TIGER

Journal Articles: 139 results
A New "Bottom-Up" Framework for Teaching Chemical Bonding  Tami Levy Nahum, Rachel Mamlok-Naaman, Avi Hofstein, and Leeor Kronik
This article presents a general framework for bonding that can be presented at different levels of sophistication depending on the student's level and needs. The pedagogical strategy for teaching this model is a "bottom-up" one, starting with basic principles and ending with specific properties.
Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Kronik, Leeor. J. Chem. Educ. 2008, 85, 1680.
Atomic Properties / Structure |
Covalent Bonding |
Ionic Bonding |
Lewis Structures |
Materials Science |
MO Theory |
Noncovalent Interactions
On Capillary Rise and Nucleation  R. Prasad
A comparison of capillary rise and nucleation shows that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. This comparison may help to introduce nucleation with capillary rise, a topic familiar to students.
Prasad, R. J. Chem. Educ. 2008, 85, 1389.
Liquids |
Materials Science |
Metallurgy |
Solids
Polymeric, Metallic and Other Glasses in Introductory Chemistry  Stephen J. Hawkes
Polymeric, metallic, and other glasses and their importance are described in a manner suitable for introductory chemistry.
Hawkes, Stephen J. J. Chem. Educ. 2008, 85, 1377.
Consumer Chemistry |
Materials Science |
Phases / Phase Transitions / Diagrams |
Solids
National Chemistry Week  JCE Editorial Staff
JCE offers a wealth of materials for teaching and learning chemistry available in print or at JCE Online (http://www.jce.divched.org). Here are some JCE resources for celebrating National Chemistry Week and its theme, "Having a Ball with Chemistry."
JCE Editorial Staff. J. Chem. Educ. 2008, 85, 1336.
Materials Science
JCE Resources for Chemistry and Sports  Erica K. Jacobsen
This annotated bibliography collects the best that past issues of JCE have to offer related to the 2008 National Chemistry Week theme, "Having a Ball with Chemistry."
Jacobsen, Erica K. J. Chem. Educ. 2008, 85, 1331.
Materials Science
Modern Sport and Chemistry: What a Golf Fanatic Should Know  Scott E. McKay, Timothy Robbins, and Renée S. Cole
This paper focuses on golf and examines some of the structures and properties of materials that have led to significant changes in the skills required to excel at the highest levels of the game.
McKay, Scott E.; Robbins, Timothy; Cole, Renée S. J. Chem. Educ. 2008, 85, 1319.
Consumer Chemistry |
Applications of Chemistry |
Materials Science
Greener Alternative to Qualitative Analysis for Cations without H2S and Other Sulfur-Containing Compounds  Indu Tucker Sidhwani and Sushmita Chowdhury
The classic technique for the qualitative analysis of inorganic salts and mixtures relies on highly toxic hydrogen sulfide. Increasing environmental awareness has prompted the development of a green scheme for the detection of cations by spot tests that is simple and fast.
Sidhwani, Indu Tucker; Chowdhury, Sushmita. J. Chem. Educ. 2008, 85, 1099.
Green Chemistry |
Qualitative Analysis |
Separation Science
Preparation of Conducting Polymers by Electrochemical Methods and Demonstration of a Polymer Battery  Hiromasa Goto, Hiroyuki Yoneyama, Fumihiro Togashi, Reina Ohta, Akitsu Tsujimoto, Eiji Kita, and Ken-ichi Ohshima
The electrochemical polymerization of aniline and pyrrole, and demonstrations of electrochromism and the polymer battery effect, are presented as demonstrations suitable for high school and introductory chemistry at the university level.
Goto, Hiromasa; Yoneyama, Hiroyuki; Togashi, Fumihiro; Ohta, Reina; Tsujimoto, Akitsu; Kita, Eiji; Ohshima, Ken-ichi. J. Chem. Educ. 2008, 85, 1067.
Aromatic Compounds |
Conductivity |
Electrochemistry |
Materials Science |
Oxidation / Reduction |
Polymerization
Developing and Disseminating NOP: An Online, Open-Access, Organic Chemistry Teaching Resource To Integrate Sustainability Concepts in the Laboratory  Johannes Ranke, Müfit Bahadir, Marco Eissen, and Burkhard König
Describes a project that identifies parameters for sustainable practices in organic chemistry laboratories, including the atom economy and energy efficiency of chemical transformations, questions of waste and renewable feedstocks, toxicity and ecotoxicity, and safety measures.
Ranke, Johannes; Bahadir, Müfit; Eissen, Marco; König, Burkhard. J. Chem. Educ. 2008, 85, 1000.
Green Chemistry |
Synthesis |
Toxicology
A Simplified Synthetic Experiment of YBa2Cu3O7–x Superconductor for First-Year Chemistry Laboratory  Jui-Lin She and Ru-Shi Liu
In this first-year chemistry experiment, a simplified synthetic superconductor is prepared to demonstrate high temperature superconductivity and the Meissner effect.
She, Jui-Lin; Liu, Ru-Shi. J. Chem. Educ. 2008, 85, 825.
Materials Science |
Solid State Chemistry |
Superconductivity |
X-ray Crystallography
Determination of the Formula of a Hydrate: A Greener Alternative  Marc A. Klingshirn, Allison F. Wyatt, Robert M. Hanson, and Gary O. Spessard
This article describes how the principles of green chemistry were applied to a first-semester, general chemistry courses, specifically in relation to the determination of the formula of a copper hydrate salt that changes color when dehydrated and is easily rehydrated with steam.
Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O. J. Chem. Educ. 2008, 85, 819.
Gravimetric Analysis |
Green Chemistry |
Solids |
Stoichiometry
Thermal Analysis of Plastics  Teresa D'Amico, Craig J. Donahue, and Elizabeth A. Rais
Students interpret previously recorded scans generated by differential scanning calorimetry and thermal gravimetric analysis to investigate a polypropylene dog bone, a polyethylene terephthalate pop bottle, the plastics in automobile head- and taillights, fishing line and a tea bag, and the rubber tread of an automobile tire.
D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A. J. Chem. Educ. 2008, 85, 404.
Materials Science |
Polymerization |
Thermal Analysis
Pennies and Eggs: Initiation into Inquiry Learning for Preservice Elementary Education Teachers  Donald J. Wink and Jeong Hye Hwang-Choe
Describes two labs incorporating the Science Writing Heuristic in a course for preservice students in elementary education. The first lab is a discovery activity involving the change in composition and mass of pennies in 1982; the second uses flotation methods to separate hard-boiled and uncooked eggs.
Wink, Donald J.; Hwang-Choe, Jeong Hye. J. Chem. Educ. 2008, 85, 396.
Aqueous Solution Chemistry |
Materials Science |
Solutions / Solvents |
Physical Properties
Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory  Kristen L. Cacciatore, Jose Amado, Jason J. Evans, and Hannah Sevian
Presents a novel first-year chemistry experiment that asks students to replicate procedures described in sample lab reports that lack essential information. This structure is designed to promote students' experimental design and data analysis skills as well as their understanding of the importance and essential qualities of written and verbal communication between scientists.
Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah. J. Chem. Educ. 2008, 85, 251.
Equilibrium |
Green Chemistry |
Periodicity / Periodic Table |
Solutions / Solvents |
Stoichiometry |
Titration / Volumetric Analysis
A Simplified Model To Predict the Effect of Increasing Atmospheric CO2 on Carbonate Chemistry in the Ocean  Brian J. Bozlee, Maria Janebo, and Ginger Jahn
The chemistry of dissolved inorganic carbon in seawater is reviewed and used to predict the potential effect of rising levels of carbon dioxide in the atmosphere. It is found that calcium carbonate may become unsaturated in cold surface seawater by the year 2100, resulting in the destruction of calcifying organisms such as coral.
Bozlee, Brian J.; Janebo, Maria; Jahn, Ginger. J. Chem. Educ. 2008, 85, 213.
Applications of Chemistry |
Aqueous Solution Chemistry |
Atmospheric Chemistry |
Equilibrium |
Green Chemistry |
Water / Water Chemistry
Stuffed Derivatives of Close-Packed Structures  Bodie E. Douglas
Examines a variety of stuffed silica crystal structures in terms of the close-packing of one set of atoms or ions (P sites) with other atoms or ions in tetrahedral (T) or octahedral (O) sites and filled or partially filled layers in the regular pattern, PTOT.
Douglas, Bodie E. J. Chem. Educ. 2007, 84, 1846.
Crystals / Crystallography |
Group Theory / Symmetry |
Materials Science |
Metals |
Solid State Chemistry |
Solids
Benchtop Nanoscale Patterning Using Soft Lithography  Viswanathan Meenakshi, Yelizaveta Babayan, and Teri W. Odom
This paper outlines several nanoscale patterning experiments designed to use readily available and inexpensive materials such as compact discs, glass microscope slides, and curable polymers, and supplemented by an online video lab manual. These labs allow students to generate polymeric and metallic structures with feature sizes as small as 110 nm.
