TIGER

Journal Articles: 71 results
A Simple Laboratory Experiment To Determine the Kinetics of Mutarotation of D-Glucose Using a Blood Glucose Meter  Carlos E. Perles and Pedro L. O. Volpe
A simple commercial blood glucose meter is used to follow the kinetics of mutarotation of D-glucose in aqueous solution. The results may be compared with those obtained using an automatic polarimeter.
Perles, Carlos E.; Volpe, Pedro L. O. J. Chem. Educ. 2008, 85, 686.
Aqueous Solution Chemistry |
Bioanalytical Chemistry |
Carbohydrates |
Chirality / Optical Activity |
Enzymes |
Kinetics |
Solutions / Solvents |
Stereochemistry
A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes  Aminou Mohamadou and Arnaud Haudrechy
This article presents a simple and progressive method to draw all of the octahedral complexes of coordination units with at least two different monodentate ligands and show their chiral properties.
Mohamadou, Aminou; Haudrechy, Arnaud. J. Chem. Educ. 2008, 85, 436.
Asymmetric Synthesis |
Chirality / Optical Activity |
Coordination Compounds |
Diastereomers |
Enantiomers |
Molecular Properties / Structure |
Stereochemistry |
Transition Elements
Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?  Jean François LeMaréchal
Uses the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object.
LeMaréchal, Jean François. J. Chem. Educ. 2008, 85, 433.
Chirality / Optical Activity |
Coordination Compounds |
Enantiomers |
Group Theory / Symmetry |
Stereochemistry |
Transition Elements
Hydration of Acetylene: A 125th Anniversary  Dmitry A. Ponomarev and Sergey M. Shevchenko
The discovery the hydration of alkynes catalyzed by mercury ions by Mikhail Kucherov made possible industrial production of acetaldehyde from acetylene and had a profound effect on the development of industrial chemistry in the 1920th centuries.
Ponomarev, Dmitry A.; Shevchenko, Sergey M. J. Chem. Educ. 2007, 84, 1725.
Addition Reactions |
Aldehydes / Ketones |
Alkynes |
Catalysis |
Industrial Chemistry |
Reactions
The Aromaticity of Pericyclic Reaction Transition States  Henry S. Rzepa
Presents an approach that combines two fundamental concepts in organic chemistry, chirality and aromaticity, into a simple rule for stating selection rules for pericyclic reactions in terms of achiral Hckel-aromatic and chiral Mbius-aromatic transition states.
Rzepa, Henry S. J. Chem. Educ. 2007, 84, 1535.
Alkanes / Cycloalkanes |
Alkenes |
Aromatic Compounds |
Mechanisms of Reactions |
Stereochemistry
CARBOHYDECK: A Card Game To Teach the Stereochemistry of Carbohydrates  Manuel João Costa
This paper describes CARBOHYDECK, a card game that may replace or complement lectures identifying and differentiating monosaccharide isomers.
Costa, Manuel João. J. Chem. Educ. 2007, 84, 977.
Aldehydes / Ketones |
Carbohydrates |
Molecular Properties / Structure |
Stereochemistry |
Enrichment / Review Materials |
Student-Centered Learning
Sudoku Puzzles for First-Year Organic Chemistry Students  Alice L. Perez and G. Lamoureux
Sudoku puzzles are used to help the students learn the correspondence between the names of amino acids, their abbreviations, and codes; and the correspondence between the names of functional groups, their structures, and abbreviations.
Perez, Alice L.; Lamoureux, G. J. Chem. Educ. 2007, 84, 614.
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkylation |
Amines / Ammonium Compounds |
Amino Acids |
MO Theory |
Nomenclature / Units / Symbols |
Student-Centered Learning |
Alkynes |
Amides
Electronic Structure Principles and Aromaticity  P. K. Chattaraj, U. Sarkar, and D. R. Roy
Electronic structure principles dictate that aromatic molecules are associated with low energy, polarizability, and electrophilicity but high hardness values, while antiaromatic molecules possess the opposite characteristics. These relationships are demonstrated through B3LYP/6-311G** calculations on benzene and cyclobutadiene.
