TIGER

Journal Articles: 93 results
Fog Machines, Vapors, and Phase Diagrams  Ed Vitz
This series of demonstrations elucidate the operation of commercial fog machines using common laboratory materials and can be adapted for elementary through tertiary levels. The formation of fogs is discussed in terms of the phase diagram for water and other chemical principles.
Vitz, Ed. J. Chem. Educ. 2008, 85, 1385.
Liquids |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Water / Water Chemistry
Polymeric, Metallic and Other Glasses in Introductory Chemistry  Stephen J. Hawkes
Polymeric, metallic, and other glasses and their importance are described in a manner suitable for introductory chemistry.
Hawkes, Stephen J. J. Chem. Educ. 2008, 85, 1377.
Consumer Chemistry |
Materials Science |
Phases / Phase Transitions / Diagrams |
Solids
Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties  Robert M. Hanson, Patrick Riley, Jeff Schwinefus, and Paul J. Fischer
The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level.
Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J. J. Chem. Educ. 2008, 85, 1142.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics
Understanding the Clausius–Clapeyron Equation by Employing an Easily Adaptable Pressure Cooker  Monica Galleano, Alberto Boveris, and Susana Puntarulo
Describes a laboratory exercise to understand the effect of pressure on phase equilibrium as described by the ClausiusClapeyron equation. The equipment required is a pressure cooker adapted with a pressure gauge and a thermometer in the lid, allowing the measurement of the pressure and the temperature of the chamber containing the water heated until vaporization.
Galleano, Monica; Boveris, Alberto; Puntarulo, Susana. J. Chem. Educ. 2008, 85, 276.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry
Effects of a Cooperative Learning Strategy on Teaching and Learning Phases of Matter and One-Component Phase Diagrams  Kemal Doymus
Describes a study whose objective was to determine the effects of cooperative learning (using the jigsaw method) on students' achievement in a general chemistry course.
Doymus, Kemal. J. Chem. Educ. 2007, 84, 1857.
Gases |
Liquids |
Phases / Phase Transitions / Diagrams |
Solids
Gas Clathrate Hydrates Experiment for High School Projects and Undergraduate Laboratories  Melissa P. Prado, Annie Pham, Robert E. Ferazzi, Kimberly Edwards, and Kenneth C. Janda
Presents a procedure for preparing and studying propane clathrate hydrate. This experiment introduces students to this unusual solid while stimulating a discussion of the interplay of intermolecular forces, thermodynamics, and solid structure.
Prado, Melissa P.; Pham, Annie; Ferazzi, Robert E.; Edwards, Kimberly; Janda, Kenneth C. J. Chem. Educ. 2007, 84, 1790.
Alkanes / Cycloalkanes |
Applications of Chemistry |
Calorimetry / Thermochemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Water / Water Chemistry |
Hydrogen Bonding
"Concept Learning versus Problem Solving": Does Particle Motion Have an Effect?  Michael J. Sanger, Eddie Campbell, Jeremy Felker, and Charles Spencer
210 students were asked to answer a static, particulate-level, multiple-choice question concerning gas properties. Then they viewed an animated version of the question and answered the multiple-choice question again. The distribution of responses changed significantly after students viewed the animation.
Sanger, Michael J.; Campbell, Eddie; Felker, Jeremy; Spencer, Charles. J. Chem. Educ. 2007, 84, 875.
Gases |
Kinetic-Molecular Theory |
Qualitative Analysis |
Quantitative Analysis |
Phases / Phase Transitions / Diagrams
What Are Students Thinking When They Pick Their Answer?  Michael J. Sanger and Amy J. Phelps
330 students were asked to answer a multiple-choice question concerning gas properties at the microscopic level and explain their reasoning. Of those who selected the correct answer, 80% provided explanations consistent with the scientifically accepted answer, while 90% of the students who picked an incorrect choice provided explanations with at least one misconception.
Sanger, Michael J.; Phelps, Amy J. J. Chem. Educ. 2007, 84, 870.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams |
Qualitative Analysis
Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus  Rubin Battino, David A. Dolson, Michael R. Hall, and Trevor M. Letcher
Describes an inexpensive apparatus for the determination of the vapor pressure of a liquid as a function of temperature for the purpose of calculating enthalpy changes of vaporization. Also described are a simple air thermostat and an inexpensive temperature controller based on an integrated temperature sensor.
