. Kuech, and Steve Stockman
Summary of the key points of a white paper on LEDs as potential replacements for a significant fraction of vehicle, display, home, and workplace lighting, with substantial safety and environmental conserving benefits.
Condren, S. Michael; Lisensky, George C.; Ellis, Arthur B.; Nordell, Karen J.; Kuech, Thomas F.; Stockman, Steve. J. Chem. Educ. 2001, 78, 1033.
Materials Science |
Nanotechnology |
Semiconductors |
Solid State Chemistry |
Applications of Chemistry
Observations on Lemon Cells  Jerry Goodisman
The lemon cell, consisting of pieces of two different metals stuck into a lemon or other fruit, is pictured in many general chemistry textbooks without being discussed; manuscript describes simple experiments, suitable for the general chemistry laboratory, which elucidate how this kind of cell works.
Goodisman, Jerry. J. Chem. Educ. 2001, 78, 516.
Electrochemistry |
Metals |
Electrolytic / Galvanic Cells / Potentials
Application of Light Emitting Diodes to Chemical Analysis: Determination of Copper in Water  Juan D. Mozo, Manuel Galán, and Emilio Roldán
In this paper a photometer based on a light emitting diode is described. The light source is a 5-mm LED, which can be replaced in order to select the emission wavelength. A fiber optic is used to conduct light from the LED to the sample, and an inexpensive solid-state light-to-voltage optical sensor is used as a detector. Using a yellow LED (peak emission = 595 nm), copper(II) in the mg/L range can be accurately analyzed.
Mozo, Juan D.; Galán, Manuel; Roldán, Emilio. J. Chem. Educ. 2001, 78, 355.
Laboratory Equipment / Apparatus |
Metals |
Quantitative Analysis |
Undergraduate Research
A Chemical-Medical Mystery: Gold Jewelry and Black Marks on Skin  Barbara B. Kebbekus
Gold jewelry at times makes a black mark or smudge on skin. This may be caused by abrasive powders on the skin (e.g. zinc oxide) but the phenomenon may also be caused by other skin conditions, possibly the presence of chloride ion, acidity, or sulfur-containing amino acids.
Kebbekus, Barbara B. J. Chem. Educ. 2000, 77, 1298.
Bioorganic Chemistry |
Geochemistry |
Hormones |
Metals |
Solids |
Applications of Chemistry
Metallurgy in the Laboratory: Preparation of Pure Antimony  Brooke L. O'Klatner and Daniel Rabinovich
The preparation of pure antimony is readily accomplished on a laboratory scale by the high-temperature reduction of antimony trioxide with potassium cyanide. The product is obtained in almost quantitative yield (up to 98%) using a procedure that is simple, inexpensive, and quick.
O'Klatner, Brooke L.; Rabinovich, Daniel. J. Chem. Educ. 2000, 77, 251.
Metals |
Metallurgy
Photochemistry and Pinhole Photography: An Interdisciplinary Experiment  Angeliki A. Rigos and Kevin Salemme
This interdisciplinary activity combines chemistry and art through the construction and use of a pinhole camera. We focused on the chemistry of the black and white photographic process as the science component of this activity. The reactions involved are good examples of photochemistry and multiphase chemical reactions, since the light sensitive materials (silver halides) are in the form of a gelatin emulsion of microscopic crystals.
Rigos, Angeliki A.; Salemme, Kevin. J. Chem. Educ. 1999, 76, 736A.
Metals |
Photochemistry |
Oxidation State |
Nonmajor Courses |
Applications of Chemistry
A Further Demonstration of Sulfite-Induced Redox Cycling of Metal Ions Initiated by Shaking  Horacio D. Moya, Eduardo Almeida Neves, and Nina Coichev
Details of a fascinating laboratory demonstration of the sulfite-induced redox cycling of Ni(II)/Ni(III), which is initiated by shaking the solution in the presence of air, are reported. The balance between the sulfite and oxygen concentration controls the direction of the overall reaction.
Moya, Horacio D.; Neves, Eduardo Almeida; Coichev, Nina. J. Chem. Educ. 1999, 76, 930.
Oxidation / Reduction |
Metals |
Catalysis
Chromium Pollution: An Experiment Adapted for Freshman Engineering Students  Penny Seymour
Students analyze water samples contaminated with Cr(VI) to determine which of several industries appears to be the source of the contamination. The adaptation involves requiring the students to develop the analytic procedure themselves, rather than working from a prepared set of instructions, and then to report the results as a letter plus appendices, including general recommendations for remedial action, directed to the client who contracted the investigation.
Seymour, Penny. J. Chem. Educ. 1999, 76, 927.
Metals |
Applications of Chemistry
Solution Conductivity Apparatus  Daniel T. Haworth, Mark R. Bartelt, and Michael J. Kenney
A solution conductivity apparatus is described that can be used to measure the relative conductivity of various solutions. The apparatus can be used as either a hand-held model employing a 10-element LED display or a lecture-hall demonstration model employing a 10-incandescent-lamp array.
Haworth, Daniel T.; Bartelt, Mark R.; Kenney, Michael J. J. Chem. Educ. 1999, 76, 625.
Laboratory Equipment / Apparatus |
Conductivity |
Solutions / Solvents |
Aqueous Solution Chemistry
Why Gold and Copper Are Colored but Silver Is Not  Ariel H. Guerrero, Héctor J. Fasoli, and José Luis Costa
Interpretation of the yellow color of gold based on an adequate external electronic configuration (s1d10/s2d9) and s and d sublevels close enough to allow transition between them to proceed significantly.
Guerrero, Ariel H.; Fasoli, Hctor J.; Costa, Jos Luis. J. Chem. Educ. 1999, 76, 200.
Periodicity / Periodic Table |
Metals |
Descriptive Chemistry
Letters  
Suggestions for additional chemistry experiments involving pennies.
J. Chem. Educ. 1998, 75, 1362.
Metals
Designing a Self-Contained Qualitative Analysis Test for Transition Metal Ions  Y. S. Serena Tan, B. H. Iain Tan, Hian Kee Lee, Yaw Kai Yan, and T. S. Andy Hor
A challenging self-contained qualitative analysis test for transition metal compounds comprising nine unknowns whereby the unknown solutions can be systematically identified, without relying on external reagents, by inter-mixing the unknown samples. The names of the samples are made known, but their correspondence with the samples is concealed. A representative range of transition metal compounds was selected, together with two complementary main-group compounds. This "9-bottle" test encourages logical deduction and analytical thinking.
Y. S. Serena Tan, B. H. Iain Tan, Hian Kee Lee, Yaw Kai Yan, and T. S. Andy Hor. J. Chem. Educ. 1998, 75, 456.
Qualitative Analysis |
Transition Elements |
Metals
The ThermobileTM: A Nitinol-Based Scientific Toy  George B. Kauffman and Isaac Mayo
The "memory metal" Thermobile toy is highlighted.
Kauffman, George B.; Mayo, Isaac. J. Chem. Educ. 1998, 75, 313.
Materials Science |
Metals |
Applications of Chemistry
Complexometric Titrations: Competition of Complexing Agents in the Determination of Water Hardness with EDTA  M. Cecilia Yappert and Donald B. DuPre
The competition of complexing agents for the same metal ion and the formation of colored metal-ion complexes is demonstrated with the use of an overhead projector. This demonstration can be used to emphasize both the relevance of the relative values of formation constants in the complexation of metal cations and the applicability of complexometric titrations in quantitative chemical analysis.
Yappert, M. Cecilia; DuPre, Donald B. J. Chem. Educ. 1997, 74, 1422.
Equilibrium |
Coordination Compounds |
Qualitative Analysis |
Quantitative Analysis |
Titration / Volumetric Analysis |
Aqueous Solution Chemistry |
Water / Water Chemistry |
Metals
What Is a "Heavy Metal"?  Stephen J. Hawkes
Heavy metals are the transition and post-transition metals.
Hawkes, Stephen J. J. Chem. Educ. 1997, 74, 1374.
Metals |
Transition Elements
Solid State Structures (Abstract of Volume 5D, Number 2)  Ludwig A. Mayer
Solid State Structures is a collection of image files that allows the user to display, rotate, and examine individually a large collection of 3-D structure models.
Mayer, Ludwig A. J. Chem. Educ. 1997, 74, 1144.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
A Window on the Solid State: Part I: Structures of Metals; Part II: Unit Cells of Metals; Part III: Structures of Ionic Solids; Part IV: Unit Cells of Ionic Solids (Abstract of Volume 5D, Number 2)  William R. Robinson and Joan F. Tejchma
A Window on the Solid State helps students understand and instructors present the structural features of solids. The package provides a tour of the structures commonly used to introduce features of the solid state.
Robinson, William R.; Tejchma, Joan F. J. Chem. Educ. 1997, 74, 1143.
Solid State Chemistry |
Metals |
Solids |
Molecular Properties / Structure |
Molecular Modeling
Constructing Chemical Concepts through a Study of Metals and Metal Ions: Guided Inquiry Experiments for General Chemistry  Ram S. Lamba, Shiva Sharma, and Baird W. Lloyd
A set of inquiry-based experiments designed to help students develop an understanding of basic chemical concepts within the framework of studying the properties and reactivity of metals and metal ions.
Lamba, Ram S.; Sharma, Shiva; Lloyd, Baird W. J. Chem. Educ. 1997, 74, 1095.
Electrochemistry |
Metals |
Oxidation / Reduction |
Stoichiometry
Iron as Nutrient and Poison  N. M. Senozan and M. P. Christiano
Iron containing compounds of the body and the ingestion and elimination of iron, the function and transport of this metal among different sites and substances of the body, and biochemical defects and nutritional habits that lead to excessive accumulation of iron and some unexpected consequences of this accumulation are described.
Senozan, N. M.; Christiano, M. P. J. Chem. Educ. 1997, 74, 1060.
Bioinorganic Chemistry |
Bioorganic Chemistry |
Food Science |
Metals |
Vitamins |
Toxicology |
Nutrition |
Applications of Chemistry |
Descriptive Chemistry
The Sodium Rainbow  Miroslav Proksa
A new approach to the reaction of sodium with water to produce a "rainbow" of colors.
Proksa, Miroslav. J. Chem. Educ. 1997, 74, 942.
Acids / Bases |
Metals |
Oxidation / Reduction
Chemistry for the Visually Impaired  Judy L. Ratliff
Methods used to try to provide a valuable experience for visually impaired students in a general education or an introductory chemistry class are discussed. Modifications that can be made cheaply and with little time commitment which will allow visually impaired students to participate productively in the laboratory are examined.
Ratliff, Judy L. J. Chem. Educ. 1997, 74, 710.
Laboratory Equipment / Apparatus |
Nonmajor Courses |
Minorities in Chemistry |
Conductivity |
Laboratory Equipment / Apparatus
A Low-Cost and High-Performance Conductivity Meter  Rogerio T. da Rocha, Ivano G. R. Gutz, and Claudimir L. do Lago
A two-electrode conductivimeter is described, which keep good performance in spite of its low cost.
da Rocha, Rogerio T. ; Gutz, Ivano G.R. ; do Lago, Claudimir L. J. Chem. Educ. 1997, 74, 572.