Meenakshi, Viswanathan; Babayan, Yelizaveta; Odom, Teri W. J. Chem. Educ. 2007, 84, 1795.
Materials Science |
Nanotechnology
Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes  Benjamin M. Hutchins, Thomas T. Morgan, Miné G. Ucak-Astarlioglu, and Mary Elizabeth Williams
Visually observed fluorescent colors of quantum dots in conjunction with spectroscopic data show students the additive emission of such mixtures; while some appear to emit white light, their fluorescence peaks remain spectroscopically resolved.
Hutchins, Benjamin M.; Morgan, Thomas T.; Ucak-Astarlioglu, Miné G.; Williams, Mary Elizabeth. J. Chem. Educ. 2007, 84, 1301.
Dyes / Pigments |
Fluorescence Spectroscopy |
Materials Science |
Nanotechnology |
Photochemistry |
Qualitative Analysis |
Spectroscopy |
UV-Vis Spectroscopy
Modifying Optical Properties of ZnO Films by Forming Zn1-xCoxO Solid Solutions via Spray Pyrolysis  Anne K. Bentley, Gabriela C. Weaver, Cianán B. Russell, William L. Fornes, Kyoung-Shin Choi, and Susan M. Shih
Presents a simple experiment demonstrating the presence of an energy band gap in a semiconductor and its relationship to the material's composition through observed color and UVvis absorption.
Bentley, Anne K.; Weaver, Gabriela C.; Russell, Cianán B.; Fornes, William L.; Choi, Kyoung-Shin; Shih, Susan M. J. Chem. Educ. 2007, 84, 1183.
Materials Science |
Semiconductors |
Solid State Chemistry |
UV-Vis Spectroscopy
Preparation of CdS Nanoparticles by First-Year Undergraduates  Kurt Winkelmann, Thomas Noviello, and Steven Brooks
First-year undergraduate students prepare bulk and nanometer-sized cadmium sulfide clusters within water-in-oil micelles and calculate particle size using the effective mass model.
Winkelmann, Kurt; Noviello, Thomas; Brooks, Steven. J. Chem. Educ. 2007, 84, 709.
Colloids |
Materials Science |
Nanotechnology |
Micelles |
Semiconductors |
UV-Vis Spectroscopy
Hydrophilic Inorganic Macro-Ions in Solution: Unprecedented Self-Assembly Emerging from Historical "Blue Waters"  Tianbo Liu, Ekkehard Diemann, and Achim Müller
The behavior of supramolecular structures in solution is different from that of simple ions, polymers, surfactant micelles, and colloids. New research involving polyoxometalates, which are fully hydrophilic but tend to self-associate into macro-ionic structures, may change our understanding of inorganic ionic solutions.
Liu, Tianbo; Diemann, Ekkehard; Müller, Achim. J. Chem. Educ. 2007, 84, 526.
Aqueous Solution Chemistry |
Colloids |
Materials Science |
Nanotechnology |
Solutions / Solvents |
Spectroscopy |
Lasers |
Physical Properties
Chemical Nanotechnology: A Liberal Arts Approach to a Basic Course in Emerging Interdisciplinary Science and Technology  Lon A. Porter, Jr.
This course focuses on the basic science behind the major research initiatives in nanotechnology, while revisiting the origins of the field and spotlighting current advances. Students are also challenged to consider the political, economical, environmental, and ethical concerns relating to nanotechnology and its potential impact on modern society.
Porter, Lon A., Jr. J. Chem. Educ. 2007, 84, 259.
Applications of Chemistry |
Materials Science |
Nanotechnology |
Nonmajor Courses |
Surface Science
Introducing New Learning Tools into a Standard Classroom: A Multi-Tool Approach to Integrating Fuel-Cell Concepts into Introductory College Chemistry   Matthew J. DAmato, Kenneth W. Lux, Kenneth A. Walz, Holly Walter Kerby, and Barbara Anderegg
Describes an approach to deliver the science and engineering concepts involved in fuel-cell technology to the introductory college chemistry classroom using traditional lectures, multimedia learning objects, and a lab activity to enhance student learning in a hands-on, interactive manner.
DAmato, Matthew J.; Lux, Kenneth W.; Walz, Kenneth A.; Kerby, Holly Walter; Anderegg, Barbara. J. Chem. Educ. 2007, 84, 248.
Electrochemistry |
Materials Science |
Nanotechnology |
Oxidation / Reduction |
Membranes
Titration of a Solid Acid Monitored By X-Ray Diffraction  Keenan E. Dungey and Paul Epstein
Presents a solid-state laboratory in which students react fixed amounts of zirconium phosphate with increasing equivalents of NaOH(aq). From X-ray diffraction patterns, students calculate the interplanar spacings before and after the reaction. The spacings increase until the molar equivalence point is reached, indicating incorporation of the sodium ion into the crystal.
Dungey, Keenan E.; Epstein, Paul. J. Chem. Educ. 2007, 84, 122.
Acids / Bases |
Crystals / Crystallography |
Materials Science |
Solid State Chemistry |
X-ray Crystallography |
Titration / Volumetric Analysis
Powder Diffraction Simulated by a Polycrystalline Film of Spherical Colloids  Dean J. Campbell and Younan Xia
This article describes a simple way to demonstrate powder diffraction in a classroom setting using a dry film of spherical colloids on a glass substrate.
Campbell, Dean. J.; Xia, Younan. J. Chem. Educ. 2006, 83, 1638.
Crystals / Crystallography |
Mathematics / Symbolic Mathematics |
X-ray Crystallography |
Materials Science
Chemical Bonding Makes a Difference!  Mary Harris
This report describes a PowerPoint presentation that shows how a small difference in bonding can result in a drastic change in the properties of a material.
Harris, Mary. J. Chem. Educ. 2006, 83, 1435.
Enrichment / Review Materials |
Materials Science |
Polymerization |
Carbohydrates
Polymers: Cornerstones of Construction  John P. Droske and Charles E. Carraher, Jr.
This report summarizes the application of natural and synthetic polymers as building materials.
Droske, John P.; Carraher, Charles E., Jr. J. Chem. Educ. 2006, 83, 1428.
Materials Science |
Applications of Chemistry
A Demonstration of Refractive Index Matching Using Isopropyl Alcohol and MgF2  Frederick C. Sauls
Isopropyl alcohol and magnesium fluoride have nearly identical refractive indices; thus a chip of MgF2 disappears when immersed in isopropanol.
Sauls, Frederick C. J. Chem. Educ. 2006, 83, 1170.
Mathematics / Symbolic Mathematics |
Physical Properties |
Solids |
Materials Science
Completing Our Education. Green Chemistry in the Curriculum  Birgit Braun, Reagan Charney, Andres Clarens, Jennifer Farrugia, Christopher Kitchens, Carmen Lisowski, David Naistat, and Adam O'Neil
Identifies areas of green chemistry that are often neglected, describes the value of integrating green chemistry principles in today's curricula, and and suggests strategies educators might use to incorporate green chemistry in their classrooms.
Braun, Birgit; Charney, Reagan; Clarens, Andres; Farrugia, Jennifer; Kitchens, Christopher; Lisowski, Carmen; Naistat, David; O'Neil, Adam. J. Chem. Educ. 2006, 83, 1126.
Green Chemistry
Faculty Responsibilities  John W. Moore
It is important that students recognize the objectives of green chemistry, its ways of analyzing environmental impacts and sustainability, and how those objectives and methods can lead to creativity in solving scientific and technical problems. These can be applied to existing content and merely require a different approach to many things we already teach.
Moore, John W. J. Chem. Educ. 2006, 83, 1111.
Administrative Issues |
Professional Development |
Green Chemistry
Enantioselective Reduction by Crude Plant Parts: Reduction of Benzofuran-2-yl Methyl Ketone with Carrot (Daucus carota) Bits  Silvana Ravía, Daniela Gamenara, Valeria Schapiro, Ana Bellomo, Jorge Adum, Gustavo Seoane, and David Gonzalez
Presents the enantioselective reduction of a ketone by crude plant parts, using carrot (Daucus carota) as the reducing agent.
Ravía, Silvana; Gamenara, Daniela; Schapiro, Valeria; Bellomo, Ana; Adum, Jorge; Seoane, Gustavo; Gonzalez, David. J. Chem. Educ. 2006, 83, 1049.