Chattaraj, P. K.; Sarkar, U.; Roy, D. R. J. Chem. Educ. 2007, 84, 354.
Aromatic Compounds |
Molecular Properties / Structure |
Quantitative Analysis |
Theoretical Chemistry |
Alkenes |
Quantum Chemistry
Was Markovnikov's Rule an Inspired Guess?  Peter Hughes
A study of 19th century literature shows that neither Markovnikov nor any of his contemporaries carried out the reactions often attributed to himthe addition of hydrogen bromide or hydrogen chloride to propene. Since there is little evidence for Markovnikov's rule in his 1870 article, it is likely that it was more of an inspired guess than a rational conclusion.
Hughes, Peter. J. Chem. Educ. 2006, 83, 1152.
Addition Reactions |
Alkenes |
Mechanisms of Reactions
Enantioselective Reduction by Crude Plant Parts: Reduction of Benzofuran-2-yl Methyl Ketone with Carrot (Daucus carota) Bits  Silvana Ravía, Daniela Gamenara, Valeria Schapiro, Ana Bellomo, Jorge Adum, Gustavo Seoane, and David Gonzalez
Presents the enantioselective reduction of a ketone by crude plant parts, using carrot (Daucus carota) as the reducing agent.
Ravía, Silvana; Gamenara, Daniela; Schapiro, Valeria; Bellomo, Ana; Adum, Jorge; Seoane, Gustavo; Gonzalez, David. J. Chem. Educ. 2006, 83, 1049.
Aldehydes / Ketones |
Biotechnology |
Catalysis |
Chromatography |
Green Chemistry |
Oxidation / Reduction |
Stereochemistry |
Separation Science
A Sequence of Linked Experiments, Suitable for Practical Courses of Inorganic, Organic, Computational Chemistry, and NMR Spectroscopy  Grigoriy A. Sereda
A sequence of investigations associated with the iodochlorination of styrene and 1-hexene is described. The sequence is flexible enough to be used in inorganic, organic, computational, and instrumental courses.
Sereda, Grigoriy A. J. Chem. Educ. 2006, 83, 931.
Alkenes |
Computational Chemistry |
Constitutional Isomers |
MO Theory |
NMR Spectroscopy |
Synthesis
Octachem Model: Organic Chemistry Nomenclature Companion  Joaquin Palacios
The Octachem model is an educational physical model designed to guide students in the identification, classification, and naming of the chemical structures of organic compounds. In this article the basic concepts of Octachem model are presented, and the physical model and contents are described.
Palacios, Joaquin. J. Chem. Educ. 2006, 83, 890.
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amines / Ammonium Compounds |
Esters |
Ethers |
Nomenclature / Units / Symbols
Synthesis of Unsymmetrical Alkynes via the Alkylation of Sodium Acetylides. An Introduction to Synthetic Design for Organic Chemistry Students  Jennifer N. Shepherd and Jason R. Stenzel
Teams of students design a microscale synthesis of an unsymmetrical alkyne using commercially available terminal alkynes and alkyl halides and characterize the resulting products using TLC, IR, and 1H NMR spectroscopy. Depending on the chosen reactants, students observe both substitution and elimination products, or in some cases, no reaction at all.
Shepherd, Jennifer N.; Stenzel, Jason R. J. Chem. Educ. 2006, 83, 425.
Alkylation |
Alkynes |
Elimination Reactions |
IR Spectroscopy |
Microscale Lab |
NMR Spectroscopy |
Nucleophilic Substitution |
Synthesis
The Chemistry of Coffee  William F. Coleman
The paper by Marino Petracco provides a hearty blend of molecules for this month. The author deals with coffee at a number of different levels ranging from the economic and social to the still perplexing questions of flavor and aroma. The associated molecules demonstrate a range of structural features that students will benefit from examining in three dimensions.