Instrumental Methods |
Conductivity |
Electrochemistry |
Laboratory Equipment / Apparatus
A Quantitative Conductance Apparatus  Danny Burns and Don Lewis
Circuitry, electrode configuration and calibration procedures are described for a conductance device. An alternative construction of the circuit is given allowing computer capture of the instrument response.
Burns, Danny; Lewis, Don. J. Chem. Educ. 1997, 74, 570.
Instrumental Methods |
Conductivity |
Liquids |
Solutions / Solvents |
Laboratory Equipment / Apparatus
Synthesis and Characterization of a Conduction Polymer: An Electrochemical Experiment for General Chemistry  Roger K. Bunting, Karsten Swarat, DaJing Yan, Duane Finello
The electrochemical synthesis of a free-standing film of polypyrrole, using commonly available equipment and materials, is described at a level suitable to application in a general chemistry laboratory. Also described are methods to quantitatively assess the doping level and to characterize the polymer film in terms of its conductivity as a function of temperature.
Bunting, Roger K.; Swarat, Karsten; Yan, DaJing; Finello, Duane. J. Chem. Educ. 1997, 74, 421.
Electrochemistry |
Conductivity
A Simple Audio Conductivity Device  Gregory Berenato and David F. Maynard
Many instruments either lack the sensitivity needed to measure small differences in conductivity or require expensive meters. To solve these problems, the authors have built a simple audio conductivity device that is very sensitive to current flow.
Berenato, Gregory; Maynard, David F. J. Chem. Educ. 1997, 74, 415.
Laboratory Equipment / Apparatus |
Conductivity
Electron Affinities of the Alkaline Earth Metals and the Sign Convention for Electron Affinity  John C. Wheeler
It has been known since 1987, both theoretically and experimentally, that the ion Ca- is stable. It is now certain that Sr-, Ba-, and Ra- are also stable, and accurate values for the electron affinities of Ca-, Sr-, and Ba- have been determined. Recommended values for these electron affinities, in the units commonly employed in introductory texts and with the sign convention used here, are 2.37, 5.03, and 13.95 kJ/mol for Ca, Sr, and Ba, respectively.
Wheeler, John C. J. Chem. Educ. 1997, 74, 123.
Metals |
Atomic Properties / Structure
An n-Bottle Lab Exercise With No Hazardous Waste  Claire R. Olander
Traditional n-bottle exercises include precipitation reactions of environmentally hazardous substances, thereby creating a waste disposal problem. The lab exercise described here uses substances whose waste can be easily treated and disposed in the trash.
J. Chem. Educ. 1996, 73, 849.
Laboratory Management |
Precipitation / Solubility |
Metals |
Qualitative Analysis
On-Line Surfactant Monitoring by Foam Generation  Patrick D. Soran, Everett E. Neal, Barbara Smith, and Ken I. Mullen
The device continuously monitors the concentration of surfactants on-line, in real time, and is particularly suited for process monitoring or process control.
Soran, Patrick D.; Neal, Everett E.; Smith, Barbara; Mullen, Ken I. J. Chem. Educ. 1996, 73, 819.
Metals |
Surface Science |
Laboratory Equipment / Apparatus
Demonstration of the Plasma State  Joachim P. Schreckenbach and Klaus Rabending
Important basic properties of the plasma state are recognized in a simple experimental arrangement described in this article.
Schreckenbach, Joachim P.; Rabending, Klaus. J. Chem. Educ. 1996, 73, 782.
Phases / Phase Transitions / Diagrams |
Conductivity |
Electrolytic / Galvanic Cells / Potentials
All Positive Ions Give Acid Solutions in Water  Stephen J. Hawkes
The acidity of aqueous solutions of positive ions is never zero although many texts say incorrectly that most metals of Groups I and II and some others are not acidic.
Hawkes, Stephen J. J. Chem. Educ. 1996, 73, 516.
Acids / Bases |
Metals |
Solutions / Solvents |
pH
Glowing Veggies  Pirketta Scharlin, Audrey A. Cleveland, Rubin Battino, Monica E. Thomas, and Arnold George
In this paper we extend our work to other vegetables and the spectra generated by other elements than the sodium in pickle brines. We also did a study on the effect of concentration and voltage on glow intensity.
Scharlin, Pirketta; Cleveland, Audrey A.; Battino, Rubin; Thomas, Monica E. J. Chem. Educ. 1996, 73, 457.
Conductivity |
Food Science |
Atomic Properties / Structure
Salts are Mostly Not Ionized  Stephen J. Hawkes
The popular assumption that all salts are totally ionized in aqueous solution is false. Moreover, it is approximated only by alkali metal salts and by salts of alkaline earth metals with high atomic numbers.
Hawkes, Stephen J. J. Chem. Educ. 1996, 73, 421.
Ionic Bonding |
Metals |
Solutions / Solvents
Microscale Preparation of Nickel Formate Dihydrate: A Simple Experiment for the Freshman Lab  Arnaiz, Francisco J.
Microscale preparation of nickel formate dihydrate.
Arnaiz, Francisco J. J. Chem. Educ. 1995, 72, A200.
Metals |
Gravimetric Analysis |
Synthesis
Fe(s) + Cu(II)(aq) ----> Fe(II)(aq) + Cu(s): Fifteen Centuries of Search  Vladimir Karpenko
Historical development of understanding of the title reaction, particularly erroneous alchemical beliefs.
Karpenko, Vladimir. J. Chem. Educ. 1995, 72, 1095.
Metals |
Enrichment / Review Materials |
Reactions |
Oxidation / Reduction
An Alternative Methodology for General Chemistry Laboratories: Chemical Equivalent of a Metal  Carlos M. Bonatti, José L. Zurita, and Horácio N. Sólimo
Procedure in which students are asked to identify an unknown metal that can react with mineral acids to evolve hydrogen where the students are required to obtain bibliographic information and decide on some aspects of the experimental work.
Bonatti, Carlos M.; Zurita, Jose L.; Sclimo, Horacio N. J. Chem. Educ. 1995, 72, 834.
Metals |
Qualitative Analysis
A Window on the Solid State  William R. Robinson and Christopher P. Saari
Student tutorial and lecture demonstration software illustrating the structures and unit cells of metals.
Robinson, W. R. . J. Chem. Educ. 1995, 72, 814.
Metals |
Crystals / Crystallography |
Solid State Chemistry
A Cheap, Semiquantitative Hand-Held Conductivity Tester  Susan K. S. Zawacky
Plans for a inexpensive, semiquantitative, hand-held conductivity tester.
Zawacky, Susan K. S. J. Chem. Educ. 1995, 72, 728.
Conductivity |
Laboratory Equipment / Apparatus
Making Sparklers: An Introductory Laboratory Experiment   Allen Keeney, Christina Walters, and Richard D. Cornelius
Method for producing sparklers to illustrate redox reactions.
Keeney, Allen; Walters, Christina; Cornelius, Richard D. J. Chem. Educ. 1995, 72, 652.
Oxidation / Reduction |
Reactions |
Metals
Determining Iron Content in Foods by Spectrophotometry   Paul E. Adams
Activity to introduce high school students to the concept and techniques of colorimetry by determining the iron content in various foods; sample data and analysis included.
Adams, Paul E. J. Chem. Educ. 1995, 72, 649.
Spectroscopy |
Metals |
Food Science |
Consumer Chemistry |
Quantitative Analysis
A Laboratory Experiment Illustrating the Properties and Bioavailability of Iron  Kimbrough, Doris R.; Martinez, Noelia; Stolfus, Stephanie
A qualitative laboratory experiment to illustrate the properties and behavior of iron and its complexes to the absorption and bioavailability of iron in human systems.
Kimbrough, Doris R.; Martinez, Noelia; Stolfus, Stephanie J. Chem. Educ. 1995, 72, 558.
Metals |
Qualitative Analysis
Resistance Measurement as a Tool for Corrosion Studies  Singh, N. P.; Gupta, S. C.; Sood, B. R.
Procedure for determining the rate of corrosion by measuring changes in the resistance of a thin wire or strip of metal; sample data and analysis included.
Singh, N. P.; Gupta, S. C.; Sood, B. R. J. Chem. Educ. 1995, 72, 465.
Oxidation / Reduction |
Metals |
Rate Law |
Reactions |
Electrochemistry
Studying Activity Series of Metals: Using Deep-Learning Strategies  Hoon, Tien-Ghun; Goh, Ngoh-Khang; Chia, Lian-Sai
Uses a unit of the activity series of metals to demonstrate the teaching of the interrelationships between chemical concepts by linking new information to previously known material.
Hoon, Tien-Ghun; Goh, Ngoh-Khang; Chia, Lian-Sai J. Chem. Educ. 1995, 72, 51.
Metals |
Periodicity / Periodic Table |
Transition Elements
Determination of Ionic Mobilities by Thin-Layer Electrodeposition   Kuhn, Alexander; Argoul, Francoise
The authors describe a new method for the determination of ionic mobilities. An advantage of the measurement described is that it allows its demonstration within the framework of the student's practical training in ionic conductivity.
Kuhn, Alexander; Argoul, Francoise J. Chem. Educ. 1994, 71, A273.
Electrochemistry |
Ion Selective Electrodes |
Metals
Rare Earth Iron Garnets: Their Synthesis and Magnetic Properties  Geselbracht, Margaret J.; Cappellari, Ann M.; Ellis, Arthur B.; Rzeznik, Maria A.; Johnson, Brian J.
A general synthesis for compositions in the solid solution series YxGd3-xFe5O12 (x = 0, 1, 2, 3) and a simple demonstration that illustrates the differing magnetic properties of these materials.
Geselbracht, Margaret J.; Cappellari, Ann M.; Ellis, Arthur B.; Rzeznik, Maria A.; Johnson, Brian J. J. Chem. Educ. 1994, 71, 696.
Metals |
Transition Elements |
Magnetic Properties |
Synthesis |
Solid State Chemistry
Vanadium Ions as Visible Electron Carriers in a Redox System  Bare, William D.; Resto, Wilfredo
Demonstration using a column to display the four, differently colored, oxidation states of vanadium simultaneously.
Bare, William D.; Resto, Wilfredo J. Chem. Educ. 1994, 71, 692.
Oxidation / Reduction |
Transition Elements |
Metals |
Oxidation State
Transition Metals and the Aufbau Principle  Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D.
Explanation of why the ground state configuration of the neutral transition metals is in most cases 3dn4s2, and why the ground state configuration of the corresponding ions is obtained by preferentially removing the 4s electrons.
Vanquickenborne, L. G.; Pierloot, K.; Devoghel, D. J. Chem. Educ. 1994, 71, 469.
Transition Elements |
Metals |
Atomic Properties / Structure
Two Safe Student Conductivity Apparatus  Katz, David A.; Willis, Courtney
Design, construction, and application of two conductivity apparatus.
Katz, David A.; Willis, Courtney J. Chem. Educ. 1994, 71, 330.
Conductivity |
Laboratory Equipment / Apparatus |
Microscale Lab
Laboratory Explosion Danger from Mixing Magnesium and Copper Oxide  Vella, Alfred J.
Hazard of mixing magnesium and copper(II) oxide while heating; danger of thermite-type reactions in general.