Aldehydes / Ketones |
Biotechnology |
Catalysis |
Chromatography |
Green Chemistry |
Oxidation / Reduction |
Stereochemistry |
Separation Science
Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry  Kristen L. Cacciatore and Hannah Sevian
Presents an experiment with four key features: students utilize stoichiometry, learn and apply principles of green chemistry, engage in authentic scientific inquiry, and discover why each part of a scientific lab report is necessary.
Cacciatore, Kristen L.; Sevian, Hannah. J. Chem. Educ. 2006, 83, 1039.
Quantitative Analysis |
Green Chemistry |
Gravimetric Analysis |
Stoichiometry
Demonstrating Void Space in Solids: A Simple Demonstration To Challenge a Powerful Misconception  Mary Whitfield
The concept of bridging analogies is used in a simple demonstration to illustrate the substantial quantity of empty space that remains when solid spheres are packed together. The same demonstration also shows that the percentage of empty space is independent of particle size.
Whitfield, Mary. J. Chem. Educ. 2006, 83, 749.
Atomic Properties / Structure |
Materials Science |
Solids
Calcium Phosphates and Human Beings  Sergey V. Dorozhkin
This article describes the general importance of calcium phosphates for human beings. The basic information on the structure and chemical properties of the biologically relevant calcium phosphates is summarized.
Dorozhkin, Sergey V. J. Chem. Educ. 2006, 83, 713.
Applications of Chemistry |
Bioinorganic Chemistry |
Biotechnology |
Materials Science |
Medicinal Chemistry |
Natural Products
Microwave-Assisted Heterocyclic Chemistry for Undergraduate Organic Laboratory  Robert Musiol, Bozena Tyman-Szram, and Jaroslaw Polanski
Microwave-assisted techniques are used to design new environmentally benign syntheses of heterocycles for the undergraduate organic laboratory.
Musiol, Robert; Tyman-Szram, Bozena; Polanski, Jaroslaw. J. Chem. Educ. 2006, 83, 632.
Green Chemistry |
Heterocycles |
Reactions |
Synthesis
An Introduction to Polymer Processing, Morphology, and Property Relationships through Thermal Analysis of Plastic PET Bottles. Exercises Designed to Introduce Students to Polymer Physical Properties  H. Darrell Iler, Eric Rutt, and Seth Althoff
Through thermal analyses of poly(ethylene terephthlate) (PET) bottles, students are introduced to the relationships between processing, morphology, and physical properties of polymer materials.
Iler, H. Darrell; Rutt, Eric; Althoff, Seth. J. Chem. Educ. 2006, 83, 439.
Applications of Chemistry |
Heat Capacity |
Instrumental Methods |
Materials Science |
Thermal Analysis
Chemical Characterization of Activated Carbon Fibers and Activated Carbons  J. M. Valente Nabais and P. J. M. Carrott
The main objective of this laboratory is the chemical characterization of carbon materials, mainly activated carbons and activated carbon fibers, using several methods to obtain the information without using expensive instruments.
Valente Nabais, J. M.; Carrott, P. J. M. J. Chem. Educ. 2006, 83, 436.
Acids / Bases |
Aqueous Solution Chemistry |
Materials Science |
Surface Science |
Titration / Volumetric Analysis
Intelligent Thermochromic Windows  Ivan P. Parkin and Troy D. Manning
This article covers the background and related science associated with a thermochromic window, a device that changes its reflectance and transmission properties at a specific critical temperature.
Parkin, Ivan P.; Manning, Troy D. J. Chem. Educ. 2006, 83, 393.
Materials Science |
Physical Properties |
Solid State Chemistry
Electropolymerized Conducting Polymer as Actuator and Sensor Device: An Undergraduate Electrochemical Laboratory Experiment  María T. Cortés and Juan C. Moreno
A trilayer formed by two conducting polymer films sandwiched around an adhesive polymer layer works as actuator and sensor simultaneously. This device can be bent up to 180 and it can be used as a sensing device of physical chemistry parameters such as cell temperature and electrolyte concentration. In this article, it is shown in a didactic way how to electrochemically synthesize ClO4-doped polypyrrole (PPy) films, how to fabricate a trilayer device, and how to evaluate its actuating and sensing capabilities. The required materials are simple and a complicated setup is not necessary.
Cortés, María T.; Moreno, Juan C. J. Chem. Educ. 2005, 82, 1372.
Electrochemistry |
Materials Science |
Undergraduate Research |
Polymerization |
Applications of Chemistry
Introduction to Photolithography: Preparation of Microscale Polymer Silhouettes  Kimberly L. Berkowski, Kyle N. Plunkett, Qing Yu, and Jeffrey S. Moore
In this experiment, a glass microscope slide acts as the microchip. Students can pattern this "microchip" by layering negative photoresist on the slide using a solution containing monomer, crosslinker, photoinitiator, and dye. The students then cover the photoresist with a photomask, which is the negative of a computer-generated image or text printed on transparency film, and illuminate it with UV light. The photoresist in the exposed area polymerizes into a polymer network with a shape dictated by the photomask. The versatility of this technique is exemplified by allowing each student to fabricate virtually any shape imaginable, including his or her silhouette.
Berkowski, Kimberly L.; Plunkett, Kyle N.; Yu, Qing; Moore, Jeffrey S. J. Chem. Educ. 2005, 82, 1365.
Materials Science |
Applications of Chemistry |
Free Radicals |
Polymerization
Going Green: Lecture Assignments and Lab Experiences for the College Curriculum  Julie A. Haack, James E. Hutchison, Mary M. Kirchhoff, and Irvin J. Levy
This paper provides an overview of green chemistry, including ways to incorporate green chemistry principles in existing courses and laboratories. Green chemistry experiments previously published in this Journal are listed.
Haack, Julie A.; Hutchison, James E.; Kirchhoff, Mary M.; Levy, Irvin J. J. Chem. Educ. 2005, 82, 974.
Green Chemistry
Physical Chemistry at the Nanometer Scale  K. W. Hipps
An overview is provided of the Petroleum Research Fund sponsored summer school, "Physical Chemistry at the Nanometer Scale." Several articles resulting from the school (and printed in this issue) are introduced and placed in perspective from the standpoint of how they might be used in the undergraduate curriculum.
Hipps, K. W. J. Chem. Educ. 2005, 82, 693.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science
Self-Assembled Colloidal Crystals: Visualizing Atomic Crystal Chemistry Using Microscopic Analogues of Inorganic Solids  Neal M. Abrams and Raymond E. Schaak
Monodisperse spherical colloids spontaneously crystallize into close-packed crystals, in analogy to the simple crystal structures of many of the elements. Since colloids are orders of magnitude larger than atoms, students can directly observe crystal structure and behavior in a microscope using colloidal crystals. This laboratory exercise provides a modular series of materials science experiments appropriate for undergraduate chemistry and engineering majors. The individual modules include aspects of chemical synthesis (monodisperse SiO2 and polymer spheres), self-assembly (colloidal crystallization), and structural characterization through microscopy (optical and scanning electron microscopies) and optical spectroscopy (optical diffraction and UVvisible spectroscopy).
Abrams, Neal M.; Schaak, Raymond E. J. Chem. Educ. 2005, 82, 450.
Colloids |
Materials Science |
Solid State Chemistry |
Solids
A Substitute for “Bromine in Carbon Tetrachloride”  Joshua M. Daley and Robert G. Landolt
Benzotrifluoride (BTF) is a suitable solvent substitute for carbon tetrachloride in experiments requiring application of bromine (Br2) in free radical or addition reactions with organic substrates. A 1 M solution of Br2 in BTF may be used to distinguish hydrocarbons based on the ease of abstraction of hydrogen atoms in thermally or light-induced free radical substitutions. Efficacy of minimization of solvent use, by aliquot addition to neat samples, has been established.
Daley, Joshua M.; Landolt, Robert G. J. Chem. Educ. 2005, 82, 120.
Alkenes |
Free Radicals |
Green Chemistry |
Qualitative Analysis |
Reactions
A Greener Approach for Measuring Colligative Properties  Sean M. McCarthy and Scott W. Gordon-Wylie
As a first step towards the greening of instructional laboratories, we present a new greener version of a laboratory procedure designed to measure colligative properties. The greener procedure substitutes the nontoxic, noncarcinogenic compounds stearic, myristic, lauric, and palmitic acids for the less benign aromatic compounds p-dichlorobenzene, benzil, biphenyl, naphthalene, and nitrotoluene. Achieving educational goals without the concomitant generation of chlorinated and aromatic wastes is shown here to be both possible and practical.
McCarthy, Sean M.; Gordon-Wylie, Scott W. J. Chem. Educ. 2005, 82, 116.