Battino, Rubin; Dolson, David A.; Hall, Michael R.; Letcher, Trevor M. J. Chem. Educ. 2007, 84, 822.
Gases |
Laboratory Equipment / Apparatus |
Lipids |
Phenols |
Physical Properties |
Thermodynamics |
Liquids |
Phases / Phase Transitions / Diagrams
Popping Popcorn Kernels: Expanding Relevance with Linear Thinking  Jordan L. Bennett, Michael M. Fuson, and Thomas A. Evans
Graphing skills and an understanding of linear relationships are developed in the context of popping of individual popcorn kernels. Introductory-level chemistry students determine mass changes as the result of popping along with the volume and density of the popcorn flakes produced.
Bennett, Jordan L.; Fuson, Michael M.; Evans, Thomas A. J. Chem. Educ. 2006, 83, 414.
Carbohydrates |
Food Science |
Phases / Phase Transitions / Diagrams |
Physical Properties
Theoretical Insights for Practical Handling of Pressurized Fluids  Alfonso Aranda and María del Prado Rodríguez
Introduces the basic considerations for managing pressurized fluids, mainly liquefied and compressed gases.
Aranda, Alfonso; Rodríguez, María del Prado. J. Chem. Educ. 2006, 83, 93.
Applications of Chemistry |
Gases |
Phases / Phase Transitions / Diagrams |
Thermodynamics
Chemistry of Moth Repellents  Gabriel Pinto
A real-life example consisting of the study of the different substances used as moth repellents is presented to introduce students to miscellaneous topics such as sublimation, intermolecular forces, insecticides, and the effect of moths on clothes. A set of questions about the most common moth repellents, well known to students, is used to motivate them to understand several everday phenomena through chemistry concepts.
Pinto, Gabriel. J. Chem. Educ. 2005, 82, 1321.
Noncovalent Interactions |
Applications of Chemistry |
Phases / Phase Transitions / Diagrams |
Solids |
Physical Properties |
Consumer Chemistry
Some Insights Regarding a Popular Introductory Gas Law Experiment  Ed DePierro and Fred Garafalo
This paper alerts readers to a potential source of error in one approach to the Dumas method as it is often practiced in introductory chemistry laboratories. The room-temperature vapor pressures of volatile compounds that might be considered as unknowns for the experiment lead to determined molar masses that are too low. The greater the vapor pressure of the compound, the lower the determined molar mass will be, when compared to the accepted value.
DePierro, Ed; Garafalo, Fred. J. Chem. Educ. 2005, 82, 1194.
Gases |
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Physical Properties
Fractional Distillation of Air and Other Demonstrations with Condensed Gases  Maria Oliver-Hoyo and William L. Switzer, III
This demonstration builds upon the commonly performed liquefaction of air not only to show the presence of nitrogen and oxygen, but also the presence of two other components, carbon dioxide and water. Several extensions are suggested: one to show boiling point elevation in solution and another to show the elevation of both boiling point and sublimation point with pressure. No special apparatus is required permitting presentations to audiences in a variety of settings. These demonstrations give the opportunity to discuss properties of gases, solution chemistry, and phase equilibria.
Oliver-Hoyo, Maria; Switzer, William L., III. J. Chem. Educ. 2005, 82, 251.
Gases |
Qualitative Analysis |
Atmospheric Chemistry |
Phases / Phase Transitions / Diagrams |
Separation Science
Using Science Fiction To Teach Thermodynamics: Vonnegut, Ice-nine, and Global Warming  Charles A. Liberko
When covering the topic of thermodynamics at the introductory level, an example from Kurt Vonnegut, Jr's, fictional novel, Cat's Cradle, is used to take what the students have learned and apply it to a new situation.
Liberko, Charles A. J. Chem. Educ. 2004, 81, 509.
Thermodynamics |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams |
Noncovalent Interactions |
Calorimetry / Thermochemistry
Three-Dimensional Model for Water: Magnets as Dipoles  Samuel H. Yalkowsky and Jennifer L. H. Johnson
Reply to comments on original article.