Vella, Alfred J. J. Chem. Educ. 1994, 71, 328.
Metals
Testing the Waters for Chromium  Herrmann, Mary S.
A test for the presence of Cr(IV) in water using a sensitive colorimetric reagent.
Herrmann, Mary S. J. Chem. Educ. 1994, 71, 323.
Water / Water Chemistry |
Metals |
Quantitative Analysis
A Window on the Solid-State  Robinson, William R.
"Part I: Structures of Metals" introduces the four basic structural types found in metals. "Part II: Unit Cells of Metals" discusses how to use a unit cell to describe a two-dimensional structure.
Robinson, William R. J. Chem. Educ. 1994, 71, 300.
Solid State Chemistry |
Solids |
Metals
A WARNING: Explosion Hazards of Reacting Magnesium and Aluminum with Powdered Silver Nitrate  Laing, Michael
Danger of reacting Mg and AgNO3, Al and AgNO3.
Laing, Michael J. Chem. Educ. 1994, 71, 270.
Metals |
Reactions
Mechanical Properties of Metals: Experiments with Steel, Copper, Tin, Zinc, and Soap Bubbles  Geselbracht, Margaret J.; Ellis, Arthur B.; Penn, Rona L.; Lisensky, George C.; Stone, Donald S.
Annealing, hardening, and tempering of metals; using bubbles to model the crystalline structure of metals.
Geselbracht, Margaret J.; Ellis, Arthur B.; Penn, Rona L.; Lisensky, George C.; Stone, Donald S. J. Chem. Educ. 1994, 71, 254.
Physical Properties |
Metals |
Crystals / Crystallography
Collecting and Using the Rare Earths  Solomon, Sally; Lee, Alan
Prices, sources, handling tips, and specific suggestions about how to use the lanthanide elements in the classroom and the laboratory.
Solomon, Sally; Lee, Alan J. Chem. Educ. 1994, 71, 247.
Metals |
Transition Elements |
Physical Properties
Ionic Conduction and Electrical Neutrality in Operating Electrochemical Cells: Pre-College and College Student Interpretations  Ogude, A. N.; Bradley, J. D.
Results of an investigation on pre-college and college student difficulties regarding the qualitative interpretation of the microscopic processes that take place in operating chemical cells.
Ogude, A. N.; Bradley, J. D. J. Chem. Educ. 1994, 71, 29.
Conductivity |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
Classifying Substances by Electrical Character: An Alternative to Classifying by Bond Type  Nelson, P. G.
An alternative classification of substances based on their electrical properties.
Nelson, P. G. J. Chem. Educ. 1994, 71, 24.
Conductivity |
Covalent Bonding |
Ionic Bonding |
Metallic Bonding |
Semiconductors
Shell thickness of the copper-clad cent   Vanselow, Clarence H.; Forrester, Sherri R.
An exercise in determining the thickness of the copper layer of modern pennies presents the opportunities to combine good chemistry, instrumentation, simple curve fitting, and geometry to solve a simply stated problem.
Vanselow, Clarence H.; Forrester, Sherri R. J. Chem. Educ. 1993, 70, 1023.
Metals |
Quantitative Analysis |
Chemometrics
Determining the metal activity series using a potato porcupine   Fortman, John J.; Battino, Rubin
Determining the metal activity series using a potato porcupine.
Fortman, John J.; Battino, Rubin J. Chem. Educ. 1993, 70, 939.
Oxidation / Reduction |
Metals
The changing chemistry of mercury  Renuka, A.
Contrary to prior belief, Mercury does exist as a monomer and can exist in other unusual oxidation states.
Renuka, A. J. Chem. Educ. 1993, 70, 871.
Enrichment / Review Materials |
Oxidation State |
Metals
Photodegradation of methylene blue: Using solar light and semiconductor (TiO2)  Nogueira, Raquel F. P.; Jardim, Wilson F.
An experiment that can be used to introduce or explore concepts such as photochemistry, semiconductors, and kinetics.
Nogueira, Raquel F. P.; Jardim, Wilson F. J. Chem. Educ. 1993, 70, 861.
Semiconductors |
Photochemistry |
Kinetics |
Catalysis |
MO Theory
Experiments illustrating metal-insulator transitions in solids  Keller, Steven W.; Mallouk, Thomas E.
Experiments and demonstrations to expose undergraduate students to electronic properties of solids.
Keller, Steven W.; Mallouk, Thomas E. J. Chem. Educ. 1993, 70, 855.
Crystals / Crystallography |
Semiconductors |
MO Theory |
Materials Science
Investigating protective coatings for steel   Runyan, Tom; Herrmann, Mary
Learning about corrosion chemistry provides students with authentic inquiry experience as well as an opportunity to learn relevant and applicable content.
Runyan, Tom; Herrmann, Mary J. Chem. Educ. 1993, 70, 843.
Oxidation / Reduction |
Acids / Bases |
Metals |
Applications of Chemistry |
Consumer Chemistry |
Materials Science
"Qual": From a different viewpoint  Laing, Michael
Author contends that traditional teaching techniques in inorganic chemistry need to be reconsidered.
Laing, Michael J. Chem. Educ. 1993, 70, 666.
Periodicity / Periodic Table |
Metals |
Qualitative Analysis |
Coordination Compounds
A visual illustration of oxidation numbers and moles: Using balloons to demonstrate moles of electrons  Bergquist, Wilbur
Illustrating the connection between moles of electrons and oxidation number.
Bergquist, Wilbur J. Chem. Educ. 1993, 70, 586.
Oxidation State |
Oxidation / Reduction |
Metals
A simple and reliable chemical preparation of YBa2Cu3O7-x superconductors: An experiment in high temperature superconductivity for an advanced undergraduate laboratory  Djurovich, Peter I.; Watts, Richard J.
The popular kits used to engage students in sythetic procedures contain pedagogical flaws. This article presents an alternative to the so-called "shake and bake" kits.
Djurovich, Peter I.; Watts, Richard J. J. Chem. Educ. 1993, 70, 497.
Semiconductors |
Materials Science |
Solid State Chemistry |
Superconductivity
Gallium beating heart   Ealy, James L., Jr.
Oscillating gallium in a Petri dish offers an exciting demonstration.
Ealy, James L., Jr. J. Chem. Educ. 1993, 70, 491.
Electrochemistry |
Metals
Chemical checkers on the computer  Orlik, Y. G.; Glyakov, P. V.; Varova, R. M.
148. Bits and pieces, 49. A program that is enjoyable and useful because it enables students to organize and sum up their knowledge on topics such as chemical properties of metals and properties of acids, bases, and salts.
Orlik, Y. G.; Glyakov, P. V.; Varova, R. M. J. Chem. Educ. 1993, 70, 297.
Acids / Bases |
Metals
Coloring titanium and related metals by electrochemical oxidation  Gaul, Emily
Procedure for anodizing metals as a companion experiment to electroplating. The activity is very appealing to students in visual arts.
Gaul, Emily J. Chem. Educ. 1993, 70, 176.
Metals |
Electrochemistry |
Nonmajor Courses
Helping students to develop an hypothesis about electrochemistry: A demonstration with a lab report and supplemental worksheet   VanderZee, Chester
Author shares a successful electrochemistry demonstration with calculations and assessment.
VanderZee, Chester J. Chem. Educ. 1992, 69, 924.
Electrochemistry |
Metals
Replacement reactions using a dissecting microscope  Lam-Erwin, Chuk-Yin; Sprague, Joseph
Performing drop-size experiments under dissecting microscopes, including examining the reactivity of metals and double replacement reactions.
Lam-Erwin, Chuk-Yin; Sprague, Joseph J. Chem. Educ. 1992, 69, 855.
Qualitative Analysis |
Metals |
Microscale Lab |
Reactions |
Precipitation / Solubility |
Acids / Bases
Rediscovering the wheel: The flame test revisited  Ragsdale, Ronald O.; Driscoll, Jerry A.
Exciting metallic salts in burning methanol to produce colors visible throughout a large lecture hall.
Ragsdale, Ronald O.; Driscoll, Jerry A. J. Chem. Educ. 1992, 69, 828.
Atomic Properties / Structure |
Metals
Conducting midshipmen - A classroom activity modeling extended bonding in solids  Lomax, Joseph F.
Using the electron-hopping model (analogous to people sitting in chairs) to explain electron movement and conductivity in insulators, semiconductors, and metals.
Lomax, Joseph F. J. Chem. Educ. 1992, 69, 794.
Solids |
Solid State Chemistry |
Conductivity |
Metals |
Semiconductors
Reactions of the alkali metals with water: A novel demonstration   Alexander, M. Dale
This demonstration is a novel variation that is much safer to perform than the standard demonstration of simply dropping a small piece of alkali metal into a beaker of water.
Alexander, M. Dale J. Chem. Educ. 1992, 69, 418.
Metals
Biomethylation and environmental transport of metals  Krishnamurthy, S.
Biological methylation of metals is a mechanism that plays an important role in the mobilization and transport of toxic heavy metals.
Krishnamurthy, S. J. Chem. Educ. 1992, 69, 347.
Metals |
Organometallics |
Bioinorganic Chemistry
Periodic properties in a family of common semiconductors: Experiments with light emitting diodes  Lisensky, George C.; Penn, Rona; Geselbracht, Margret J.; Ellis, Arthur B.
The prevalence of LED's and their low cost make LED's ideal for classroom demonstrations or laboratory experiments showing the connection between periodic trends in physical/chemical properties and a common high tech device.
Lisensky, George C.; Penn, Rona; Geselbracht, Margret J.; Ellis, Arthur B. J. Chem. Educ. 1992, 69, 151.
Periodicity / Periodic Table |
Semiconductors
Synthesis, oxidation and UV/IR spectroscopy illustrated: An integrated freshman lab session   Zoller, Uri; Lubezky, Aviva; Danot, Miriam
This paper describes a specially designed, and successfully implemented lab-session for the first-year college general chemistry course.
Zoller, Uri; Lubezky, Aviva; Danot, Miriam J. Chem. Educ. 1991, 68, A274.
IR Spectroscopy |
UV-Vis Spectroscopy |
Coordination Compounds |
Metals
A flexible automated laboratory system for the qualitative analysis of selected metal cations   Blankenship, James F.; Costello, Steven; Sprouse, Matthew; Settle, Frank A., Jr.; Bolen, Rosina H.; Pleva, Michael A.
A flexible automated laboratory system for the qualitative analysis of selected metal cations: history, goals, experimental apparatus, software, and performance.
Blankenship, James F.; Costello, Steven; Sprouse, Matthew; Settle, Frank A., Jr.; Bolen, Rosina H.; Pleva, Michael A. J. Chem. Educ. 1991, 68, A65.
Laboratory Equipment / Apparatus |
Laboratory Computing / Interfacing |
Qualitative Analysis |
Metals
A short qualitative analysis scheme without hazardous wastes  Petty, John T.
A description of laboratory procedures that utilize the important pedagogy of qualitative analysis schemes while being more safe to perform than the traditional procedures.
Petty, John T. J. Chem. Educ. 1991, 68, 942.
Descriptive Chemistry |
Metals |
Qualitative Analysis |
Periodicity / Periodic Table
A low-cost, portable, and safe apparatus for lecture hall conductivity demonstration  Mercer, Gary D.