Green Chemistry |
Solutions / Solvents |
Fatty Acids
Color My Nanoworld  Adam D. McFarland, Christy L. Haynes, Chad A. Mirkin, Richard P. Van Duyne, and Hilary A. Godwin
This activity begins with the synthesis of 13 nm-diameter gold nanoparticles by reduction of a gold salt. The students use the resulting nanoparticle solution to explore the size-dependent optical properties of gold nanoparticles.
McFarland, Adam D.; Haynes, Christy L.; Mirkin, Chad A.; Van Duyne, Richard P.; Godwin, Hilary A. J. Chem. Educ. 2004, 81, 544A.
Colloids |
Materials Science |
Nanotechnology |
UV-Vis Spectroscopy |
Metals
Measuring Viscoelastic Deformation with an Optical Mouse  T. W. Ng
A simple demonstration of viscoelasticity can be carried out by attaching a weight to a polymer film and watching it extend over time. For accurate and quantifiable data on the deformation, an electronic displacement sensor should be incorporated. Most of such sensors are expensive. Here, an optical mouse was demonstrated to provide accurate data at low cost. The experiment was also devised in a manner to allow students to learn about viscoelastic deformation experientially.
Ng, T. W. J. Chem. Educ. 2004, 81, 1628.
Consumer Chemistry |
Laboratory Equipment / Apparatus |
Materials Science
Using Organic Light-Emitting Electrochemical Thin-Film Devices To Teach Materials Science  Hannah Sevian, Sean Müller, Hartmut Rudmann, and Michael F. Rubner
Light-emitting thin films provide an excellent opportunity to learn about principles of electrochemistry, spectroscopy, microscopic structure of the solid state, basic circuits, and engineering design. There is currently strong interest in academic and industrial engineering research centering on developing organic light-emitting devices for applications in flat panel displays. In this educational module, designed for high school or introductory undergraduate courses, students learn how to make a ruthenium-based thin-film device. In the process, they learn about the solid-state electrochemistry at work in the film, as well as the electroluminescence that results when current passes through the device.
Sevian, Hannah; Müller, Sean; Rudmann, Hartmut; Rubner, Michael F. J. Chem. Educ. 2004, 81, 1620.
Electrochemistry |
Photochemistry |
Materials Science |
Oxidation / Reduction |
Solid State Chemistry
Water in the Atmosphere  Joel M. Kauffman
None of eight college-level general chemistry texts gave a mean value for water in the atmosphere, despite its being the third most prevalent constituent at about 1.5% by mass as vapor and about 2% if clouds and ice crystals are included. The importance of water as a greenhouse gas was omitted or marginalized by five of the eight texts. An infrared spectrum of humid air was determined to demonstrate that water vapor, because of its higher concentration, was more absorptive than carbon dioxide. The cooling effect of clouds, or other influences on the Earth's albedo, were not mentioned in most of the texts. These pervasive errors should be corrected in new or future editions of textbooks.
Kauffman, Joel M. J. Chem. Educ. 2004, 81, 1229.
Atmospheric Chemistry |
Gases |
Green Chemistry |
IR Spectroscopy
Mass Spectrometry for the Masses  Jared D. Persinger, Geoffrey C. Hoops, and Michael J. Samide
In this article, we describe an experiment for an introductory chemistry course that incorporates the use of mass spectrometry for sample analysis. Several different air samples are collected that represent various chemical processes, and the composition of the air sample is predicted on the basis of known chemical principles. A gas chromatograph-mass spectrometer is used to analyze these samples, and the relative quantities of nitrogen, oxygen, carbon dioxide, water, and argon are calculated. On the basis of the data, the hypothesized sample composition is validated.
Persinger, Jared D.; Hoops, Geoffrey C.; Samide, Michael J. J. Chem. Educ. 2004, 81, 1169.
Mass Spectrometry |
Atmospheric Chemistry |
Green Chemistry |
Nonmajor Courses |
Oxidation / Reduction |
Photosynthesis |
Gases
Spectacular Pseudo-Exfoliation of an Exfoliated–Compressed Graphite  M. Comet, L. Schreyeck, S. Verdan, G. Burato, and H. Fuzellier
This kind of reaction has been called pseudo-exfoliation of carbonaceous material. This demonstration spectacularly illustrates the layered nature of graphite.
Comet, M.; Schreyeck, L.; Verdan, S.; Burato, G.; Fuzellier, H. J. Chem. Educ. 2004, 81, 819.
Materials Science |
Oxidation / Reduction |
Solid State Chemistry
Inorganic Fullerenes, Onions, and Tubes  Andrew P. E. York
Proposed applications for the inorganic fullerenes include electronic devices and storage media, probes and electron microscope tips, and nano-ball bearings and high temperature lubricants.
York, Andrew P. E. J. Chem. Educ. 2004, 81, 673.
Materials Science |
Nanotechnology |
Solid State Chemistry
Boron Clusters Come of Age  Russell N. Grimes
This article attempts to summarize the current state of the art, illustrated by examples selected to convey some of the excitement and possibilities for future exploitation of these remarkable compounds.
Grimes, Russell N. J. Chem. Educ. 2004, 81, 657.
Main-Group Elements |
Materials Science |
Organometallics
Magnetic Particle Technology. A Simple Preparation of Magnetic Composites for the Adsorption of Water Contaminants  Luiz C. A. Oliveira, Rachel V. R. A. Rios, José D. Fabris, Rochel M. Lago, and Karim Sapag
In this article a simple undergraduate laboratory experiment to produce magnetic adsorbents is described. These magnetic materials efficiently adsorb contaminants from water and can be easily removed from the medium by a simple magnetic separation process.
Oliveira, Luiz C.A.; Rios, Rachel V.R.A.; Fabris, José D.; Lago, Rochel M.; Sapag, Karim. J. Chem. Educ. 2004, 81, 248.
Green Chemistry |
Magnetic Properties |
Materials Science |
Separation Science |
Water / Water Chemistry
News from Online: Green Chemistry  Erich S. Uffelman
An introductory, non-exhaustive set of online resources is presented to provide readers with an entry into the area of green chemistry.
Uffelman, Erich S. J. Chem. Educ. 2004, 81, 172.
Green Chemistry
Challenges at the Molecular Frontier  John W. Moore
Discussion of report "Beyond the Molecular Frontier: Challenges for Chemistry and Chemical Engineering", regarding new frontiers in chemistry, the importance of helping the public and students to better understand the contributions of chemistry, and attracting the best students to the field.
Moore, John W. J. Chem. Educ. 2003, 80, 591.
Biotechnology |
Consumer Chemistry |
Materials Science |
Nanotechnology |
Administrative Issues
Keeping Current with Chemistry  John W. Moore
The importance of incorporating aspects of biochemistry and materials science into the undergraduate chemistry curriculum.
Moore, John W. J. Chem. Educ. 2003, 80, 463.
Professional Development |
Materials Science
The Chemical Adventures of Sherlock Holmes: The Blackwater Escape  Thomas G. Waddell and Thomas R. Rybolt
A chemical mystery involving electrochemistry and featuring Sherlock Holmes and Dr. Watson.
Waddell, Thomas G.; Rybolt, Thomas R. J. Chem. Educ. 2003, 80, 401.
Electrochemistry |
Materials Science |
Qualitative Analysis |
Oxidation / Reduction |
Enrichment / Review Materials |
Applications of Chemistry
Introduction to Green Chemistry (Mary Ann Ryan and Michael Tinnesand)  Wheeler Conover
Introduction to the principles of green chemistry emphasizing waste reduction; includes laboratory activities.
Conover, Wheeler. J. Chem. Educ. 2003, 80, 268.
Green Chemistry |
Consumer Chemistry |
Applications of Chemistry
A Photolithography Laboratory Experiment for General Chemistry Students   Adora M. Christenson, Gregory W. Corder, Thomas C. DeVore, and Brian H. Augustine
A photolithography laboratory experiment for general chemistry that introduces materials science and the production of microfabricated devices.
Christenson, Adora M.; Corder, Gregory W.; DeVore, Thomas C.; Augustine, Brian H. J. Chem. Educ. 2003, 80, 183.
Kinetics |
Materials Science |
Photochemistry |
Spectroscopy
Micelle-Mediated Extraction of Heavy Metals from Environmental Samples: An Environmental Green Chemistry Laboratory Experiment  Dimosthenis L. Giokas, Evangelos K. Paleologos, and Miltiades I. Karayannis
A laboratory focussing on the determination of metallic elements in drinking water through cloud-point extraction.
Giokas, Dimosthenis L.; Paleologos, Evangelos K.; Karayannis, Miltiades I. J. Chem. Educ. 2003, 80, 61.
Atomic Spectroscopy |
Metals |
Micelles |
Separation Science |
Green Chemistry |
Qualitative Analysis |
Quantitative Analysis
The Electrolytic Recovery of Copper from Brass. A Laboratory Simulation of an Industrial Application of Electrical Energy  Domenico Osella, Mauro Ravera, Cristina Soave, and Sonia Scorza
Procedure demonstrating the electrolytic purification of copper.