Coleman, William F. J. Chem. Educ. 2005, 82, 1167.
Molecular Modeling |
Molecular Properties / Structure |
Stereochemistry
The Addition of Bromine to 1,2-Diphenylethene   Judith C. Amburgey-Peters and LeRoy W. Haynes
We investigated the reaction of (Z)-1,2-diphenylethene (cis-stilbene) with various brominating reagents and solvents following directions in standard organic chemistry manuals. We were particularly interested in learning which combination of brominating reagent and solvent gave the best yield of (d,l)-1,2-dibromo-1,2-diphenylethane without the formation of significant amounts of meso-1,2-dibromo-1,2-diphenylethane, which is essentially the sole product from the reaction of bromine with (E)-1,2-diphenylethene (trans-stilbene). Based on the results from the standard preparatory methods, some permutations of solvent and brominating reagent were tried.
Amburgey-Peters, Judith C.; Haynes, LeRoy W. J. Chem. Educ. 2005, 82, 1051.
Addition Reactions |
Alkenes |
Carbocations |
Diastereomers |
Enantiomers |
Mechanisms of Reactions |
Stereochemistry
A Substitute for “Bromine in Carbon Tetrachloride”  Joshua M. Daley and Robert G. Landolt
Benzotrifluoride (BTF) is a suitable solvent substitute for carbon tetrachloride in experiments requiring application of bromine (Br2) in free radical or addition reactions with organic substrates. A 1 M solution of Br2 in BTF may be used to distinguish hydrocarbons based on the ease of abstraction of hydrogen atoms in thermally or light-induced free radical substitutions. Efficacy of minimization of solvent use, by aliquot addition to neat samples, has been established.
Daley, Joshua M.; Landolt, Robert G. J. Chem. Educ. 2005, 82, 120.
Alkenes |
Free Radicals |
Green Chemistry |
Qualitative Analysis |
Reactions
A Set of Hands-On Exercises on Conformational Analysis  Silvina C. Pellegrinet and Ernesto G. Mata
This article describes a set of comprehensive exercises on conformational analysis that employs a hands-on approach by the use of molecular modeling kits. In addition, the exercises provide illustrations of other topics such as nomenclature, functional groups, and isomerism, and introduce some notions of chirality.
Pellegrinet, Silvina C.; Mata, Ernesto G. J. Chem. Educ. 2005, 82, 73.
Alkanes / Cycloalkanes |
Conformational Analysis |
Constitutional Isomers |
Molecular Properties / Structure |
Stereochemistry
An NMR-Smell Module for the First-Semester General Chemistry Laboratory  Erich S. Uffelman, Elizabeth H. Cox, J. Brown Goehring, Tyler S. Lorig, and C. Michele Davis
The series of experiments involves an exploration of organic stereochemistry via hands-on model building, several chemosensory smell tests, and hands-on use of 13C NMR, thus serving as a powerful interdisciplinary lab involving chemistry, physics, and neuroscience. Similarities and differences between NMR and MRI methods are emphasized.
Uffelman, Erich S.; Cox, Elizabeth H.; Goehring, J. Brown; Lorig, Tyler S.; Davis, C. Michele. J. Chem. Educ. 2003, 80, 1368.
NMR Spectroscopy |
Stereochemistry |
Molecular Modeling |
Medicinal Chemistry
Organic Functional Group Playing Card Deck  Michael J. Welsh
Organic functional group playing card deck used for review of the name and structure of organic functional groups that can be used to play any game that a normal deck of cards is used for.
Welsh, Michael J. J. Chem. Educ. 2003, 80, 426.
Nomenclature / Units / Symbols |
Nonmajor Courses |
Enrichment / Review Materials |
Alcohols |
Aldehydes / Ketones |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Amides |
Amines / Ammonium Compounds |
Aromatic Compounds |
Carboxylic Acids |
Esters |
Ethers |
Mechanisms of Reactions |
Synthesis
"Dishing Out" Stereochemical Principles  Harold Hart
Demonstrating the concepts of chiral centers and enantiomers using plastic dishes.