Yalkowsky, Samuel H.; Johnson, Jennifer L. H. J. Chem. Educ. 2004, 81, 34.
Aqueous Solution Chemistry |
Noncovalent Interactions |
Hydrogen Bonding |
Lipids |
Liquids |
Molecular Modeling |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents |
Water / Water Chemistry
Three-Dimensional Model for Water: Magnets as Chemical Bonds  Roy W. Clark
Concerns over students confusing electrical and magnetic fields.
Clark, Roy W. J. Chem. Educ. 2004, 81, 34.
Aqueous Solution Chemistry |
Noncovalent Interactions |
Hydrogen Bonding |
Lipids |
Liquids |
Molecular Modeling |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents |
Water / Water Chemistry
Colorful Iodine  Richard W. Ramette
Design for an iodine thermometer, demonstrating sublimation of iodine.
Ramette, Richard W. J. Chem. Educ. 2003, 80, 878.
Main-Group Elements |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry
Uncle Tungsten  Martin E. Fuller
Design for an iodine thermometer, demonstrating sublimation of iodine.
Fuller, Martin E. J. Chem. Educ. 2003, 80, 878.
Main-Group Elements |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry
Entropy Is Simple, Qualitatively  Frank L. Lambert
Explanation of entropy in terms of energy dispersal; includes considerations of fusion and vaporization, expanding gasses and mixing fluids, colligative properties, and the Gibbs function.
Lambert, Frank L. J. Chem. Educ. 2002, 79, 1241.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Gases
A Three-Dimensional Model for Water  J. L. H. Johnson and S. H. Yalkowsky
Using Molymod spheres and magnets to simulate the structure and properties of water and aqueous systems.
Johnson, J. L. H.; Yalkowsky, S. H. J. Chem. Educ. 2002, 79, 1088.
Aqueous Solution Chemistry |
Covalent Bonding |
Lipids |
Liquids |
Solutions / Solvents |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
Is Salt Melting When It Dissolves in Water?  Alan Goodwin
Analysis of the chemical meaning of the terms melting and dissolving.
Goodwin, Alan. J. Chem. Educ. 2002, 79, 393.
Liquids |
Solids |
Phases / Phase Transitions / Diagrams
Are Fizzing Drinks Boiling? A Chemical Insight from Chemical Education Research  Alan Goodwin
The suggestion that fizzing drinks are examples of liquids boiling at room temperature has proved to be controversial among both chemists and chemical educators. This paper presents a case for believing this everyday system to be a good example of a boiling solution and the consequent separation of carbon dioxide from the solution to exemplify fractional distillation.
Goodwin, Alan. J. Chem. Educ. 2001, 78, 385.
Aqueous Solution Chemistry |
Kinetic-Molecular Theory |
Equilibrium |
Gases |
Solutions / Solvents |
Phases / Phase Transitions / Diagrams
JCE Classroom Activity: Out of "Thin Air": Exploring Phase Changes  John J. Vollmer
This Activity illustrates sublimation/deposition with para-dichlorobenzene (mothballs) and evaporation/condensation with water.
Vollmer, John J. J. Chem. Educ. 2000, 77, 488A.
Phases / Phase Transitions / Diagrams |
Crystals / Crystallography |
Physical Properties |
Solids |
Gases
Ultramicro-Boiling-Point Determination--A Modification  Henry Brouwer
The determination of microscale boiling points in a melting-point tube may be simplified by replacing the micro-bell bubbler with an ultrathin capillary tube bubbler.
Brouwer, Henry. J. Chem. Educ. 2000, 77, 1480.
Laboratory Equipment / Apparatus |
Microscale Lab |
Phases / Phase Transitions / Diagrams
Thermodynamics of Water Superheated in the Microwave Oven  B. H. Erné
Water is conveniently heated above its normal boiling point in a microwave oven in a glass microwave oven teapot. Water stops boiling soon after heating is interrupted, but subsequently added rough particles can still act as nucleation centers for a brief, spectacular burst of steam bubbles. The heat to make those steam bubbles obviously comes from the water itself, so that one can conclude that the boiling water was superheated, which is confirmed with a thermometer.