Osella, Domenico; Ravera, Mauro; Soave, Cristina; Scorza, Sonia. J. Chem. Educ. 2002, 79, 343.
Electrochemistry |
Materials Science |
Metals
Spontaneous Assembly of Soda Straws  D. J. Campbell, E. R. Freidinger, J. M. Hastings, and M. K. Querns
Demonstrating spontaneous assembly using soda straws.
Campbell, D. J.; Freidinger, E. R.; Hastings, J. M.; Querns, M. K. J. Chem. Educ. 2002, 79, 201.
Materials Science |
Molecular Properties / Structure |
Nanotechnology |
Surface Science |
Thermodynamics
LEDs Are Diodes  George C. Lisensky, S. Michael Condren, Cynthia G. Widstrand, Jonathan Breitzer, and Arthur B. Ellis
Comparison of incandescent bulbs with LEDs powered by AC and DC voltages; shows that LEDs are diodes and illustrates the relative energies of different wavelengths of light.
Lisensky, George C.; Condren, S. Michael; Widstrand, Cynthia G.; Breitzer, Jonathan; Ellis, Arthur B. J. Chem. Educ. 2001, 78, 1664A.
Atomic Properties / Structure |
Materials Science |
Nanotechnology |
Solid State Chemistry |
Applications of Chemistry
LEDs: New Lamps for Old and a Paradigm for Ongoing Curriculum Modernization  S. Michael Condren, George C. Lisensky, Arthur B. Ellis, Karen J. Nordell, Thomas F. Kuech, and Steve Stockman
Summary of the key points of a white paper on LEDs as potential replacements for a significant fraction of vehicle, display, home, and workplace lighting, with substantial safety and environmental conserving benefits.
Condren, S. Michael; Lisensky, George C.; Ellis, Arthur B.; Nordell, Karen J.; Kuech, Thomas F.; Stockman, Steve. J. Chem. Educ. 2001, 78, 1033.
Materials Science |
Nanotechnology |
Semiconductors |
Solid State Chemistry |
Applications of Chemistry
Electronegativity and Bond Type: Predicting Bond Type  Gordon Sproul
Important limitations with using electronegativity differences to determine bond type and recommendations for using electronegativities in general chemistry.
Sproul, Gordon. J. Chem. Educ. 2001, 78, 387.
Covalent Bonding |
Materials Science |
Periodicity / Periodic Table |
Ionic Bonding |
Atomic Properties / Structure |
Metallic Bonding
Interactive Nano-Visualization of Materials over the Internet  Eddie W. Ong, Anshuman Razdan, Antonio A. Garcia, Vincent Pizziconi, B. L. Ramakrishna, and William S. Glaunsinger
By employing a direct visual approach to learning, the Interactive Nano-Visualization in Science and Engineering Education (IN-VSEE) project endeavors to remove many of the conventional barriers that hinder effective teaching and learning by empowering learners with Internet access to revolutionary scanning probe microscopes (SPMs) that can image materials at resolutions down to the atomic scale.
Ong, Eddie W.; Razdan, Anshuman; Garcia, Antonio A.; Pizziconi, Vincent; Ramakrishna, B. L.; Glaunsinger, William S. J. Chem. Educ. 2000, 77, 1114.
Kinetic-Molecular Theory |
Materials Science |
Nanotechnology
Kixium Monolayers: A Simple Alternative to the Bubble Raft Model for Close-Packed Spheres  Keenan E. Dungey
This model focuses on the two-dimensional sheets, which are spontaneously formed from cereal pieces. The structure of the cereal rafts can be presented with an overhead projector.
Dungey, Keenan E. J. Chem. Educ. 2000, 77, 618.
Crystals / Crystallography |
Materials Science |
Solid State Chemistry
Microscale Chemistry and Green Chemistry: Complementary Pedagogies  Mono M. Singh, Zvi Szafran, and R. M. Pike
Green chemistry emphasizes the concepts of atom economy, source reduction, pathway modification, solvent substitution, and pollution prevention as means of improving the environmental impact of industrial chemistry. Microscale chemistry serves as a tool for incorporating green chemistry ideas across the curriculum in educational institutions. Examples are drawn from microscale laboratory experiments to illustrate the pedagogic connection between the two areas.
Singh, Mono M.; Szafran, Zvi; Pike, Ronald M. J. Chem. Educ. 1999, 76, 1684.
Microscale Lab |
Learning Theories |
Green Chemistry |
Laboratory Management
Bringing State-of-the-Art, Applied, Novel, Green Chemistry to the Classroom by Employing the Presidential Green Chemistry Challenge Awards  Michael C. Cann
In our environmental chemistry course at the University of Scranton, students select one of the winning entries from the most recent PGCC Awards competition and present a poster on the entry. This exercise exposes these students to state-of-the-art, applied, novel, green chemistry that they would be unlikely to encounter in any other course.
Cann, Michael C. J. Chem. Educ. 1999, 76, 1639.
Learning Theories |
Green Chemistry
Cleaning Up with Chemistry: Investigating the Action of Zeolite in Laundry Detergent  
In this activity, you will investigate the properties of one ingredient, aluminosilicate. The particular aluminosilicate used in powdered laundry detergent is sodium zeolite A. In this activity, you will extract sodium zeolite A from powdered laundry detergent and examine its properties.
J. Chem. Educ. 1999, 76, 1416A.
Materials Science |
Consumer Chemistry |
Applications of Chemistry |
Separation Science |
Water / Water Chemistry |
Ion Exchange
Thermochromism in Commercial Products  Mary Anne White and Monique LeBlanc
Many commercial products change color with a change of temperature. How do they do it? The processes responsible for the two major categories of commercial thermochromic coloring agents are presented, along with a description of applications of thermochromic materials.
White, Mary Anne; LeBlanc, Monique. J. Chem. Educ. 1999, 76, 1201.
Acids / Bases |
Consumer Chemistry |
Materials Science |
Applications of Chemistry
Preparation and Properties of an Aqueous Ferrofluid  Patricia Enzel, Nicholas B. Adelman, Katie J. Beckman, Dean J. Campbell, Arthur B. Ellis, and George C. Lisensky
This paper describes a simple synthesis of an aqueous-based ferrofluid that may be used in an introductory science or engineering laboratory. This paper also describes a method for repelling both oil- and water-based ferrofluid from solid surfaces that would otherwise be stained by the fluid. Finally, a demonstration of the interaction between ferrofluid and magnetic fields, in which ferrofluid is induced to leap upward by a stack of magnets, is described.
Enzel, Patricia; Adelman, Nicholas B.; Beckman, Katie J.; Campbell, Dean J.; Ellis, Arthur B.; Lisensky, George C. J. Chem. Educ. 1999, 76, 943.
Materials Science |
Magnetic Properties |
Nanotechnology |
Stoichiometry |
Colloids
Both Nylon and PET Fibers Burn Continuously under Atmospheric Conditions  Shouei Fujishige, Nagako Maebashi, and Mizue Miyauchi
In contrast to the descriptions in many textbooks, it was confirmed by taking two series of photographs that both nylon and PET fibers burn continuously even after the ignition flame has been removed. The photographs also show that a small spherical fire ball forms and occasionally leaves from the flame.
Fujishige, Shouei; Maebashi, Nagako; Miyauchi, Mizue. J. Chem. Educ. 1999, 76, 793.
Consumer Chemistry |
Materials Science |
Gases |
Laboratory Management
Pushing the Rainbow: Frontiers in Color Chemistry; Light and Color in Chemistry; Report on Two American Chemical Society Presidential Events  Nancy S. Gettys
On Sunday March 21, 1999, the 217th ACS National Meeting in Anaheim, California sponsored two Presidential Events, "Pushing the Rainbow: Frontiers in Color Chemistry" and "Light and Color in Chemistry". The events included 10 exceptional and very different speakers who explored various aspects of the importance of light and color in chemistry and chemistry teaching, in other sciences, and in art and human culture.
Gettys, Nancy S. J. Chem. Educ. 1999, 76, 737.
Conferences |
Photochemistry |
Materials Science |
Applications of Chemistry
Solid State Resources CD-ROM: Abstract of Special Issue 12, 2nd Edition   George C. Lisensky , Joey M. Blackwell, and Arthur B. Ellis
The Solid State Resources CD-ROM for Mac OS and Windows compatible computers has been updated with a new HTML interface and video identical to that published in the General Chemistry Collection, 2nd Edition. This includes both new video and improved versions of some of the movies on the original Solid State Resources CD.