This article describes an easily constructed apparatus for the measurement of conductivity that overcomes current restrictions and avoids bare wires.
Mercer, Gary D. J. Chem. Educ. 1991, 68, 619.
Electrochemistry |
Conductivity
Using a motor to demonstrate conductivity   Solomon, Sally; Fulep-Poszmik, Annamaria
The turning of a propeller identifies solutions of strong electrolytes.
Solomon, Sally; Fulep-Poszmik, Annamaria J. Chem. Educ. 1991, 68, 160.
Aqueous Solution Chemistry |
Solutions / Solvents |
Conductivity
Demonstration of ionic dissociation in aqueous solution  Diemente, Damon
A simple demonstration that readily convinces students that many ionic solids exist in a different form in solution from that which they exhibit in the solid state.
Diemente, Damon J. Chem. Educ. 1990, 67, 950.
Aqueous Solution Chemistry |
Metals
Qualitative analysis of alloys by electrography  Gaggero, Fernando Labandera; Rodriguez, Alvaro Mombru
Electrolytes and color reagents used for the identification of 25 metallic ions.
Gaggero, Fernando Labandera; Rodriguez, Alvaro Mombru J. Chem. Educ. 1990, 67, 706.
Qualitative Analysis |
Metals
Why the Daniell cell works!  Martins, George F.
The strength of bonds between atoms in metals, the relative ease of removing electrons from atoms, and the energy lowering of the attraction of water molecules for positive ions in solution all aid beginning student's understanding of why reactions occur.
Martins, George F. J. Chem. Educ. 1990, 67, 482.
Atomic Properties / Structure |
Metals |
Electrolytic / Galvanic Cells / Potentials
A formula for calculating atomic radii of metals  Ping, Mei; Xiubin, Lei; Yuankai, Wen
In this paper, the authors present a theoretical formula for calculating metallic radii.
Ping, Mei; Xiubin, Lei; Yuankai, Wen J. Chem. Educ. 1990, 67, 218.
Atomic Properties / Structure |
Metals
An inexpensive and easily constructed device for quantitative conductivity experiments   Rettich, Timothy R.; Battino, Rubin
The low cost and easily replaced electrodes make this system practical for use in a general chemistry lab, while its accuracy and wide applicability permit its use in physical or quantitative chemistry experiments.
Rettich, Timothy R.; Battino, Rubin J. Chem. Educ. 1989, 66, 168.
Quantitative Analysis |
Conductivity |
Laboratory Equipment / Apparatus
Questions from a can of Pepsi  Mitchell, Tony
A can of Pepsi can be the starting point of countless chemistry questions that students can relate to. The author encourages other instructors to think about helping students understand chemistry as it relates to contemporary society.
Mitchell, Tony J. Chem. Educ. 1988, 65, 1070.
Consumer Chemistry |
Applications of Chemistry |
Stoichiometry |
Physical Properties |
Food Science |
Nutrition |
Gases |
Acids / Bases |
Metals
Oxidation states of manganese   Kolb, Doris
This demonstration illustrates oxidation states of manganese.
Kolb, Doris J. Chem. Educ. 1988, 65, 1004.
Oxidation State |
Oxidation / Reduction |
Metals |
Transition Elements
An interesting student chemistry project: Investigating Liesegang rings  Schibeci, Renato A.; Carlsen, Connie
This lab allows students not only exposure to content, but also an appreciation of the way in which scientists build their knowledge.
Schibeci, Renato A.; Carlsen, Connie J. Chem. Educ. 1988, 65, 365.
Solutions / Solvents |
Geochemistry |
Metals
Art in chemistry: An interdisciplinary approach to teaching art and chemistry  Greenberg, Barbara
A unique high school course recalls the days when chemists were artists and artists were chemists. Topics covered include: color, painting surfaces, clay and glazes, jewelry making, photography, art history, and chemical hazards in art.
Greenberg, Barbara J. Chem. Educ. 1988, 65, 148.
Metals |
Dyes / Pigments
Preparation of a simple thermochromic solid  Van Oort, Michiel J. M.
An easy, dramatic, and effective laboratory introduction to solid-solid phase transitions, thermochromism, and color changes associated with changes in ligand coordination suitable for undergraduate students in physical and general chemistry.
Van Oort, Michiel J. M. J. Chem. Educ. 1988, 65, 84.
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Coordination Compounds |
Metals |
Thermodynamics
A simple demonstration of high Tc superconductive powder  Baker, Roger; Thompson, James C.
Demonstrating the Meissner effect using superconducting powder.
Baker, Roger; Thompson, James C. J. Chem. Educ. 1987, 64, 853.
Superconductivity |
Magnetic Properties
Levitating a magnet using a superconductive material  Juergens, Frederick H.; Ellis, Arthur B.; Dieckmann, Gunther H.; Perkins, Ronald I.
Demonstrating the Meissner effect with an overhead projector.
Juergens, Frederick H.; Ellis, Arthur B.; Dieckmann, Gunther H.; Perkins, Ronald I. J. Chem. Educ. 1987, 64, 851.
Superconductivity |
Magnetic Properties
Preparation of lead compounds: An exercise in applied chemistry  Laing, Michael; Williams-Wynn, David; Suhramoney, Saroj
Uses and synthesis of Pb(NO3)2, PbO2, PbCrO4, PbS, PbO, lead carbonate, lead acetate, and lead metal itself.
Laing, Michael; Williams-Wynn, David; Suhramoney, Saroj J. Chem. Educ. 1987, 64, 811.
Synthesis |
Metals |
Oxidation / Reduction |
Oxidation State |
Reactions |
Descriptive Chemistry
Redox demonstrations and descriptive chemistry: Part 1. Metals  Ophardt, Charles E.
The oxidation states of iron, tin, and mercury.
Ophardt, Charles E. J. Chem. Educ. 1987, 64, 716.
Metals |
Descriptive Chemistry |
Oxidation / Reduction |
Oxidation State
Easily made electronic device for conductivity experiments  Gadek, Frank J.
Simple device made from a 35-mm film canister, 9-V battery and leads, resistor, and LED.
Gadek, Frank J. J. Chem. Educ. 1987, 64, 628.
Conductivity |
Laboratory Equipment / Apparatus |
Aqueous Solution Chemistry
Conductivity of solutions apparatus  Vitz, Ed
Design of simple device to demonstrate the conductivity of aqueous solutions using a pair of LED's.
Vitz, Ed J. Chem. Educ. 1987, 64, 550.
Conductivity |
Laboratory Equipment / Apparatus
The effect of pH and chloride ion concentration on the mobilities of various cations in soil  Brown, Melody; Sutherland, Mary; Leharne, Stephen
Measuring the mobilities of cations (particularly of toxic metals) in soils using soil thin layer chromatography.
Brown, Melody; Sutherland, Mary; Leharne, Stephen J. Chem. Educ. 1987, 64, 448.
pH |
Agricultural Chemistry |
Metals |
Thin Layer Chromatography
Hemoglobinometry: A biochemistry experiment that utilizes the principles of transition metal chemistry  Giuliano, Vincenzo
Colorimetric measurements are used to determine the concentration of hemoglobin in blood and the effect of the effect that the presence of cyanide ions has on the formation of cyanomethemoglobin.
Giuliano, Vincenzo J. Chem. Educ. 1987, 64, 354.
Transition Elements |
Metals |
Medicinal Chemistry |
Spectroscopy
Introduction to overhead projector demonstrations  Kolb, Doris
General suggestions for using the overhead projector and 21 demonstrations. [Debut]
Kolb, Doris J. Chem. Educ. 1987, 64, 348.
Rate Law |
Reactions |
Catalysis |
Equilibrium |
Transition Elements |
Metals |
Oxidation / Reduction |
Acids / Bases
A commercially available electronic device for conductivity experiments  Gadek, Frank J.
Application of a continuity and tone-generating chassis in a variety of conductivity experiments, particularly for hearing or visually impaired students.
Gadek, Frank J. J. Chem. Educ. 1987, 64, 281.
Laboratory Equipment / Apparatus |
Conductivity |
Minorities in Chemistry |
Aqueous Solution Chemistry
Teaching an introductory course in qualitative analysis in order to enhance learning general chemistry  Shamai, Ruth; Stavy, Ruth
These two authors have found that qualitative analysis is an excellent way for concrete operational thinkers to become formal thinkers.
Shamai, Ruth; Stavy, Ruth J. Chem. Educ. 1986, 63, 707.
Qualitative Analysis |
Learning Theories |
Metals |
Ionic Bonding
Density gradient columns for chemical displays  Guenther, William B.
An important advantage of these demonstrations of complex chemistry is that students can observe them over a period of time as they grasp concepts of solution equilibria.
Guenther, William B. J. Chem. Educ. 1986, 63, 148.
Acids / Bases |
pH |
Coordination Compounds |
Metals
Chemical Demonstrations: A Handbook for Teachers of Chemistry, Volume I (Shakhashiri, Bassam Z.)  Kauffman, George B.
81 tested demonstrations grouped into 4 chapters: thermochemistry, chemiluminescence, polymers, and color and equilibria of metal ion precipitates and complexes.
Kauffman, George B. J. Chem. Educ. 1985, 62, A31.
Calorimetry / Thermochemistry |
Photochemistry |
Metals
Puzzles for teaching descriptive chemistry. Metals  Evans, Mildred H.
A metals crossword puzzle.
Evans, Mildred H. J. Chem. Educ. 1985, 62, 1103.
Metals |
Descriptive Chemistry
Quick conductivity cell  Williams, Howard P.
A simple cell for indicating the relative conductivity of electrolytes, nonelectrolytes, and weak electrolytes.
Williams, Howard P. J. Chem. Educ. 1985, 62, 799.
Electrochemistry |
Conductivity |
Laboratory Equipment / Apparatus |
Aqueous Solution Chemistry
A model to illustrate the brittleness of ionic and metallic crystals  Birk, James P.
Uses magnetic strips to explain the difference in brittleness between ionic and metallic solids.
Birk, James P. J. Chem. Educ. 1985, 62, 667.
Ionic Bonding |
Metallic Bonding |
Metals |
Physical Properties |
Crystals / Crystallography
The transuranium elements  Seaborg, Glenn T.
History of the discovery of the transuranium elements.
Seaborg, Glenn T. J. Chem. Educ. 1985, 62, 463.
Transition Elements |
Metals |
Periodicity / Periodic Table
Qualitative analysis of some transition metals  Kilner, Cary
Students are asked to determine which test or or sequence of tests unambiguously identifies each of several cations (iron, nickel, cobalt, and copper) and to use their results to identify several unknowns.
Kilner, Cary J. Chem. Educ. 1985, 62, 80.
Qualitative Analysis |
Transition Elements |
Metals
The extraction of gold and its simulation with copper  Bradley, J. D.; Brand, M.; Louli, J. A. M.
The simulation of the extraction of gold by the use of its analog, copper, makes it possible to capitalize on the glamor of gold without sacrificing any chemical principles.
Bradley, J. D.; Brand, M.; Louli, J. A. M. J. Chem. Educ. 1984, 61, 634.