Hart, Harold. J. Chem. Educ. 2001, 78, 1632.
Chirality / Optical Activity |
Molecular Modeling |
Stereochemistry |
Molecular Properties / Structure |
Enantiomers
The Use of Stick Figures to Visualize Fischer Projections  Laurie S. Starkey
Using stick figures to help students visualize the three-dimensional orientations represented by Fischer projections.
Starkey, Laurie S. J. Chem. Educ. 2001, 78, 1486.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling
Introducing Stereochemistry to Non-science Majors  Hannia Luján-Upton
Two exercises to introduce concepts associated with stereochemistry such as "sameness", superimposability, chirality, enantiomers, optical activity, polarimetry, and racemic mixtures; one compares chirality in hands with the achiral nature of two textbooks, the other involves a murder mystery.
Luján-Upton, Hannia. J. Chem. Educ. 2001, 78, 475.
Chirality / Optical Activity |
Stereochemistry |
Nonmajor Courses |
Molecular Properties / Structure
The Other Double Helix--The Fascinating Chemistry of Starch  Robert D. Hancock and Bryon J. Tarbet
The chemistry of starch, particularly the structure of starch and starch granules.
Hancock, Robert D.; Tarbet, Bryon J. J. Chem. Educ. 2000, 77, 988.
Bioorganic Chemistry |
Carbohydrates |
Food Science |
Stereochemistry |
Applications of Chemistry |
Molecular Properties / Structure
Illustrating Newman Projections by Using Overhead Transparencies  L. Phillip Silverman and John Barbaro
A method of illustrating the Newman projection of a molecule using an overhead projector is described. This method, which uses two overhead transparencies linked by a thumbtack, provides both an easy and a clear way to present this type of conformational analysis to large lecture classes.
Silverman, L. Phillip; Barbaro, John. J. Chem. Educ. 1999, 76, 630.
Learning Theories |
Stereochemistry |
Molecular Properties / Structure
Stereowordimers-Minding Your P's and Q's  Edward G. Neeland
The use of words having different colored sides is a excellent way to introduce stereochemical concepts that might not be easily grasped when using molecular examples. We have found that concepts such as enantiomers, diastereomers, identical molecules, chirality, achirality, mirror planes of symmetry, and internal planes of symmetry are readily understood by students when using stereowordimer examples.
Neeland, Edward G. J. Chem. Educ. 1998, 75, 1573.
Stereochemistry |
Diastereomers |
Enantiomers |
Molecular Properties / Structure
Models and Molecules - A Workshop on Stereoisomers  Robert W. Baker, Adrian V. George, and Margaret M. Harding
A molecular model workshop aimed at first year university undergraduates has been devised to illustrate the concepts of organic stereochemistry. The students build models to teach the relationship within, and between, conformational isomers, enantiomers, and diastereomers.
Baker, Robert W.; George, Adrian V.; Harding, Margaret M. J. Chem. Educ. 1998, 75, 853.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling |
Enantiomers |
Diastereomers
Discovery-Based Stereochemistry Tutorials Available on the World Wide Web  Abby L. Parrill and Jacquelyn Gervay
The WWW offers the ability to develop interactive, discovery-based tutorials for use as study tools, and multimedia offers significant improvements in the display of three-dimensional objects. As part of a chemical education research program, three stereochemistry tutorials were developed to capitalize on these advantages.
Parrill, Abby L.; Gervay, Jacquelyn. J. Chem. Educ. 1997, 74, 329.
Stereochemistry |
Molecular Properties / Structure |
Molecular Modeling
Playing with the Soccer Ball-an Experimental Introduction to Fullerene Chemistry  Achim Hildebrand, Uwe Hilgers, Rudiger Blume, Dagmar Wiechoczek,
For the first time a selection of simple experiments with C60 on high-school and university level are presented: the bromination with Winkler's solution, hydroxylation with an alkaline permanganate solution, cycloadditions of dichlorcarbene and cyclopentadiene and the formation of a molecular complex with o-dimethoxybenzene.