Erné, B. H. J. Chem. Educ. 2000, 77, 1309.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Liquids
Glass Doesn't Flow and Doesn't Crystallize and It Isn't a Liquid  Stephen J. Hawkes
It is widely believed that glass flows in historic time and it is often asserted that glass is a liquid. The evidence of archeology, geology, and viscosity and of research on glass structure and on conservation of antique glass is examined and the conclusion in the title is reached. These fallacies should not be taught.
Hawkes, Stephen J. J. Chem. Educ. 2000, 77, 846.
Geochemistry |
Phases / Phase Transitions / Diagrams |
Solid State Chemistry
A Closer Look at Phase Diagrams for the General Chemistry Course  Stephen A. Gramsch
The information provided by the high-pressure phase diagrams of some simple systems (carbon dioxide, water, hydrogen, and iron) can provide a useful extension to the traditional discussion of phase diagrams in the general chemistry course. At the same time, it can prepare students for a more illuminating presentation of the concept of equilibrium than is possible through the discussion of gas phase, acid-base, and solubility product equilibria alone.
Gramsch, Stephen A. J. Chem. Educ. 2000, 77, 718.
Equilibrium |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Geochemistry
Illustrating Thermodynamic Concepts Using a Hero's Engine  Pedro L. Muiño and James R. Hodgson
A modified Hero's engine is used to illustrate concepts of thermodynamics and engineering design suitable for introductory chemistry courses and more advanced physical chemistry courses. This demonstration is suitable to illustrate concepts like gas expansion, gas cooling through expansion, conversion of heat to work, interconversion between kinetic energy and potential energy, and feedback mechanisms.
Muio, Pedro L.; Hodgson, James R. J. Chem. Educ. 2000, 77, 615.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
Crystals Out of "Thin Air"  John J. Vollmer
In this experiment crystals of para-dichlorobenzene form readily and efficiently from mothballs in a safe setting, using canning jars with ice cubes. The experiment can serve as an introduction to the concept of molecules, especially when combined with the condensation of liquids and the perception of odors.
Vollmer, John J. J. Chem. Educ. 2000, 77, 486.
Consumer Chemistry |
Descriptive Chemistry |
Phases / Phase Transitions / Diagrams |
Physical Properties
Entropy, Disorder, and Freezing  Brian B. Laird
It is argued that the usual view that entropy is a measure of "disorder" is problematic and that there exist systems at high density, for which packing considerations dominate, where a spatially ordered state has a higher entropy than a disordered one.
Laird, Brian B. J. Chem. Educ. 1999, 76, 1388.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Statistical Mechanics
An Inexpensive Microscale Method for Measuring Vapor Pressure, Associated Thermodynamic Variables, and Molecular Weight  Jason C. DeMuro, Hovanes Margarian, Artavan Mkhikian, Kwang Hi No, and Andrew R. Peterson
Existing methods for measuring vapor pressure are too expensive or not quantitative enough for chemistry classes in secondary schools. Our method measures the vapor pressure inside a bubble trapped in a graduated microtube made from a disposable 1-mL glass pipet.
DeMuro, Jason C.; Margarian, Hovanes; Mkhikian, Artavan; No, Kwang Hi; Peterson, Andrew R. J. Chem. Educ. 1999, 76, 1113.
Aqueous Solution Chemistry |
Gases |
Microscale Lab |
Phases / Phase Transitions / Diagrams
A More Dramatic Container to Crush by Atmospheric Pressure  Robert D. Meyers and Gordon T. Yee
The familiar demonstration of collapsing a can by filling it with water vapor and then sealing it and allowing it to cool is improved by performing it with a 20-L steel solvent drum instead.
Meyers, Robert D.; Yee, Gordon T. J. Chem. Educ. 1999, 76, 933.
Gases |
Phases / Phase Transitions / Diagrams
Integrating Computers into the First-Year Chemistry Laboratory: Application of Raoult's Law to a Two-Component System  R. Viswanathan and G. Horowitz
First-year chemistry students are introduced to a spreadsheet program to calculate the boiling points of a two-component solution containing a volatile solute. The boiling points are predicted by combining the Clausius-Clapeyron equation and Raoult's law. A simple experimental setup is used to measure the boiling points of solutions of varying compositions.