Lisensky, George C.; Blackwell, Joey M.; Ellis, Arthur B. J. Chem. Educ. 1998, 75, 1351.
Materials Science |
Solids
Chemical Etching of Group III - V Semiconductors  Najah J. Kadhim, Stuart H. Laurie, and D. Mukherjee
This article reviews the chemical etchants used for the treatment of GaAs and others III - V. Semiconductors, the factors involved in their mechanism and the many potential pitfalls, arwillan defects associated with them.
Kadhim, Najah J.; Laurie, Stuart H.; Mukherjee, D. J. Chem. Educ. 1998, 75, 840.
Materials Science |
Surface Science |
Physical Properties
The ThermobileTM: A Nitinol-Based Scientific Toy  George B. Kauffman and Isaac Mayo
The "memory metal" Thermobile toy is highlighted.
Kauffman, George B.; Mayo, Isaac. J. Chem. Educ. 1998, 75, 313.
Materials Science |
Metals |
Applications of Chemistry
Elements of Curriculum Reform: Putting Solids in the Foundation  Arthur B. Ellis
Until recently, solids were a relatively small part of the chemistry curriculum. Helping to close this particular gap between the research and educational enterprises was the objective of the Ad Hoc Committee for Solid-State Instructional Materials, formed in 1990.
Ellis, Arthur B. J. Chem. Educ. 1997, 74, 1033.
Materials Science |
Solid State Chemistry |
Nanotechnology |
Magnetic Properties
A Refrigerator Magnet Analog of Scanning-Probe Microscopy  Julie K. Lorenz, Joel A. Olson, Dean J. Campbell, George C. Lisensky, and Arthur B. Ellis
The magnetic interactions between a flexible-sheet refrigerator magnet and a probe tip cut from the same magnet is used as a macroscopic analog of scanning probe microscopies.
Lorenz, Julie K.; Olson, Joel A.; Campbell, Dean J.; Lisensky, George C.; Ellis, Arthur B. J. Chem. Educ. 1997, 74, 1032A.
Surface Science |
Materials Science |
Atomic Properties / Structure |
Nanotechnology |
Magnetic Properties
A Simple Laboratory Demonstration of Electrochromism  Bertil Forslund
A laboratory exercise in which students are asked to construct an electrochromic cell, consisting of a thin, transparent layer of WO3 on a glass plate with a thin, transparent, and conducting surface coating of doped SnO2.
Forslund, Bertil. J. Chem. Educ. 1997, 74, 962.
Electrochemistry |
Materials Science |
Solid State Chemistry
An Inexpensive Kit for Constructing Models of Crystals  Michael Laing
This simple kit comprises five trays, each of 25 square wells, and a lid. It can be used to construct primitive cubic, FCC, BCC, diamond, zinc blende, NaCl, CsCl, rutile, fluorite, perovskite structures. The trays are square tissue culture Petri dishes (multiwell plates). Atoms are represented by glass marbles.
Laing, Michael. J. Chem. Educ. 1997, 74, 795.
Crystals / Crystallography |
Materials Science |
Solid State Chemistry |
Molecular Properties / Structure
Report on the WPI Conference: General Chemistry and Materials Science: The Interrelationships  Herbert Beall
Of the recent accomplishments of chemistry, some of the most spectacular have been in the area of materials. Materials receive surprisingly little attention as examples of chemical phenomena in fundamental chemistry classes, which are still built largely on the behavior of gases and liquids.
Beall, Herbert. J. Chem. Educ. 1996, 73, 756.
Conferences |
Materials Science
Solid State Resources CD  George C. Lisensky and Arthur B. Ellis
The Solid State Resource CD-ROM is intended to help instructors to integrate materials science examples into introductory chemistry courses.
Lisensky, G. C.; Ellis, A. B. . J. Chem. Educ. 1996, 73, 667.
Solid State Chemistry |
Materials Science
Polymer Science Pilot Program   Mary L. Maier
The Polymer Science Pilot Program consists of a sequence of experiences with polymers, designed to focus upon the ways in which these materials resemble and/or compare with nonpolymers in physical properties, versatility, and function.
Mary L. Maier. J. Chem. Educ. 1996, 73, 643.
Polymerization |
Physical Properties |
Materials Science
Materials in Today's World (Thrower, Peter A.)  Johnson, Brian J.
Text aimed at developing chemistry concepts through the perspective of materials science.
Johnson, Brian J. J. Chem. Educ. 1995, 72, A124.
Materials Science |
Nonmajor Courses
Introducing Green Chemistry in Teaching and Research  Terrence J. Collins
Efforts to integrate environmental considerations into the undergraduate chemistry curriculum and description of a course entitled "Introduction to Green Chemistry".
Collins, Terrence J. J. Chem. Educ. 1995, 72, 965.
Green Chemistry
A General Chemistry Course that Focuses on the Emerging Chemical Sciences  Owens, P. M.
Outline of topics considered in a materials, life, and environmental interdisciplinary general science course at the U.S. Military Academy.
Owens, P. M. J. Chem. Educ. 1995, 72, 528.
Materials Science
Polymers and Material Science: A Course for Nonscience Majors   Anderson, Janet S.
In an effort to provide a more appropriate science experience for nonscience majors, a course was designed to introduce them to polymer chemistry and properties.
Anderson, Janet S. J. Chem. Educ. 1994, 71, 1044.
Nonmajor Courses |
Materials Science
Materials Chemistry Case Study Approach to Facilitate Learning the Fundamentals of Chemistry: Introductory College and Secondary Level  Shultz, Mary Jane
Award in the Course and Curriculum Development (CCD) program for FY1994.
Shultz, Mary Jane J. Chem. Educ. 1994, 71, 507.
Materials Science
Nickel-Titanium Memory Metal: A "Smart" Material Exhibiting a Solid-State Phase Change and Superelasticity  Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C.
Several simple experiments that illustrate the shape-memory, mechanical, and acoustical properties of Nitinol.
Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C. J. Chem. Educ. 1994, 71, 334.
Solid State Chemistry |
Phases / Phase Transitions / Diagrams |
Materials Science |
Applications of Chemistry
A small-scale, easy-to-run wastewater-treatment plant: The treatment of an industrial water that contains suspended clays and soluble salts   Alvaro, Mercedes; Espla, Mercedes; Llinares, Jesus; Martinez-Manez, Ramon; Soto, Juan
Chemistry students are often interested in the chemical principles involved in industrial processes, the pollutants and waste products are generated, and their removal. This experiment introduces students to several theoretical concepts as they apply to real physical and chemical waste-treatment processes.
Alvaro, Mercedes; Espla, Mercedes; Llinares, Jesus; Martinez-Manez, Ramon; Soto, Juan J. Chem. Educ. 1993, 70, A129.
Water / Water Chemistry |
Green Chemistry |
Industrial Chemistry |
Colloids |
Separation Science
Consequences of a chemical world: An innovative approach to teaching environmental chemistry   Busch, Kenneth L.; Hughes, Kenneth D.
A course that helps counteract chemophobia.
Busch, Kenneth L.; Hughes, Kenneth D. J. Chem. Educ. 1993, 70, 1016.
Green Chemistry
Introducing chemistry to chemical engineering students   Bottani, Eduardo Jorge
Description of changes introduced to a general chemistry course for chemical engineering students.
Bottani, Eduardo Jorge J. Chem. Educ. 1993, 70, 935.
Quantum Chemistry |
Materials Science
Rolling happy and unhappy balls and their coefficients of friction   Nicholson, Lois
Writer brings to attention some misinformation a previous author had communicated in an attempt to explain the popular demonstration using "happy" and "unhappy" balls made of Neoprene and Polynorborene.
Nicholson, Lois J. Chem. Educ. 1993, 70, 867.
Materials Science
Experiments illustrating metal-insulator transitions in solids  Keller, Steven W.; Mallouk, Thomas E.
Experiments and demonstrations to expose undergraduate students to electronic properties of solids.
Keller, Steven W.; Mallouk, Thomas E. J. Chem. Educ. 1993, 70, 855.
Crystals / Crystallography |
Semiconductors |
MO Theory |
Materials Science
Highlights: Ventures in freshman chemistry   Farrar, James M.; Eisenberg, Richard; Kampmeier, J. A.
A rigorous freshman chemistry course that prepares students for further study in chemistry and natural sciences ties principles of chemistry to energy and environment.
Farrar, James M.; Eisenberg, Richard; Kampmeier, J. A. J. Chem. Educ. 1993, 70, 847.
Administrative Issues |
Green Chemistry |
Applications of Chemistry
Investigating protective coatings for steel   Runyan, Tom; Herrmann, Mary
Learning about corrosion chemistry provides students with authentic inquiry experience as well as an opportunity to learn relevant and applicable content.