Hildebrand, Achim; Hilgers, Uwe; Blume, Rudiger; Wiechoczek, Dagmar. J. Chem. Educ. 1996, 73, 1066.
Alkenes
Symmetry Elements and Operations  Albert W.M. Lee, K.M. Leung, W.J Daniel, C.L. Chan
Symmetry Elements and Operations is a multimedia presentation that illustrates the basics of symmetry with three dimensional molecular models and simple text explanations.
Lee, Albert W.M.; Leung, K.M.; Kwong, Daniel W.J.; Chan, C.L. . J. Chem. Educ. 1996, 73, 924.
Molecular Modeling |
Spectroscopy |
Stereochemistry |
Mechanisms of Reactions |
Group Theory / Symmetry |
Quantum Chemistry |
Enrichment / Review Materials
Paper Models for Fullerenes C60-C84   John M. Beaton
Photocopyable patterns to construct C60-C84.
J. Chem. Educ. 1995, 72, 863.
Main-Group Elements |
Molecular Modeling |
Molecular Properties / Structure |
Alkenes
Animation of Imaginary Frequencies at the Transition State  Robert H. Higgins
176. Software tutorial for strengthening spatial skills and an understanding of stereochemistry in exploring molecular structures.
Higgins, Robert H. J. Chem. Educ. 1995, 72, 699.
Molecular Properties / Structure |
Stereochemistry |
Molecular Modeling
A Safe and Easy Classroom Demonstration of the Generation of Acetylene Gas  Cox, Marilyn Blagg
Reacting calcium carbide with water to generate ethyne.
Cox, Marilyn Blagg J. Chem. Educ. 1994, 71, 253.
Alkynes |
Reactions
The Caltech chemistry animation project   Lewis, Nathan S.
Animations are being produced on subjects such as: atomic and molecular orbitals, lattices, VSPER, nucleophilic substitution, stereochemistry, sigma and pi bonding, and many more.
Lewis, Nathan S. J. Chem. Educ. 1993, 70, 739.
Stereochemistry |
Atomic Properties / Structure |
Molecular Modeling |
MO Theory |
Crystals / Crystallography
A paper-pattern system for the construction of fullerene molecular models  Beaton, John M.
Paper cut-out models of C60, C70, C80, and C76 with Td and D2 symmetry.
Beaton, John M. J. Chem. Educ. 1992, 69, 610.
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Group Theory / Symmetry
A source of isomer-drawing assignments  Kjonaas, Richard A.
A comprehensive source from which instructors can choose a wide variety of good isomer drawing examples to use as homework assignments and exam questions.
Kjonaas, Richard A. J. Chem. Educ. 1992, 69, 452.
Stereochemistry |
Alcohols |
Alkanes / Cycloalkanes |
Alkenes |
Aldehydes / Ketones |
Ethers |
Esters |
Alkynes
Representing isomeric structures: Five applications.  Thall, Edwin.
Five applications of a new method that the author calls Representing Isomeric Structures, in which arrows are used to point to unique sites on the carbon skeleton to represent functional groups.
Thall, Edwin. J. Chem. Educ. 1992, 69, 447.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers
Identification and rectification of student difficulties concerning three-dimensional structures, rotation, and reflection  Tuckey, Helen; Selvaratnam, Mailoo; Bradley, John
A study was conducted to reveal that even at university level, many students have difficulties with three-dimensional thinking. This is a skill that needs to be emphasized more than current treatment at the pre-college level.
Tuckey, Helen; Selvaratnam, Mailoo; Bradley, John J. Chem. Educ. 1991, 68, 460.
Molecular Modeling |
Enantiomers |
Stereochemistry
Organic Nomenclature (Lampman, Gary)  Damey, Richard F.
An interactive tutorial / drill for naming organic compounds.
Damey, Richard F. J. Chem. Educ. 1990, 67, A220.