Separation Science |
Metallurgy |
Industrial Chemistry |
Applications of Chemistry |
Oxidation / Reduction |
Metals
Simplest formula for copper iodide  Suchow, Lawrence
We should no longer try to "prove" the Law of Definite Proportions with non-molecular inorganic solids, especially those that contain elements which exhibit multiple oxidation states.
Suchow, Lawrence J. Chem. Educ. 1984, 61, 566.
Oxidation State |
Metals |
Stoichiometry
Electronic structure prediction for transition metal ions  Nance, Lewis E.
A useful mnemonic for the electronic structure for M (II) elements.
Nance, Lewis E. J. Chem. Educ. 1984, 61, 339.
Transition Elements |
Metals |
Oxidation State |
Atomic Properties / Structure
Photoelectrochemical solar cells  McDevitt, John T.
An introduction to photoelectrochemical cells and topics pertaining to solar energy conversion.
McDevitt, John T. J. Chem. Educ. 1984, 61, 217.
Photochemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Semiconductors |
Applications of Chemistry
Metal-ligand complexes-a calculation challenge  Ramette, R. W.
The purpose of this paper is to illustrate one of the most important experimental methods for studying complex equilibria and to present synthetic data as a challenge to the many sophisticated calculation procedure that enjoy various degrees of loyalty around the world.
Ramette, R. W. J. Chem. Educ. 1983, 60, 946.
Equilibrium |
Metals |
Electrochemistry |
Oxidation / Reduction |
Coordination Compounds
Dyeing of anodized aluminum  Grotz, Leonard C.
Anodization of Al is widely practiced in industry to improve the corrosion resistance of articles made of aluminum.
Grotz, Leonard C. J. Chem. Educ. 1983, 60, 763.
Industrial Chemistry |
Oxidation / Reduction |
Metals |
Dyes / Pigments |
Applications of Chemistry
A simple and dramatic demonstration of overvoltage  Bradford, John L.; Davis, Alvie L.
This demonstration is easily visualized only for small groups, but can be displayed for a large audience by using an overhead projector.
Bradford, John L.; Davis, Alvie L. J. Chem. Educ. 1983, 60, 674.
Potentiometry |
Electrochemistry |
Metals
Convenient relations for the estimation of bond ionicity in A-B type compounds  Barbe, Jacques
Calculating the electronegative differences between atoms does not always give an accurate prediction of bond strength.
Barbe, Jacques J. Chem. Educ. 1983, 60, 640.
Noncovalent Interactions |
Metals |
Electrochemistry
A visual analogy for metallic deposition  Hartwig, Dcio R.; Filho, Romeu C. Rocha
Metallic deposition stoichiometry problems are difficult for students to visualize. A clever visual tool is explained in this article.
Hartwig, Dcio R.; Filho, Romeu C. Rocha J. Chem. Educ. 1983, 60, 591.
Metals |
Electrochemistry |
Stoichiometry
The use of an air-natural gas flame in atomic absorption  Melucci, Robert C.
The experiment reported in this paper demonstrates that students can get excellent results using air-natural gas flame in atomic absorption, and a tremendous advantage in safety is gained for a small sacrifice in the limit of detectability.
Melucci, Robert C. J. Chem. Educ. 1983, 60, 238.
Atomic Spectroscopy |
Qualitative Analysis |
Metals |
Descriptive Chemistry |
Atomic Properties / Structure
Analysis of 1982 pennies  Miller, James M.
The composition of pennies has recently been altered, providing for some interesting chemical analysis.
Miller, James M. J. Chem. Educ. 1983, 60, 142.
Quantitative Analysis |
Metals
Reduction potentials and hydrogen overvoltage: An overhead projector demonstration  Ramette, Richard W.
Relates the scale of standard reduction potentials to the observed behavior of metals in their reactions with hydrogen ion to produce hydrogen gas.
Ramette, Richard W. J. Chem. Educ. 1982, 59, 866.
Electrochemistry |
Metals |
Oxidation / Reduction
Group IA elements: Chemical properties (a); Group IA elements: Chemical properties (b)  Dombrink, Kathleen J.
Film loop that demonstrates reactions between alkali metals and halogens.
Dombrink, Kathleen J. J. Chem. Educ. 1982, 59, 260.
Periodicity / Periodic Table |
Reactions |
Metals
"Holey" crystals!   Feinstein, H. I.
Nonstoichiometric compounds have a range of composition, often exhibit unusual color, luster, fluorescence, and semi-conductance. This makes them fascinating compounds for student study.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 638.
Stoichiometry |
Semiconductors |
Crystals / Crystallography |
Physical Properties |
Isotopes
Detection of carbon monoxide in tobacco smoke using molybdosilicate  Feinstein, H. I.
This carbon monoxide detector was first developed during WWII: it is simple, rapid, and extremely sensitive.
Feinstein, H. I. J. Chem. Educ. 1981, 58, 633.
Oxidation / Reduction |
Applications of Chemistry |
Metals |
Coordination Compounds
Some aspects of coordination chemistry   Mickey, Charles D.
The genesis of modern coordination theory; the Wernerian system; experimental support for Werner's coordination theory; amplification of Werner's theory; the nature of complex ions; formation and nomenclature for complexes, complexes in the environment; chelates in medicine; complexing in natural systems; and industrial application of complexes.
Mickey, Charles D. J. Chem. Educ. 1981, 58, 257.
Coordination Compounds |
Medicinal Chemistry |
Metals
Dense, denser, densest  Conroy, Lawrence E.
Iridium is more dense than osmium.
Conroy, Lawrence E. J. Chem. Educ. 1980, 57, 528.
Physical Properties |
Metals |
Periodicity / Periodic Table
Artifacts and the Electromotive Series  Mickey, Charles D.
The chemistry of metals and its application to archeology.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 275.
Electrochemistry |
Metals |
Applications of Chemistry |
Metallurgy |
Reactions
Bent thermometer  Smith, Douglas D.
Reducing the breakage of thermometers, using CO2 as an insecticide, and improving the demonstration of the reaction between sodium and water.
Smith, Douglas D. J. Chem. Educ. 1979, 56, 742.
Laboratory Management |
Applications of Chemistry |
Metals |
Reactions
Physical and chemical properties and bonding of metallic elements  Myers, R. Thomas
137. Common textbook errors concerning the physical and chemical properties, conductivity and bonding of metals.
Myers, R. Thomas J. Chem. Educ. 1979, 56, 712.
Physical Properties |
Metallic Bonding |
Metals |
Covalent Bonding
Corrosion: A Waste of energy  J. Chem. Educ. Staff
Thermodynamics and electrochemical aspects of corrosion, and inhibition of the corrosion process.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 673.
Oxidation / Reduction |
Applications of Chemistry |
Metals |
Thermodynamics |
Electrochemistry
Chemical toxicology. Part II. Metal toxicity  Carter, D. E.; Fernando, Quintus
Considers essential trace metals and the toxic affects of vanadium, chromium, manganese, iron, cobalt copper, zinc, selenium, molybdenum, cadmium, lead, and mercury.
Carter, D. E.; Fernando, Quintus J. Chem. Educ. 1979, 56, 490.
Toxicology |
Metals
The precipitation of ferrous hydroxide: A lecture demonstration  Lau, O. W.
This demonstration can illustrate such topics as the solubility of ionic compounds, electrode potentials of transition elements and their modification by formation of either an insoluble compound of a complex ion, and mixed valence compounds.
Lau, O. W. J. Chem. Educ. 1979, 56, 474.
Precipitation / Solubility |
Solutions / Solvents |
Aqueous Solution Chemistry |
Transition Elements |
Metals |
Oxidation / Reduction |
Oxidation State
A simple and inexpensive solar energy experiment  Evans, J. H.; Pedersen, L. G.
Uses solid state technology to demonstrate the direct generation of electricity and the electrochemical generation of hydrogen.
Evans, J. H.; Pedersen, L. G. J. Chem. Educ. 1979, 56, 339.
Solid State Chemistry |
Semiconductors |
Electrochemistry
Solar energy  J. Chem. Educ. Staff
Information summarizing a variety of topics related to solar energy.
J. Chem. Educ. Staff J. Chem. Educ. 1979, 56, 264.
Applications of Chemistry |
Solid State Chemistry |
Semiconductors
Illustration of d and p block element properties  Canty, Allan J.
The experiments described in this article have been devised to cover descriptive chemistry appropriate for introductory chemistry.
Canty, Allan J. J. Chem. Educ. 1978, 55, 790.
Descriptive Chemistry |
Metals |
Nonmetals
Determination of copper in a copper-nickel alloy: A new experiment for the general chemistry laboratory  Gallagher, Kristin; Cantor, Charles R.
A brief description of a laboratory experience for the determination of copper in a copper-nickel alloy: A new experiment for the general chemistry laboratory.
Gallagher, Kristin; Cantor, Charles R. J. Chem. Educ. 1978, 55, 660.
Metals |
Quantitative Analysis
Concentration model  Leung, Wai-Keung Solomon; Buchanan, Edward B., Jr.
The authors provide a model for lessons concerning parts-per-million and parts-per-billion.
Leung, Wai-Keung Solomon; Buchanan, Edward B., Jr. J. Chem. Educ. 1978, 55, 380.
Toxicology |
Metals
Molar volumes: Microscopic insight from macroscopic data  Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan
The molar volumes of the alkali metal halides; molar volumes of binary hydrogen compounds; molar volumes of the first transition series; molar volumes of the lanthanoids and actinoids; molar volumes of the carbon family; molar volumes of isotopically related species; aquated ions and ions in aqueous solution.
Davenport, Derek A.; Fosterling, Robert B.; Srinivasan, Viswanathan J. Chem. Educ. 1978, 55, 93.
Inner Transition Elements |
Metals |
Periodicity / Periodic Table |
Stoichiometry |
Gases |
Transition Elements |
Aqueous Solution Chemistry |
Isotopes
Electroplating of polyethylene  Gorodetsky, Malka
In the process of reorganizing a first-year chemistry laboratory for engineering students the authors have developed experiments that reproduce the approach in solving industrial chemical problems.
Gorodetsky, Malka J. Chem. Educ. 1978, 55, 66.
Industrial Chemistry |
Electrochemistry |
Oxidation / Reduction |
Metals
Biochemical roles of some essential metal ions  J. Chem. Educ. Staff
Summarizes the important biochemical roles played by ions of sodium, potassium, calcium, magnesium, zinc, iron, cobalt, and copper.
J. Chem. Educ. Staff J. Chem. Educ. 1977, 54, 761.
Metals |
Organometallics |
Bioinorganic Chemistry
Questions [and] Answers  Campbell, J. A.
330-333. Four questions and their answers; includes comments made by readers on earlier questions 130, 153, 154, 171, 172, 181.
Campbell, J. A. J. Chem. Educ. 1977, 54, 678.
Enrichment / Review Materials |
Atmospheric Chemistry |
Applications of Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Metals |
pH
Non-polluting treatment of the waste of chromic acid mixture  Shirai, Michiko; Matsumoto, Yoshio
Regenerating the waste of chromic acid mixtures.
Shirai, Michiko; Matsumoto, Yoshio J. Chem. Educ. 1977, 54, 609.
