TIGER

Click on the title of a resource to view it. To save screen space, only the first 3 resources are shown. You can display more resources by scrolling down and clicking on “View all xx results”.

For the textbook, chapter, and section you specified we found
62 Videos
37 Assessment Questions
17 Molecular Structures
357 Journal Articles
37 Other Resources
Videos: First 3 results
Exploding Soap Bubbles: Hydrogen + Oxygen  
A series of three videos shows that as the ratio of oxygen to hydrogen in soap bubbles increases, the explosions that occur when the bubbles are ignited get louder. (The fact that with an excess of oxygen the explosions would become softer again is not shown.) Each video is repeated with no voice-over so that only the sounds of the explosions are heard. Five still images are provided to show the stoichiometry on the molecular scale. The videos are intended to be shown in order beginning with Hydrogen Alone and ending with hydrogen plus more oxygen.
Reactions |
Oxidation / Reduction
Reaction, Microscale: Tin with Gold(III) Chloride  
A piece of metallic tin is carefully combined with a solution of gold(III) chloride under a microscope.
Oxidation / Reduction |
Reactions
Reaction, Microscale: Mercury With Silver Nitrate  
A droplet of mercury is carefully combined with a solution of silver nitrate under a microscope.
Oxidation / Reduction |
Reactions
View all 62 results
Assessment Questions: First 3 results
Radicals (9 Variations)
A collection of 9 assessment questions about Radicals
Addition Reactions |
Free Radicals |
Mechanisms of Reactions |
Reactions |
Aromatic Compounds
MO Theory (11 Variations)
A collection of 11 assessment questions about MO Theory
MO Theory |
Reactions |
Addition Reactions |
Free Radicals |
Alkenes |
UV-Vis Spectroscopy
Covalent Bonding (11 Variations)
A collection of 11 assessment questions about Covalent Bonding
Carboxylic Acids |
Acids / Bases |
Resonance Theory |
Covalent Bonding |
Phenols |
Amines / Ammonium Compounds |
Free Radicals |
Alkenes |
Amides |
Ethers
View all 37 results
Molecular Structures: First 3 results
Nitrogen Trioxide NO3(r)

3D Structure

Link to PubChem

VSEPR Theory |
Nonmetals |
Free Radicals

Chlorine Monoxide ClO(r)

3D Structure

Link to PubChem

Free Radicals |
VSEPR Theory |
Atmospheric Chemistry |
Nonmetals

Nitrogen Dioxide NO2(r)

3D Structure

Link to PubChem

Free Radicals |
VSEPR Theory |
Atmospheric Chemistry |
Nonmetals

View all 17 results
Journal Articles: First 3 results.
Pedagogies:
On Capillary Rise and Nucleation  R. Prasad
A comparison of capillary rise and nucleation shows that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. This comparison may help to introduce nucleation with capillary rise, a topic familiar to students.
Prasad, R. J. Chem. Educ. 2008, 85, 1389.
Liquids |
Materials Science |
Metallurgy |
Solids
New Observations on the Copper-to-Silver-to-Gold Demonstration  Dorin Bejan, Jeff Hastie, and Nigel J. Bunce
This analysis of the classic copper-to-silver-to-gold demonstration describes the deposition of zinc in the form of the silver-colored alloy ?-brass, the evolution of hydrogen at the copper cathode, and the behavior of the associated electrochemical cell.
Bejan, Dorin; Hastie, Jeff; Bunce, Nigel J. J. Chem. Educ. 2008, 85, 1381.
Electrochemistry |
Electrolytic / Galvanic Cells / Potentials |
Oxidation State |
Oxidation / Reduction
Appreciating Oxygen  Hilton M. Weiss
Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that powers life on earth.
Weiss, Hilton M. J. Chem. Educ. 2008, 85, 1218.
Bioenergetics |
Metabolism |
Oxidation / Reduction |
Photosynthesis |
Thermodynamics
View all 357 articles
Other Resources: First 3 results
Molecular Models of Antioxidants and Radicals  William F. Coleman
This month's featured molecules come from the paper by John M. Berger, Roshniben J. Rana, Hira Javeed, Iqra Javeed, and Sandi L. Schulien (1) describing the use of DPPH to measure antioxidant activity. DPPH was one of the featured molecules in September 2007 (2) and the basics of antioxidant activity were introduced in last month's column (3). In addition, some of the other molecules in the paper are already in the featured molecules collection (4). The remaining structures in the Figure 1 and Table 1 of the paper have been added to the collection. All structures have been optimized at the 6-311G(D,P) level. These molecules suggest a number of possible student activities, some reminiscent of previous columns and some new. (R,R,R)-α-tocopherol is one of the molecules in the mixture that goes by the name vitamin E. These molecules differ in the substituents on the benzene ring and on whether or not there are alternating double bonds in the phytyl tail. In (R,R,R)-α-tocopherol the R's refer to the three chiral carbon atoms in tail while α refers to the substituents on the ring. (R,R,R)-α-Tocopherol is the form found in nature. An interesting literature problem would be to have students learn more about the vitamin E mixture and the differing antioxidant activity of the various constituents. Additionally they could be asked to explore the difference between the word natural as used by a chemist, and "natural" as used on vitamin E supplements. Can students find regulations governing the use of the term "natural"? Can they suggest alternative legislation, and defend their ideas? If students read about vitamin C they will discover that only L-ascorbic acid is useful in the body. It would be interesting to extend the experiment described in the Berger et al. paper (1) to include D-ascorbic acid. How do the antioxidant abilities of the enantiomers, as determined by reaction with DPPH compare? Is this consistent with the behavior in the body? Why or why not? Berger et al. mention two other stable neutral radicals, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) and Fremy's salt. In a reversal from the use of stable radicals to measure antioxidant properties, these two molecules have proven to be very versatile oxidation catalysts in organic synthesis, and would make a rich source of research papers for students in undergraduate organic courses.
Free Radicals |
Natural Products
Biologically Active Exceptions to the Octet Rule  Ed Vitz
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Lewis Structures |
Free Radicals |
Vitamins
Exceptions to the Octet Rule  Ed Vitz, John W. Moore
A section of ChemPrime, the Chemical Educations Digital Library's free General Chemistry textbook.
Lewis Structures |
Free Radicals |
Molecular Properties / Structure
View all 37 results