Nomenclature / Units / Symbols |
Enrichment / Review Materials |
Alkanes / Cycloalkanes |
Alkenes |
Alkynes |
Ethers |
Alcohols |
Amines / Ammonium Compounds |
Phenols
An easily constructed model of twin trigonal pyramids penetrating each other  Yamana, Shukichi
A model of twin trigonal pyramids penetrating each other made from two sealed envelopes.
Yamana, Shukichi J. Chem. Educ. 1990, 67, 1029.
Molecular Modeling |
Molecular Properties / Structure |
Stereochemistry
Keeping track of directions of atomic orbitals: A useful device in organic chemistry  Talaty, Erach R.
The usefulness of keeping track of the directions of atomic orbitals.
Talaty, Erach R. J. Chem. Educ. 1990, 67, 655.
Atomic Properties / Structure |
Alkenes |
Alkynes
Viewing stereo drawings  Srinivasan, A. R.; Olson, Wilma K.
Using stereo triptych representations in place of conventional stereo diagrams.
Srinivasan, A. R.; Olson, Wilma K. J. Chem. Educ. 1989, 66, 664.
Molecular Properties / Structure |
Stereochemistry
Rotation of polarized light by stereoisomers of limonene   Solomon, Sally
Neat samples of limonene stereoisomers are used to demonstrate the rotation of polarized light on an overhead projector.
Solomon, Sally J. Chem. Educ. 1989, 66, 436.
Stereochemistry
Mnemonic for Z and E nomenclature  Thomas, C. W.
A visual reminder that makes it unnecessary to memorize the German terms.
Thomas, C. W. J. Chem. Educ. 1988, 65, 44.
Diastereomers |
Alkenes |
Nomenclature / Units / Symbols
Drawing enantiomers the easy way  Dunn, Howard E.
Drawing mirror images simultaneously using both hands.
Dunn, Howard E. J. Chem. Educ. 1987, 64, 1042.
Stereochemistry |
Enantiomers
A BASIC program for the calculation of elemental compositions from structural formulas  Smith, Roger A.; Spencer, Robin W.
78. Bits and pieces, 32. The authors have written a computer program in BASIC that will calculate the molecular weights and elemental compositions from a structural formula.
Smith, Roger A.; Spencer, Robin W. J. Chem. Educ. 1986, 63, 1076.
Molecular Properties / Structure |
Stereochemistry
Chain Structure and Conformation of Macromolecules (Bovey, Frank A.; Jelinski, Lynn W.)  Carraher, Charles E., Jr.
The first seven chapters are based on lectures delivered in 1981 at MIT.
Carraher, Charles E., Jr. J. Chem. Educ. 1984, 61, A209.
Molecular Properties / Structure |
Stereochemistry |
Conformational Analysis |
NMR Spectroscopy
A simple polarimeter and experiments utilizing an overhead projector  Dorn, H. C.; Bell, H.; Birkett, T.
Design and application of an overhead polarimeter that relies on small amounts of chiral solution and provides a "dual beam" light source for direct comparison of plane-polarized light emerging from chiral and achiral media.
Dorn, H. C.; Bell, H.; Birkett, T. J. Chem. Educ. 1984, 61, 1106.
Laboratory Equipment / Apparatus |
Chirality / Optical Activity |
Stereochemistry |
Molecular Properties / Structure
R/S: Apple stereochemistry program  Barone, Rene; Meyer, Roger; Arbelot, Michel
51. Bits and pieces, 20. Computer program for helping students to learn R/S conventions.
Barone, Rene; Meyer, Roger; Arbelot, Michel J. Chem. Educ. 1984, 61, 524.
Stereochemistry |
Molecular Properties / Structure |
Chirality / Optical Activity |
Enantiomers |
Enrichment / Review Materials
Oil shale - Heir to the petroleum kingdom   Schachter, Y.
A discussion of oil shale provides students with real-world problems that require chemical literacy.
Schachter, Y. J. Chem. Educ. 1983, 60, 750.