Laboratory Management |
Metals
Emphasis on elements  J. Chem. Educ. Staff
Lists major metals and minerals, current metal reserves, and elemental composition of the human body and the oceans. [Debut]
J. Chem. Educ. Staff J. Chem. Educ. 1977, 54, 551.
Periodicity / Periodic Table |
Geochemistry |
Metals
Vanadium for high school students  Grant, A. Ward, Jr.
After the instructor performs the reduction of vanadium(V) as a demonstration, students can perform the oxidation of the vanadium(II) back to its original state.
Grant, A. Ward, Jr. J. Chem. Educ. 1977, 54, 500.
Titration / Volumetric Analysis |
Oxidation State |
Oxidation / Reduction |
Metals |
Transition Elements
Questions [and] Answers  Campbell, J. A.
303-308. Six practical, environmental chemistry application questions and their answers. Q303 submitted by Jerry Ray Dias.
Campbell, J. A. J. Chem. Educ. 1977, 54, 369.
Enrichment / Review Materials |
Metals |
Toxicology |
Coordination Compounds |
Membranes |
Aqueous Solution Chemistry |
Atomic Properties / Structure
A demonstration in solid state chemistry: The nonstoichiometry of nickel oxide, NiO  Perrino, Charles T.; Johnson, Robert
A simple experiment to demonstrate the nonstoichiometric synthesis of nickel oxide.
Perrino, Charles T.; Johnson, Robert J. Chem. Educ. 1977, 54, 367.
Stoichiometry |
Oxidation State |
Oxidation / Reduction |
Solid State Chemistry |
Metals
Alkali metal anions. An unusual oxidation state  Dye, James L.
There can no longer be any doubt that the 1- oxidation state of the alkali metals exists under a variety of conditions.
Dye, James L. J. Chem. Educ. 1977, 54, 332.
Metals |
Oxidation State
Lecture demonstration of the various oxidation states of manganese  Arora, C. L.
Showing the colors associated with seven different oxidation states of magnesium and methods for preparing each.
Arora, C. L. J. Chem. Educ. 1977, 54, 302.
Oxidation / Reduction |
Oxidation State |
Transition Elements |
Metals
Display of sodium as a shiny metal  Davidson, Scott
Involves adding a few drops of a high molecular weight secondary alcohol to delay oxidation of the sodium while stored under kerosene.
Davidson, Scott J. Chem. Educ. 1977, 54, 29.
Metals
The failings of the law of definite proportions  Suchow, Lawrence
Inorganic solids often violate the law of definite proportions.
Suchow, Lawrence J. Chem. Educ. 1975, 52, 367.
Stoichiometry |
Solids |
Transition Elements |
Metals
Brass  McCormick, P. D.
A spectacular illustration of a diffusion process in solid copper - transforming a copper penny into brass (or "gold") using NaOH and zinc.
McCormick, P. D. J. Chem. Educ. 1975, 52, 102.
Metals |
Solids
A study of water pollution. An undergraduate chemistry laboratory experience  Sarkis, Vahak D.
In addition to its environmental relevance, a water pollution study of the inorganic constituents in water as outlined in this article, provides the student with certain important principles of chemistry namely, colorimetric and titrimetric procedures.
Sarkis, Vahak D. J. Chem. Educ. 1974, 51, 745.
Applications of Chemistry |
Metals |
Green Chemistry |
Water / Water Chemistry |
Titration / Volumetric Analysis
A novel approach for qualitative analysis  Ophadt, Charles E.
This qualitative analysis series allows students to spend a semester exploring the behavior of one ion during the course of a semester that might not be readily learned from a textbook.
Ophadt, Charles E. J. Chem. Educ. 1974, 51, 415.
Descriptive Chemistry |
Metals |
Oxidation / Reduction
Questions [and] Answers  Campbell, J. A.
Six questions that can be answered with the application of basic chemical principles.
Campbell, J. A. J. Chem. Educ. 1973, 50, 847.
Enrichment / Review Materials |
Metals |
Plant Chemistry |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Applications of Chemistry
Some reactions of tungsten: A lecture demonstration  Nelson, D. L.; Reeves, R. R.; Richtol, H. H.
Several demonstrations involving reactions of tungsten.
Nelson, D. L.; Reeves, R. R.; Richtol, H. H. J. Chem. Educ. 1973, 50, 810.
Metals |
Reactions |
Oxidation / Reduction
Charge and mass of the electron. An introductory experiment  Thompson, C. C.
Procedure for the electrolytic determination of the charge and mass of the electron requiring only the use of a balance and the careful recording of data.
Thompson, C. C. J. Chem. Educ. 1973, 50, 435.
Atomic Properties / Structure |
Electrochemistry |
Metals
Commercial gas replaces hydrogen in general chemistry laboratory  Ehlert, Thomas C.
Methane can be used in place of hydrogen to reduce metal oxides.
Ehlert, Thomas C. J. Chem. Educ. 1973, 50, 162.
Oxidation / Reduction |
Laboratory Management |
Gases |
Metals
Questions [and] Answers  Campbell, J. A.
Seven questions requiring an application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 831.
Enrichment / Review Materials |
Applications of Chemistry |
Gases |
Dyes / Pigments |
Metals
Water analysis experiment  Anderlick, Barbara
Analyzing various water samples for the presence of a variety of ions.
Anderlick, Barbara J. Chem. Educ. 1972, 49, 749.
Water / Water Chemistry |
Qualitative Analysis |
Aqueous Solution Chemistry |
Metals
The effect of ligands on hydrolysis constants of transition metal ions  Morrow, Jack I.
This procedure examines the effect that ligands in the inner coordination sphere have upon the chemical behavior of transition metal ions.
Morrow, Jack I. J. Chem. Educ. 1972, 49, 748.
Coordination Compounds |
Transition Elements |
Metals |
Crystal Field / Ligand Field Theory |
Aqueous Solution Chemistry
A simple, effective demonstration of magnetic properties of materials  Burke, John A., Jr.
A simple demonstration of diamagnetism that requires only a magnet of a few kilogauss in strength.
Burke, John A., Jr. J. Chem. Educ. 1972, 49, 568.
Magnetic Properties |
Physical Properties |
Metals |
Transition Elements
Questions [and] Answers  Campbell, J. A.
Six questions requiring the application of basic principles of chemistry.
Campbell, J. A. J. Chem. Educ. 1972, 49, 538.
Enrichment / Review Materials |
Applications of Chemistry |
Electrochemistry |
Astrochemistry |
Stoichiometry |
Metals
An introduction to principles of the solid state. Extrinsic semiconductors  Weller, Paul F.
Includes a previous analogy is extended to cover n- and p-type semiconductors and discussions of the concepts of donors and acceptors, donor and acceptor activation energies and the corresponding charge carrier production at various temperatures, and the effects of the presence of both donors and acceptors.
Weller, Paul F. J. Chem. Educ. 1971, 48, 831.
Solid State Chemistry |
Solids |
Semiconductors
The identification of an unknown alloy. A first experiment in elementary chemistry  Watson, Naola V.
The experiments which are often used as an introduction to the laboratory in beginning chemistry courses are considered by many students to be sheer buys work. This experiment is devised to provide students with an interesting and meaningful introduction to the laboratory.
Watson, Naola V. J. Chem. Educ. 1971, 48, 324.
Qualitative Analysis |
Metallurgy |
Metals
Model to illustrate bonding and symmetry of transition metal complexes  Betteridge, D.
Describes a physical model used to demonstrate the combination of atomic orbitals of the transition metal ion with those on surrounding ligands to give molecular orbitals.
Betteridge, D. J. Chem. Educ. 1970, 47, 824.
Transition Elements |
Metals |
Coordination Compounds |
Molecular Modeling |
Atomic Properties / Structure |
Group Theory / Symmetry
Some "real life" applications of solubility: Iron, iron everywhere but not a drop to drink  Brasted, Robert C.
Although Hawaiian pineapples grow in red soils whose iron composition may exceed 20%, they starve for iron because it is in an insoluble form; also considers applications of the insolubility of other transition metals.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 634.
Applications of Chemistry |
Solutions / Solvents |
Aqueous Solution Chemistry |
Precipitation / Solubility |
Plant Chemistry |
Agricultural Chemistry |
Metals |
Transition Elements |
Oxidation State
Some "real life" applications of solubility: Iron, iron everywhere but not a drop to drink  Brasted, Robert C.
Although Hawaiian pineapples grow in red soils whose iron composition may exceed 20%, they starve for iron because it is in an insoluble form; also considers applications of the insolubility of other transition metals.
Brasted, Robert C. J. Chem. Educ. 1970, 47, 634.
Applications of Chemistry |
Solutions / Solvents |
Aqueous Solution Chemistry |
Precipitation / Solubility |
Plant Chemistry |
Agricultural Chemistry |
Metals |
Transition Elements |
Oxidation State
Role of f electrons in chemical binding  Johnson, O.
Data presented suggests that f electrons, by their ineffective screening of the nuclear charge, exert an indirect effect on the binding strength of actions.
Johnson, O. J. Chem. Educ. 1970, 47, 431.
Atomic Properties / Structure |
Metals |
Transition Elements
The periodic systems of D. I. Mendeleev and problems of nuclear chemistry  Gol'danskii, V. I.; translated by Avakian, Peter
Examines the acquisition and identification of new chemical elements and the structure of the eighth period of the periodic table.
Gol'danskii, V. I.; translated by Avakian, Peter J. Chem. Educ. 1970, 47, 406.
Nuclear / Radiochemistry |
Atomic Properties / Structure |
Periodicity / Periodic Table |
Metals
Isomerism in transition metal complexes: An experiment for freshman chemistry laboratory  Foust, Richard D., Jr.; Ford, Peter C.
In this experiment students synthesize two isomers, cis- and trans-dichlorobis(ethylenediamine)-cobalt(III) chloride.
Foust, Richard D., Jr.; Ford, Peter C. J. Chem. Educ. 1970, 47, 165.
Molecular Properties / Structure |
Transition Elements |
Metals |
Coordination Compounds |
Diastereomers |
Synthesis
Metals of groups IV-VIII. Group VI (Chromium)  Alyea, Hubert N.; Cooper, Edwin H.
The preparation of various chromium compounds from chromite ore.
Alyea, Hubert N.; Cooper, Edwin H. J. Chem. Educ. 1969, 46, A452.
Metals
Metals of groups IV-VIII. Group V (Vanadium).  Alyea, Hubert N.; Bernard Robert
A demonstration of the oxidation states of vanadium.
Alyea, Hubert N.; Bernard Robert J. Chem. Educ. 1969, 46, A452.
Metals |
Oxidation State
Metals of groups IV-VIII. Group IV (Ti, Sn, Pb)  Alyea, Hubert N.; Jackman, Kenneth V.; Dunham S. S.; Johnson L. P.; Palermo, Alphonse
Six overhead demonstrations involving titanium, tin, and lead.
Alyea, Hubert N.; Jackman, Kenneth V.; Dunham S. S.; Johnson L. P.; Palermo, Alphonse J. Chem. Educ. 1969, 46, A451.
Metals
An improved equivalent weight apparatus  Brown, Oliver L.
Presents an improved apparatus for the reaction of weighed samples of metals with hydrochloric acid and the measurement of the volume of hydrogen evolved.