Runyan, Tom; Herrmann, Mary J. Chem. Educ. 1993, 70, 843.
Oxidation / Reduction |
Acids / Bases |
Metals |
Applications of Chemistry |
Consumer Chemistry |
Materials Science
Solid state chemistry: Taught as a comprehensive university course for chemistry students  Boldyreva, Elena V.
While the importance of solid state chemistry for both fundamental chemical science and for modern technology is recognized, there are hardly any comprehensive courses offered for non-specialist students. This author relates her experience in offering such a course.
Boldyreva, Elena V. J. Chem. Educ. 1993, 70, 551.
Solid State Chemistry |
Materials Science
A simple and reliable chemical preparation of YBa2Cu3O7-x superconductors: An experiment in high temperature superconductivity for an advanced undergraduate laboratory  Djurovich, Peter I.; Watts, Richard J.
The popular kits used to engage students in sythetic procedures contain pedagogical flaws. This article presents an alternative to the so-called "shake and bake" kits.
Djurovich, Peter I.; Watts, Richard J. J. Chem. Educ. 1993, 70, 497.
Semiconductors |
Materials Science |
Solid State Chemistry |
Superconductivity
Introducing the treatment of waste and wastewater in the general chemistry course: Applying physical and chemical principles to the problems of waste management  Dhawale, S. W.
Students learn simple lab techniques so that they can discuss applications such as cleanup of small-scale oil spills and the processes used to obtain drinkable pure water.
Dhawale, S. W. J. Chem. Educ. 1993, 70, 395.
Water / Water Chemistry |
Green Chemistry |
Applications of Chemistry
Teaching risk assessment in undergraduate chemistry using BCTC  Pharr, Daniel Y.
148. Bits and pieces, 49. The role of many scientists has become one of making policy decisions based on scientific data that is often incomplete and ambiguous. Having students go through the types of decisions that such scientists need to make by using the BCTC computer simulations can be a useful exercise to teach students how to research, collect, analyze, and interpret data.
Pharr, Daniel Y. J. Chem. Educ. 1993, 70, 294.
Green Chemistry
The importance of understanding structure   Galasso, Frank
Solid state chemistry and its link with atomic structure is a topic that is still being neglected in students' education., despite the interesting scientific discoveries and developments that will likely be relevant in students' lives and possible careers.
Galasso, Frank J. Chem. Educ. 1993, 70, 287.
Solid State Chemistry |
Materials Science |
Solids |
Physical Properties
Interactive chemistry teaching units developed with the help of the local chemical industry: Applying classroom principles to the real needs of local companies to help students develop skill in teamwork, communications, and problem solving  Pontin, J. A.; Arico, E.; Pitoscio Filho, J.; Tiedemann, P. W.; Isuyama, R.; Fettis, G. C.
As part of a process of effective curriculum innovation, the authors are developing a project to produce teaching materials for chemistry undergraduate courses with an emphasis on the concerns of the local chemical industry.
Pontin, J. A.; Arico, E.; Pitoscio Filho, J.; Tiedemann, P. W.; Isuyama, R.; Fettis, G. C. J. Chem. Educ. 1993, 70, 223.
Applications of Chemistry |
Green Chemistry |
Industrial Chemistry |
Student-Centered Learning
A Device to Collect Sediment Cores: And an Experiment for their Chemical Analysis  Del Delumyea, R.; McCleary, Donna L.
The chemical and physical characterization of sediments in aquatic systems can be performed at the introductory chemistry level and the experience is appealing and informative for students. This paper describes a device used to gather samples.
Del Delumyea, R.; McCleary, Donna L. J. Chem. Educ. 1993, 70, 172.
Green Chemistry |
Laboratory Equipment / Apparatus
Environmental Chemistry in the Freshman Laboratory   Kegley, Susan E.; Stacy, Angelica M.
Lab activities related to environmental issues provide students with evidence of relevant chemistry while allowing students to engage in true inquiry experiences and engage themselves with challenging problems.
Kegley, Susan E.; Stacy, Angelica M. J. Chem. Educ. 1993, 70, 151.
Green Chemistry |
Applications of Chemistry
Present and Future Nuclear Reactor Designs: Weighing the Advantages and Disadvantages of Nuclear Power with an Eye on Improving Safety and Meeting Future Needs  Miller, Warren F., Jr.
An overview of how nuclear energy is produced on macroscopic and microscopic scales with consideration given to benefits and liabilities of this energy source. The article includes a short look at nuclear power uses overseas and contains information about waste disposal, public opinion, and potential technical improvements.
Miller, Warren F., Jr. J. Chem. Educ. 1993, 70, 109.
Nuclear / Radiochemistry |
Green Chemistry |
Consumer Chemistry |
Applications of Chemistry
The Erosion of Carbonate Stone by Acid Rain: Laboratory and Field Investigations  Baedecker, Philip A.; Reddy, Michael M.
Describes a laboratory experiment on the effects of acidic deposition on carbonate stone erosion. The purpose is to answer questions concerning the effects of hydrogen ion deposition on stone erosion processes that are difficult to resolve in field experiments alone.
Baedecker, Philip A.; Reddy, Michael M. J. Chem. Educ. 1993, 70, 104.
Acids / Bases |
Green Chemistry
From Lead Solder to Kiwi Fruit: Reshaping Introductory Chemistry Labs with Investigative Team Projects  Mahaffy, Peter G.; Newman, Kenneth E.; Bestman, Hank D.
This paper reports an attempt to introduce relevant curriculum and investigations carried out by student research groups into a first year chemistry course. A description and evaluation of a four-week, open ended research project is included.
Mahaffy, Peter G.; Newman, Kenneth E.; Bestman, Hank D. J. Chem. Educ. 1993, 70, 76.
Food Science |
Consumer Chemistry |
Laboratory Management |
Vitamins |
Green Chemistry |
Minorities in Chemistry
A Simple Demonstration of the Greenhouse Effect  Adelhelm, Manfred; Hohn, Ernst-Gerhard
A simple experiment to demonstrate the principle of the greenhouse effect.
Adelhelm, Manfred; Hohn, Ernst-Gerhard J. Chem. Educ. 1993, 70, 73.
Photochemistry |
Green Chemistry
Materials chemistry companion to general chemistry: An update  Ellis, Arthur B.; Geselbracht, Margret J.; Greenblatt, Martha; Lisensky, George C.; Robinson, William R.; Whittingham, M. Stanley
Writing of A Materials Chemistry Companion to General Chemistry, a reference for teachers that correlates standard chemistry topics with particular kinds of materials and their applications; includes exercises, demonstrations, and experiments.
Ellis, Arthur B.; Geselbracht, Margret J.; Greenblatt, Martha; Lisensky, George C.; Robinson, William R.; Whittingham, M. Stanley J. Chem. Educ. 1992, 69, 1015.
Materials Science
Incorporating polymeric materials topics into the undergraduate chemistry core curriculum  Droske, John P.
Fourteen lecture "snapshots" and sixteen new polymer experiments developed for incorporation into the general chemistry course.
Droske, John P. J. Chem. Educ. 1992, 69, 1014.
Materials Science |
Polymerization
Acid rain investigations   Epp, Dianne N.; Curtright, Robert
A series of reactions that can be carried out to demonstrate the effects of acid rain.
Epp, Dianne N.; Curtright, Robert J. Chem. Educ. 1991, 68, 1034.
Acids / Bases |
Green Chemistry
Science and the environment: College undergraduates outreach to secondary schools  Carlson, Nathan; Strickland, Tamara; Shen, Albert; Zoller, William H.
An outreach program that generates concern and interest early in students' careers so that by the time they enter universities, they will have a clear picture of science as a rewarding career.
Carlson, Nathan; Strickland, Tamara; Shen, Albert; Zoller, William H. J. Chem. Educ. 1991, 68, 1021.
Green Chemistry
Demonstration properties of sulfur dioxide   Brouwer, H.
Demonstrations of properties of sulfur dioxide are timely, given current debates between Canada and the United States regarding acid rain.
Brouwer, H. J. Chem. Educ. 1991, 68, 417.
Acids / Bases |
Green Chemistry |
pH
Method for separating or identifying plastics  Kolb, Kenneth E.; Kolb, Doris K.
This article suggests the use of differences in density as a means for separation and identification of plastics.
Kolb, Kenneth E.; Kolb, Doris K. J. Chem. Educ. 1991, 68, 348.
Consumer Chemistry |
Green Chemistry |
Physical Properties
Chloride in natural waters: An environmental application of a potentiometric titration  Lisensky, George; Reynolds, Kelly.
An environmental application of a potentiometric titration to determine chloride found in fresh water.
Lisensky, George; Reynolds, Kelly. J. Chem. Educ. 1991, 68, 334.