Applications of Chemistry |
Alkenes |
Alkanes / Cycloalkanes |
Green Chemistry
Bent-bond models using framework molecular models  Sund, Eldon H.; Suggs, Mark W.
Using tubing to represent double and triple bonds.
Sund, Eldon H.; Suggs, Mark W. J. Chem. Educ. 1980, 57, 638.
Molecular Modeling |
Alkenes |
Alkynes |
Covalent Bonding
Optical Activity  Mickey, Charles D.
Historical background of stereoisomerism, the properties of light, the principles of a polarimeter, and optically active compounds.
Mickey, Charles D. J. Chem. Educ. 1980, 57, 442.
Stereochemistry |
Chirality / Optical Activity |
Molecular Properties / Structure |
Enantiomers
Bent bonds and multiple bonds  Robinson, Edward A.; Gillespie, Ronald J.
Considers carbon-carbon multiple bonds in terms of the bent bond model first proposed by Pauling in 1931.
Robinson, Edward A.; Gillespie, Ronald J. J. Chem. Educ. 1980, 57, 329.
Covalent Bonding |
Molecular Properties / Structure |
Molecular Modeling |
Alkenes |
Alkynes
Rotation of plane-polarized light: A simple model  Hill, Roger R.; Whatley, Barrie G.
A simple model that explains why enantiomers of a chiral compound rotate light in different directions.
Hill, Roger R.; Whatley, Barrie G. J. Chem. Educ. 1980, 57, 306.
Photochemistry |
Molecular Modeling |
Chirality / Optical Activity |
Stereochemistry |
Enantiomers |
Molecular Properties / Structure
Ethylene: The organic chemical industry's most important building block  Fernelius, Condrad W.; Wittcoff, Harold; Varnerin, Robert E.
The sources, chemistry, and industrial uses of ethylene.
Fernelius, Condrad W.; Wittcoff, Harold; Varnerin, Robert E. J. Chem. Educ. 1979, 56, 385.
Alkenes |
Industrial Chemistry |
Applications of Chemistry |
Polymerization
Synthesis and properties of an optically active complex: A polarimeter experiment for general chemistry  Hunt, Harold R., Jr.
Synthesizing and determining the optical rotation of d-Co(phen)3(ClO4)3.2H2O.
Hunt, Harold R., Jr. J. Chem. Educ. 1977, 54, 710.
Chirality / Optical Activity |
Molecular Properties / Structure |
Stereochemistry |
Synthesis |
Coordination Compounds
Pharmacological projects/case studies for teaching molecular structure and reactivity  Webb, John; Rasmussen, Malcolm
Using pharmacological agents to provide projects that develop and illustrate concepts of molecular stereochemistry, functional groups, and types of reactions and reactivity.
Webb, John; Rasmussen, Malcolm J. Chem. Educ. 1977, 54, 677.
Drugs / Pharmaceuticals |
Stereochemistry |
Reactions |
Mechanisms of Reactions
A stereochemical model for illustrating pseudorotation of five-coordinate atoms  Riess, Jean G.
Design of an inexpensive, articulated model that simulates intramolecular isomerization or fluxional behavior on five-coordinate atoms.
Riess, Jean G. J. Chem. Educ. 1973, 50, 850.
Stereochemistry |
Molecular Properties / Structure |
Molecular Modeling
A simple demonstration of enantiomerism  Richards, K. E.
Design for a wooden box containing a mirror that uses a molecular model to demonstrate enantiomerism.
Richards, K. E. J. Chem. Educ. 1973, 50, 632.
Molecular Properties / Structure |
Molecular Modeling |
Stereochemistry |
Enantiomers |
Chirality / Optical Activity
An overhead projection demonstration of optical activity  Hill, John W.
An overhead projection demonstration of optical activity the makes use of two polarizing lenses and an optically active compound.
Hill, John W. J. Chem. Educ. 1973, 50, 574.
Chirality / Optical Activity |
Molecular Properties / Structure |
Stereochemistry |
Carbohydrates
Overhead projection of stereographic images  Crozat, Madeleine M.; Watkins, Steven F.