Brown, Oliver L. J. Chem. Educ. 1969, 46, 617.
Laboratory Equipment / Apparatus |
Metals |
Laboratory Management |
Reactions |
Gases |
Stoichiometry
Integrated circuits in the instrumental laboratory  Scherer, George A.
A brief introduction to integrated circuits that exemplifies their use in instrumentation through the construction of a square wave generator, audio amplifier, decimal counting unit, and operational amplifier.
Scherer, George A. J. Chem. Educ. 1969, 46, 399.
Laboratory Equipment / Apparatus |
Instrumental Methods |
Semiconductors
A simple test for a conductor  Yamana, Shukichi; Yamana, Hikaru; Yamana, Hajimu
An ordinary fluorescent lamp can be used to test whether a substance is a conductor or not.
Yamana, Shukichi; Yamana, Hikaru; Yamana, Hajimu J. Chem. Educ. 1969, 46, 354.
Physical Properties |
Conductivity
Chemical queries. Especially for introductory chemistry teachers  Young, J. A.; Malik, J. G.; Quagliano, James V.; Danehy, James P.
(1) Why different potential for copper/zinc cells when using nitrates vs. sulfates? Why is neither cell potential as large as predicted by Nerst equation? (2) Do elements in the zinc subgroup belong to the transition series? - answer by Quagliano. (3) How can the 2,4,5-trichloro derivative of phenoxyacetic acid be prepared? - answer by Danehy.
Young, J. A.; Malik, J. G.; Quagliano, James V.; Danehy, James P. J. Chem. Educ. 1969, 46, 227.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Periodicity / Periodic Table |
Metals |
Synthesis |
Aromatic Compounds
Reactions of metals and sulfur  Walker, Noojin
An iron nail reacts with sulfur to produce iron(II) sulfide.
Walker, Noojin J. Chem. Educ. 1968, 45, A901.
Metals |
Reactions
Studying the chemical properties of metallic aluminum  Feifer, Nathan
Studying the chemical properties of aluminum is made much easier by first producing an amalgam by treating aluminum with mercurous nitrate.
Feifer, Nathan J. Chem. Educ. 1968, 45, 648.
Metals |
Oxidation / Reduction
Group 1. The Alkali Metals. The Copper Group   Mancuso, Carl J.; Alyea, Hubert N.
Demonstrations include the density and melting point of copper versus sodium, the conductivity of sodium, the reactivity with water of groups IA vs IB, and the stability of CO3--, HCO3-, and hydroxides of groups IA vs IB.
Mancuso, Carl J.; Alyea, Hubert N. J. Chem. Educ. 1967, 44, A919.
Metals |
Reactions |
Water / Water Chemistry |
Aqueous Solution Chemistry |
Physical Properties
Metallurgy E. Metals and Alloys   Rogers, Crosby U.; Owens, Charles
Demonstrates low-melting alloys.
Rogers, Crosby U.; Owens, Charles J. Chem. Educ. 1967, 44, A919.
Metals
Metallurgy E. Metals and Alloys  Alyea, Hubert N.; Soule, Dean; Rogers, Crosby U.
Demonstrations include the conductivity, expansion through heating, and identification of metals.
Alyea, Hubert N.; Soule, Dean; Rogers, Crosby U. J. Chem. Educ. 1967, 44, A717.
Metallurgy |
Metals |
Conductivity |
Qualitative Analysis
Metallurgy D. Refining the Metal  Alyea, Hubert N.
Copper refined by electroplating.
Alyea, Hubert N. J. Chem. Educ. 1967, 44, A717.
Metallurgy |
Metals |
Electrochemistry
Metallurgy C. Reducton of Ore  Rogers, Crosby U.
Demonstrations include the reduction of Cu2O with charcoal, heating zinc carbonate, and zinc sulfide heated in air.
Rogers, Crosby U. J. Chem. Educ. 1967, 44, A717.
Metallurgy |
Metals |
Oxidation / Reduction
Group 1. The Alkali Metals C. The Copper Group  Alyea, Hubert N.; Mancuso, Carl J.; Bernard, Robert
Demonstrations include electroplating copper, Fehling's test, the silver mirror (Ag+ + tartrate), insoluble silver salts, photo-film + hypo, hypo fixer + silver coin, and a solution of gold in aqua-regia.
Alyea, Hubert N.; Mancuso, Carl J.; Bernard, Robert J. Chem. Educ. 1967, 44, A1005.
Electrochemistry |
Precipitation / Solubility |
Aqueous Solution Chemistry |
Solutions / Solvents |
Metals
Inorganic chemistry. Volume 1, principles and non-metals. Volume 2, metals (Phillips, C. S. G.; Williams, R. J. P.)  Zuckerman, J. J.

Zuckerman, J. J. J. Chem. Educ. 1967, 44, A73.
Nonmetals |
Metals
Crystal models  Olsen, Robert C.
This short note illustrates a model designed to demonstrate the number of particles in a crystal that can be assigned to a unit cell.
Olsen, Robert C. J. Chem. Educ. 1967, 44, 728.
Crystals / Crystallography |
Molecular Modeling |
Solids |
Metals |
Metallic Bonding
Anticipating "valences" from electron configurations  Eichinger, Jack W., Jr.
Describes a procedure for predicting "valences" from electron configurations that works well for most metals.
Eichinger, Jack W., Jr. J. Chem. Educ. 1967, 44, 689.
Atomic Properties / Structure |
Metals |
Transition Elements
Detection of iron with salicylimine  Poonia, N. S.; Bakre, V. P.; Bal, M. S.
Describes the detection of iron with salicylimine.
Poonia, N. S.; Bakre, V. P.; Bal, M. S. J. Chem. Educ. 1967, 44, 483.
Aqueous Solution Chemistry |
Qualitative Analysis |
Metals
Reagents for analysis of iron(II)-iron(III) mixtures  Lal, Sudarshan; Srivastava, S. N.
Presents some analytical reagents that may be used for the analysis of iron(II)-iron(III) mixtures.
Lal, Sudarshan; Srivastava, S. N. J. Chem. Educ. 1967, 44, 482.
Aqueous Solution Chemistry |
Qualitative Analysis |
Metals
Detection of mercury(I) and mercury(II) in the presence of each other  Lal, Sudarshan; Srivastava, S. N.
Presents some analytical reagents that may be used for the analysis of mercury(I) and mercury(II) in the presence of each other.
Lal, Sudarshan; Srivastava, S. N. J. Chem. Educ. 1967, 44, 482.
Aqueous Solution Chemistry |
Qualitative Analysis |
Metals
Some analytical reagents for tin(II)-tin(IV) mixtures  Lal, Sudarshan; Srivastava, S. N.
Presents some analytical reagents that may be used for the analysis of tin(II)-tin(IV) mixtures.
Lal, Sudarshan; Srivastava, S. N. J. Chem. Educ. 1967, 44, 481.
Qualitative Analysis |
Aqueous Solution Chemistry |
Metals
Spot tests for silver(I) and manganese(II)  Poonia, N. S.; Gupta, H. K. L.
This investigation introduces piperidine as a new reagent for this test and describes an improved technique with increased sensitivity.
Poonia, N. S.; Gupta, H. K. L. J. Chem. Educ. 1967, 44, 480.
Qualitative Analysis |
Aqueous Solution Chemistry |
Metals
Dodecyl sodium sulfate as a reagent for the detection of potassium  Neman, R. L.
The proposed test involves the addition of an aqueous solution of dodecyl sodium sulfate to precipitate dodecyl potassium sulfate.
Neman, R. L. J. Chem. Educ. 1967, 44, 479.
Qualitative Analysis |
Aqueous Solution Chemistry |
Precipitation / Solubility |
Metals
An analogy for elementary band theory concepts in solids  Weller, Paul F.
The author presents analogies to help students understand insulators and metals, semiconductors, and the p-n junction.
Weller, Paul F. J. Chem. Educ. 1967, 44, 391.
Semiconductors |
Solid State Chemistry |
Metals
The electron repulsion theory of the chemical bond. I. New models of atomic structure  Luder, W. F.
Describes the electron repulsion theory of electron configuration and applies it to representative elements.
Luder, W. F. J. Chem. Educ. 1967, 44, 206.
Atomic Properties / Structure |
Covalent Bonding |
Metals
Energy B. Heat energy  Hornbeck, Leroy G.; Noerdin, Isjrin; Alyea, Hubert N.
Demonstrations presented include the absorption of black vs white surfaces, the heat ignition of touching flash-bulbs, the low heat of combustion of guncotton, and the heats of displacement of metals.
Hornbeck, Leroy G.; Noerdin, Isjrin; Alyea, Hubert N. J. Chem. Educ. 1966, 43, A978.
Metals |
Thermodynamics
Ionization, Electricity D. Special electrical phenomena   Bernard, Robert; Slabaugh, W. H.
Demonstrations include cation analysis, conductivity during the titration of Ba(OH)2 + HCl vs H2C2O4, and conductivity during the titration of Ba(OH)2 + HCl vs H3PO4.
Bernard, Robert; Slabaugh, W. H. J. Chem. Educ. 1966, 43, A901.
Titration / Volumetric Analysis |
Quantitative Analysis |
Qualitative Analysis |
Electrochemistry |
Conductivity
Ionization, electricity. A. Proof that ions exist   Alyea, Hubert N.; Johnson, William.; Cocoran, Paul; Barnard, Robert; Rolf, Fred; Klug, Evangeline
Demonstrations include conductivity using a meter, conductivity of HCl in water versus in toluene, conductivity of HCl in water versus in benzene, acids plus zinc, indicators with acids and bases (H3O+ and OH-), rate of reaction and acid strengths, colors of ions, and color of cobalt ion and a cobalt complex.
Alyea, Hubert N.; Johnson, William.; Cocoran, Paul; Barnard, Robert; Rolf, Fred; Klug, Evangeline J. Chem. Educ. 1966, 43, A539.
Acids / Bases |
Conductivity |
Dyes / Pigments |
Rate Law
Chemistry of the rare-earth elements (Topp, N. E.)  Moeller, Therald

Moeller, Therald J. Chem. Educ. 1966, 43, A160.
Metals
An analogy for the band theory of metals  van Reuth, E. C.
Presents a useful analogy for teaching students the band theory of metals.
van Reuth, E. C. J. Chem. Educ. 1966, 43, 484.
Metals |
Solid State Chemistry |
Semiconductors
Electrical conductance apparatus  Steinberg, Edwin E.; Nordmann, J.
A circuit diagram for an electrical conductance apparatus that is safe, accurate, and allows for qualitative measurements.
Steinberg, Edwin E.; Nordmann, J. J. Chem. Educ. 1966, 43, 309.
Electrochemistry |
Conductivity |
Laboratory Equipment / Apparatus
Units of measurement: An early application of Avogadro's number  Brasted, Robert C.
A comparison is made between the measured volume of a regular metallic solid and its theoretical volume as calculated using Avogadro's number.
Brasted, Robert C. J. Chem. Educ. 1965, 42, 472.
Stoichiometry |
Nomenclature / Units / Symbols |
Metals |
Physical Properties
Experiments on metal amine salts  Haight, G. P., Jr.
Tetrammine monaquo copper(II) sulfate is prepared and studied qualitatively and quantitatively.