Potentiometry |
Titration / Volumetric Analysis |
Green Chemistry |
Geochemistry |
Quantitative Analysis
Acid rain experiment and construction of a simple turbidity meter  Betterton, Eric A.
Construction of a simple turbidity meter in order to furnish more atmospheric chemistry experiments in the freshman and sophomore level chemistry lab.
Betterton, Eric A. J. Chem. Educ. 1991, 68, 254.
Atmospheric Chemistry |
Laboratory Equipment / Apparatus |
Green Chemistry
Diffraction of a laser light by a memory chip   Klier, Kamil; Taylor, J. Ashley
A way of demonstrating the relationship between structure and diffraction.
Klier, Kamil; Taylor, J. Ashley J. Chem. Educ. 1991, 68, 155.
X-ray Crystallography |
Solids |
Solid State Chemistry |
Surface Science |
Materials Science
Direct visualization of Bragg diffraction with a He-Ne laser and an ordered suspension of charged microspheres  Spencer, Bertrand H.; Zare, Richard N.
Bragg diffraction from colloidal crystals proves to be an excellent teaching tool. Only modest equipment and lab skill are needed to produce a diffraction pattern to provide students with an in-depth understanding of what ordered structure is and how it can be probed by diffraction techniques.
Spencer, Bertrand H.; Zare, Richard N. J. Chem. Educ. 1991, 68, 97.
X-ray Crystallography |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
The optical transform: Simulating diffraction experiments in introductory courses  Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B.
Using optical transforms to prepare slides with patterns that will diffract red and green visible light from a laser.
Lisensky, George C.; Kelly, Thomas F.; Neu, Donald R.; Ellis, Arthur B. J. Chem. Educ. 1991, 68, 91.
X-ray Crystallography |
Molecular Properties / Structure |
Crystals / Crystallography |
Solids |
Lasers |
Materials Science
Recycling lead(II) halides from solubility experiments  Scaife, Charles W.; Hall, Chadlee D.
Procedure for recycling lead(II) chloride.
Scaife, Charles W.; Hall, Chadlee D. J. Chem. Educ. 1990, 67, 605.
Green Chemistry |
Precipitation / Solubility
Nuclear waste glass, and the Fe2+/Fe3+ ratio  Fanning, James C.; Hunter, R. Todd
These authors present a chemical problem of current interest that can be used for pedagogical purposes.
Fanning, James C.; Hunter, R. Todd J. Chem. Educ. 1988, 65, 888.
Applications of Chemistry |
Consumer Chemistry |
Titration / Volumetric Analysis |
Oxidation State |
Nuclear / Radiochemistry |
Green Chemistry |
Chromatography |
Spectroscopy
Let environmental chemistry enrich your curriculum  Parravano, Carlo
The rationale and detailed plans for a college level course in environmental chemistry.
Parravano, Carlo J. Chem. Educ. 1988, 65, 235.
Green Chemistry |
Applications of Chemistry
A method for teaching science, technology, and societal issues in introductory high school and college chemistry classes  Streitberger, H. Eric
Most textbooks provide few, if any, systematic procedures for involving students with societal problems and issues in their lives related to chemistry. This is inconsistent with goals set in order to meet the growing need for students to be familiar with the science of (among other things) nutrition, environment, drugs, and more. This article gives a brief description of a project that acquaints students with these issues.
Streitberger, H. Eric J. Chem. Educ. 1988, 65, 60.
Consumer Chemistry |
Industrial Chemistry |
Green Chemistry |
Nuclear / Radiochemistry
Using NASA and the space program to help high school and college students learn chemistry. Part II. The current state of chemistry in the space program  Kelter, Paul B.; Snyder, William E.; Buchar, Constance S.
Examples and classroom applications in the areas of spectroscopy, materials processing, and electrochemistry.
Kelter, Paul B.; Snyder, William E.; Buchar, Constance S. J. Chem. Educ. 1987, 64, 228.
Astrochemistry |
Spectroscopy |
Materials Science |
Electrochemistry |
Crystals / Crystallography
The energy relationships of corn production and alcohol fermentation  Van Koevering, Thomas E.; Morgan, Michael D.; Younk, Thomas J.
The production of alcohol from corn lends itself well to illustrating the practical applications of scientific principles that deal with energy transformations and inefficiencies.
Van Koevering, Thomas E.; Morgan, Michael D.; Younk, Thomas J. J. Chem. Educ. 1987, 64, 11.
Natural Products |
Applications of Chemistry |
Plant Chemistry |
Green Chemistry |
Alcohols |
Calorimetry / Thermochemistry |
Photosynthesis
Oil shale - Heir to the petroleum kingdom   Schachter, Y.
A discussion of oil shale provides students with real-world problems that require chemical literacy.
Schachter, Y. J. Chem. Educ. 1983, 60, 750.
Applications of Chemistry |
Alkenes |
Alkanes / Cycloalkanes |
Green Chemistry
Estimating energy outputs of fuels  Baird, N. Colin
Which is the best fuel in terms of heat energy output: coal, natural gas, fuel oil, hydrogen, or alcohol? It is possible to obtain a semi quantitative estimate of the heat generated by combustion of a fuel from the balanced chemical equation alone.
Baird, N. Colin J. Chem. Educ. 1983, 60, 356.
Reactions |
Green Chemistry |
Thermodynamics |
Alcohols |
Alkanes / Cycloalkanes |
Geochemistry |
Stoichiometry |
Quantitative Analysis
Encapsulation of organic chemicals within starch matrix: an undergraduate laboratory experiment  Wing, R. E.; Shasha, B. S.
This experiment explores current environmentally friendly technology.
Wing, R. E.; Shasha, B. S. J. Chem. Educ. 1983, 60, 247.
Green Chemistry |
Applications of Chemistry |
Agricultural Chemistry
The chemistry of coatings   Griffith, James R.
Nature and humankind both produce spectacular coatings. These discussions of coating can contribute valuable chemistry lessons to the introductory curriculum.
Griffith, James R. J. Chem. Educ. 1981, 58, 956.
Applications of Chemistry |
Natural Products |
Materials Science
Solar energy concepts in the teaching of chemistry  Cantrell, Joseph S.
A justification for why solar energy concepts should be included in the teaching of chemistry and some curricular tips for the integration of these concepts.
Cantrell, Joseph S. J. Chem. Educ. 1978, 55, 41.
Green Chemistry
Separation of waste plastics. An experiment in solvent fractionation  Seymour, Raymond B.; Stahl, G. Allan
The authors share their design for a scheme for separation of specific plastics from a mixture. This activity engages students and relates to recycling.
Seymour, Raymond B.; Stahl, G. Allan J. Chem. Educ. 1976, 53, 653.
Green Chemistry |
Separation Science |
Applications of Chemistry
Lighter flint chemistry  Hentz, F. C., Jr.; Long, G. G.
The author describes an inquiry investigation into the composition of a lighter flint.
Hentz, F. C., Jr.; Long, G. G. J. Chem. Educ. 1976, 53, 651.
Materials Science |
Quantitative Analysis |
Qualitative Analysis
Simple tensile testing  McCormick, P. D.
Describes a simple tensiometer capable of giving good approximations to Young's Modulus.
McCormick, P. D. J. Chem. Educ. 1975, 52, 242.
Materials Science |
Solids
The energy crisis. A new chemistry course for nonscience majors  Piraino, Marie J.
After years of having had taught traditional chemistry courses for nonscience majors, the author shifted her curriculum toward developing an understanding of political, economic, and health issues affecting contemporary students.
Piraino, Marie J. J. Chem. Educ. 1974, 51, 802.
Nonmajor Courses |
Applications of Chemistry |
Green Chemistry
A study of water pollution. An undergraduate chemistry laboratory experience  Sarkis, Vahak D.
In addition to its environmental relevance, a water pollution study of the inorganic constituents in water as outlined in this article, provides the student with certain important principles of chemistry namely, colorimetric and titrimetric procedures.
Sarkis, Vahak D. J. Chem. Educ. 1974, 51, 745.
Applications of Chemistry |
Metals |
Green Chemistry |
Water / Water Chemistry |
Titration / Volumetric Analysis
Analysis of chlorinated hydrocarbon pesticides. Experiments for nonscience majors  Glover, Irving T.; Minter, Ann P.
This experiment allows students to explore the chemistry behind a controversial concern.
Glover, Irving T.; Minter, Ann P. J. Chem. Educ. 1974, 51, 685.
Green Chemistry |
Toxicology |
Applications of Chemistry
A course for engineering and science students. Materials science in freshman chemistry  Companion, A.; Schug, K.
Description of a materials science in freshman chemistry.
Companion, A.; Schug, K. J. Chem. Educ. 1973, 50, 618.
Materials Science