A simple technique that employs an overhead projector, colored filters, and colored transparent overlays to create three-dimensional images of molecules for viewing by up to thirty students simultaneously.
Crozat, Madeleine M.; Watkins, Steven F. J. Chem. Educ. 1973, 50, 374.
Stereochemistry |
Molecular Properties / Structure |
Molecular Modeling
The construction of solid tetrahedral and octahedral models  Sheppard, William J.
Describes the construction of solid tetrahedral and octahedral models from wooden blocks.
Sheppard, William J. J. Chem. Educ. 1967, 44, 683.
Stereochemistry |
Molecular Modeling |
Molecular Properties / Structure
Paper stereomodels  Larson, G. Olof
Describes the use of folded paper models to illustrate stereochemical concepts.
Larson, G. Olof J. Chem. Educ. 1965, 42, 274.
Molecular Modeling |
Stereochemistry
Teaching organic stereochemistry  Eliel, Ernest L.
Focusses on suggestions for the teaching of stereochemistry in general chemistry.
Eliel, Ernest L. J. Chem. Educ. 1964, 41, 73.
Molecular Properties / Structure |
Stereochemistry
Tetrahedral and octahedral models  Larson, G. Olof
This short note describes simple models constructed from heavy paper and styrofoam balls used to facilitate discussions in stereochemistry.
Larson, G. Olof J. Chem. Educ. 1964, 41, 69.
Molecular Modeling |
Molecular Properties / Structure |
Stereochemistry
Stereochemistry in the terminal course  Evans, Gordon G.
Discusses the role of stereochemistry in the terminal course of students who are not majoring in chemistry.
Evans, Gordon G. J. Chem. Educ. 1963, 40, 438.
Stereochemistry |
Nonmajor Courses
The electronic structures and stereochemistry of NO2+, NO2, and NO2-  Panckhurst, M. H.
A comparison of the electronic structures and stereochemistry of NO2+, NO2, and NO2-.
Panckhurst, M. H. J. Chem. Educ. 1962, 39, 270.
Stereochemistry |
Molecular Properties / Structure |
Resonance Theory
Structural variety of natural products  Roderick, William R.
Classes of natural products examined includes alkynes; quinones; benzpyrones; small and large rings; sulfur, nitrogen, and halogen-containing compounds; and new amino acids.
Roderick, William R. J. Chem. Educ. 1962, 39, 2.
Natural Products |
Amino Acids |
Alkynes |
Aromatic Compounds
Models illustrating types of orbitals and bonding  Baker, Wilbur L.
A short note on a model of ethylene that clarifies the nature of bonding in the molecule.
Baker, Wilbur L. J. Chem. Educ. 1961, 38, 606.
Molecular Modeling |
Alkenes |
Covalent Bonding
Polymerization of ethylene at atmospheric pressure: A demonstration using a "Ziegler" type catalyst  Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max
A simple experiment on the polymerization of ethylene at atmospheric pressure is described using a "Ziegler" type catalyst prepared from amyl lithium and titanium tetrachloride.
Zilkha, Albert; Calderon, Nissim; Rabani, Joseph; Frankel, Max J. Chem. Educ. 1958, 35, 344.
Polymerization |
Reactions |
Catalysis |
Alkenes
Aids in teaching stereochemistry: Plastic sheets for plane projection diagrams  Shine, H. J.
The use of plane projection diagrams on cards which can be rotated is helpful as an aids in teaching stereochemistry.
Shine, H. J. J. Chem. Educ. 1957, 34, 355.
Stereochemistry
Note on the representation of the electronic structures of acetylene and benzene  Noller, Carl R.
The three dimensional nature of molecular orbitals in acetylene and benzene are illustrated.
Noller, Carl R. J. Chem. Educ. 1955, 32, 23.
Alkenes |
Alkynes |
Aromatic Compounds |
Molecular Properties / Structure |
Covalent Bonding |
MO Theory