Haight, G. P., Jr. J. Chem. Educ. 1965, 42, 468.
Metals |
Covalent Bonding |
Hydrogen Bonding |
Qualitative Analysis |
Quantitative Analysis
Metallic reduction of aqueous hydrogen chloride  Walker, Noojin, Jr.
Calcium reacts with HCl to liberate hydrogen gas.
Walker, Noojin, Jr. J. Chem. Educ. 1964, 41, A477.
Reactions |
Oxidation / Reduction |
Metals |
Electrochemistry
Analysis of aspirin: A conductometric titration  Proctor, J. S.; Roberts, J. E.
Suggests research questions based on an earlier published article.
Proctor, J. S.; Roberts, J. E. J. Chem. Educ. 1963, 40, A306.
Undergraduate Research |
Titration / Volumetric Analysis |
Quantitative Analysis |
Electrochemistry |
Conductivity
The extraction of metals from ores  Keubel, A.
Provides suggestions for research based on earlier published articles.
Keubel, A. J. Chem. Educ. 1963, 40, A186.
Undergraduate Research |
Metals |
Separation Science
Alkali metal-water reactions  Markowitz, Meyer M.
The typical open-air demonstration of sodium reacting with water does not in reality represent the typical reaction of an alkali metal with liquid water; the article goes on to consider other factors that may influence these reactions.
Markowitz, Meyer M. J. Chem. Educ. 1963, 40, 633.
Reactions |
Metals |
Water / Water Chemistry
Conduction and semiconduction  Juster, Norman J.
Reviews the conductors and semiconductors, the p-n junction, and transistors.
Juster, Norman J. J. Chem. Educ. 1963, 40, 489.
Conductivity |
Semiconductors
An experiment with galvanic cells: For the general chemistry laboratory  Dillard, Clyde R.; Kammeyer, Patty Hall
Describes a simple, low-cost galvanic cell and its use to compare various metallic electrodes.
Dillard, Clyde R.; Kammeyer, Patty Hall J. Chem. Educ. 1963, 40, 363.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Metals
Electrolytic conductivity: A demonstration experiment  Thomas, William B.
Describes a simple method of measuring electrolytic conductivity based on Ohm's law.
Thomas, William B. J. Chem. Educ. 1962, 39, 531.
Electrochemistry |
Conductivity |
Solutions / Solvents |
Aqueous Solution Chemistry
Close packing of atoms: A lecture demonstration  Mellor, D. P.; Shuk, V.
This lecture demonstration illustrates the close packing of atoms and the effect of melting; it relies on steel balls and a permanent magnet.
Mellor, D. P.; Shuk, V. J. Chem. Educ. 1962, 39, 130.
Metals |
Phases / Phase Transitions / Diagrams
Analysis of an aluminum-zinc alloy: A general chemistry laboratory  Masterton, W. L.
In this experiment, students determine the percentage composition of an aluminum-zinc alloy by measuring the volume of hydrogen generated when reacted with excess acid.
Masterton, W. L. J. Chem. Educ. 1961, 38, 558.
Metals
Ultra Low Conductivity Water  National Bureau of Standards Summary Technical Report
Describes the production of water with a conductivity approaching the lower theoretical limit.
National Bureau of Standards Summary Technical Report J. Chem. Educ. 1961, 38, 421.
Water / Water Chemistry |
Conductivity |
Aqueous Solution Chemistry
A paper chromatographic scheme for the identification of metallic ions  Ritchie, A. S.
Presents a scheme for the identification of metallic ions through paper chromatography.
Ritchie, A. S. J. Chem. Educ. 1961, 38, 400.
Chromatography |
Metals |
Qualitative Analysis
The separation of rare earths: A project for high school chemistry students  Powell, J. E.; Spedding, F. H.; James, D. B.
The separation of rare earths on an ion-exchange column is a very interesting and dramatic experiment to perform, since it represents the solution of one of the most formidable chemical separation problems confronting the inorganic chemist.
Powell, J. E.; Spedding, F. H.; James, D. B. J. Chem. Educ. 1960, 37, 629.
Metals |
Transition Elements |
Separation Science |
Ion Exchange
Solubility of gold in mercury  Brown, John B.
Contrary to the statements found in many chemistry textbooks, gold is not appreciably soluble in mercury.
Brown, John B. J. Chem. Educ. 1960, 37, 415.
Metals |
Precipitation / Solubility
Determination of reaction rates with an A.C. conductivity bridge: A student experiment  Chesick, J. P.; Patterson, A., Jr.
Describes a quantitative experiment in chemical kinetics suitable for advanced freshmen or physical chemistry; it involves a study of the solvolysis of tertiary butyl chloride by means of conductance measurements.
Chesick, J. P.; Patterson, A., Jr. J. Chem. Educ. 1960, 37, 242.
Conductivity |
Kinetics |
Rate Law
A schematic representation of valence  Sanderson, R. T.
This paper describes a new chart representing the valence structure of atoms; by studying this chart, with the help of a few simple rules, students of elementary chemistry can acquire a useful understanding of chemical combination.
Sanderson, R. T. J. Chem. Educ. 1958, 35, 541.
Atomic Properties / Structure |
Periodicity / Periodic Table |
Enrichment / Review Materials |
Transition Elements |
Metals |
Nonmetals
Textbook errors: Guest column. The solubility product constants of the metallic sulfides  Waggoner, William H.
This report reviews direct and indirect methods for investigating the solubility of substances, including conductance, potentiometric, optical, equilibrium, and thermodynamic procedures.
Waggoner, William H. J. Chem. Educ. 1958, 35, 339.
Precipitation / Solubility |
Equilibrium |
Metals |
Conductivity
Models of metal coordination compounds  Myers, R. Thomas
Suggestions for modifying traditional molecular model kits to illustrate common types of coordination compounds.
Myers, R. Thomas J. Chem. Educ. 1958, 35, 152.
Metals |
Coordination Compounds |
Molecular Modeling
The Role of Chemistry in Modern Metallurgical Engineering  Burr, Arthur A.
A review and summary of chemistry in curricula for metallurgical engineering.
Burr, Arthur A. J. Chem. Educ. 1958, 35, 100.
Metals |
Metallurgy |
Industrial Chemistry
The analysis of a silver-copper alloy  Baine, Ogden; Banewicz, John
The copper in silver-brazing alloy is analyzed colorimetrically using a simple photometer constructed for this experiment.
Baine, Ogden; Banewicz, John J. Chem. Educ. 1957, 34, 297.
Metals |
Instrumental Methods |
Quantitative Analysis
An electronic distinction between metals and nonmetals  Sanderson, R. T.
Presents a simple empirical rule for the fundamental properties that determine whether an element is metallic, metalloid, or nonmetallic.
Sanderson, R. T. J. Chem. Educ. 1957, 34, 229.
Metals |
Nonmetals |
Atomic Properties / Structure |
Metalloids / Semimetals
Determination of the equivalent weight of metals: A freshman research project  Wolthuis, Enno; DeVries, Dale; Poutsma, Marvin
This procedure involves a gravimetric method in which zinc, cadmium, or manganese is reacted in acid and the resulting solution is heated to dryness.
Wolthuis, Enno; DeVries, Dale; Poutsma, Marvin J. Chem. Educ. 1957, 34, 133.
Stoichiometry |
Metals |
Gravimetric Analysis
The use of colloidal graphite for laboratory demonstrations  Smith, Edward A.
Examines the shape of graphite particles, the electrical properties of colloids, the coagulation of colloids, graphite and magnetic orientation, and the electrical conductivity of graphite.
Smith, Edward A. J. Chem. Educ. 1956, 33, 600.
Colloids |
Conductivity |
Magnetic Properties
Electrolytic conductivity apparatus  Schmuckler, Joseph S.; Schenck, Robert C.
Presents an apparatus that will demonstrate the conductivity of salts when fused in the solid state, in solution, and in various degrees of dilution.
Schmuckler, Joseph S.; Schenck, Robert C. J. Chem. Educ. 1956, 33, 506.
Laboratory Equipment / Apparatus |
Aqueous Solution Chemistry |
Conductivity
A device for demonstrating conductivity of solutions  Eiseman, Fred B., Jr.
An apparatus has been developed that makes it possible to demonstrate the conductivities of solutions without destroying, transferring, or contaminating them
Eiseman, Fred B., Jr. J. Chem. Educ. 1956, 33, 445.
Aqueous Solution Chemistry |
Conductivity |
Solutions / Solvents
Apparatus for the demonstration of conductivity of electrolytes  Suter, Hans A.; Kaelber, Lorraine
This device uses a continuous flow of water and a light bulb to demonstrate the conductivity of electrolytes.
Suter, Hans A.; Kaelber, Lorraine J. Chem. Educ. 1955, 32, 640.
Laboratory Equipment / Apparatus |
Aqueous Solution Chemistry |
Electrochemistry |
Conductivity
Raw materials for American industry  Keirstead, Ralph E.
The author argues for broadening the treatment of raw materials in the introductory chemistry course.
Keirstead, Ralph E. J. Chem. Educ. 1954, 31, 606.
Industrial Chemistry |
Metals
An introduction to the electron theory of metals  Lefever, Robert A.
This discussion is intended to provide a general background for the understanding of metal physics as well as a basis for more advanced study.
Lefever, Robert A. J. Chem. Educ. 1953, 30, 486.
Metals |
Atomic Properties / Structure
Demonstration of the intermediate position of cobalt between iron and nickel  Goldstein, Ernst M.
The different oxidizability of ferrous, cobaltous, and nickelous hydroxides, together with increasing color deepness of the oxidation products, can be used to demonstrate that cobalt is intermediate in its properties between iron and nickel.
Goldstein, Ernst M. J. Chem. Educ. 1953, 30, 387.
Periodicity / Periodic Table |
Metals |
Oxidation / Reduction |
Atomic Properties / Structure |
Qualitative Analysis
Suggestions for demonstrations  Lapp, Walter S.
The author briefly describes demonstrations involving the cathodic protection of iron from corrosion, the use of lithium in preparing hydrogen, an easily constructed conductivity kit, and a support for rubber stoppers.
Lapp, Walter S. J. Chem. Educ. 1952, 29, 611.
Oxidation / Reduction |
Conductivity |
Aqueous Solution Chemistry
Miscellaneous experiments  Damerel, Charlotte I.
Offers three demonstrations, the first involving molecular models illustrating the generation of optical isomers in a laboratory synthesis; the second demonstrating that liquid sodium chloride conducts and electric current; and the third examining the flow of electric current in an electrochemical galvanic cell.
Damerel, Charlotte I. J. Chem. Educ. 1952, 29, 296.
Molecular Modeling |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Conductivity |
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials
The overhead projector and chemical demonstrations  Slabaugh, W. H.
Chemical demonstrations described for use with an overhead projector include the relative activity of metals, the electrolysis of water, the random motion of gas molecules, the action of metal couples, the relative strength of acids, the qualitative aspects of optical activity, and electrochemistry.
Slabaugh, W. H. J. Chem. Educ. 1951, 28, 579.
Metals |
Kinetic-Molecular Theory |
Acids / Bases |
Electrochemistry |
Aqueous Solution Chemistry