Viswanathan, Raji; Horowitz, Gail. J. Chem. Educ. 1998, 75, 1124.
Laboratory Computing / Interfacing |
Physical Properties |
Solutions / Solvents |
Phases / Phase Transitions / Diagrams
Teaching Distillation Knowledge: A Video Film about Distillation Bridging a Gap Between Theory and Practice  Martin J. Goedhart, Hanno van Keulen, Theo M. Mulder, Adri H. Verdonk, and Wobbe De Vos
The authors observed that first year students hardly used their knowledge of phase theory in the design and performance of distillations. They therefore developed a video in which they confront students with the boiling properties of liquid mixtures.
Goedhart, Martin J.; van Keulen, Hanno; Mulder, Theo M.; Verdonk, Adri H.; De Vos, Wobbe. J. Chem. Educ. 1998, 75, 378.
Learning Theories |
Phases / Phase Transitions / Diagrams |
Separation Science |
Liquids |
Physical Properties
A Simple Experiment for Demostration of Phase Diagram of Carbon Dioxide   Van T. Lieu
The experiment involves the compression of small pieces of dry ice and carbon dioxide gas mixture in a 1-mL tuberculin syringe with the needle end of the syringe sealed.
J. Chem. Educ. 1996, 73, 837.
Equilibrium |
Phases / Phase Transitions / Diagrams
Dynamite Demo?  Dale D. Clyde
Caution for boiling-water-with-ice demonstration.
Clyde, Dale D. J. Chem. Educ. 1995, 72, 1130.
Phases / Phase Transitions / Diagrams |
Liquids |
Gases
Kinetics in Thermodynamic Clothing: Fun with Cooling Curves: A First-Year Undergraduate Chemistry Experiment  Casadonte, Dominick J., Jr.
A series of experiments examining the phenomenon of cooling by producing part of the cooling curve for water at different initial temperatures, focussing on the fact that the curve is nonlinear (unlike the information presented in many texts).
Casadonte, Dominick J., Jr. J. Chem. Educ. 1995, 72, 346.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Kinetics
Journey around a Phase Diagram  Kildahl, Nicholas K.
This paper deals in depth with questions that arise from phase diagrams in an introductory level chemistry course.
Kildahl, Nicholas K. J. Chem. Educ. 1994, 71, 1052.
Phases / Phase Transitions / Diagrams |
Gases |
Liquids
Nickel-Titanium Memory Metal: A "Smart" Material Exhibiting a Solid-State Phase Change and Superelasticity  Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C.
Several simple experiments that illustrate the shape-memory, mechanical, and acoustical properties of Nitinol.
Gisser, Kathleen R. C.; Geselbracht, Margaret J.; Cappellari, Ann; Hunsberger, Lynn; Ellis, Arthur B.; Perepezko, John; Lisensky, George C. J. Chem. Educ. 1994, 71, 334.
Solid State Chemistry |
Phases / Phase Transitions / Diagrams |
Materials Science |
Applications of Chemistry
Cryophori, Hot Molecules, and Frozen Nitrogen  Hunter, Paul W. W.; Knoespel, Sheldon L.
Freezing water and nitrogen at low atmospheric pressure.
Hunter, Paul W. W.; Knoespel, Sheldon L. J. Chem. Educ. 1994, 71, 67.
Thermodynamics |
Phases / Phase Transitions / Diagrams
Critical point phase separation in binary liquid mixtures   Bowen, L. H.; Benevides, M. L.
Critical point demonstrations are not usually practical to perform. This author provides a suggestions using hexane, nitrobenzene, triethylamine, water and phenolphthalein.
Bowen, L. H.; Benevides, M. L. J. Chem. Educ. 1993, 70, 775.
Phases / Phase Transitions / Diagrams
Phase diagrams of one-compound systems: What most textbooks don't say, but should!  Peckham, Gavin D.; McNaught, Ian J.
High school and introductory chemistry texts contain errors and omissions in phase diagrams.
Peckham, Gavin D.; McNaught, Ian J. J. Chem. Educ. 1993, 70, 560.
Phases / Phase Transitions / Diagrams
Understanding the fate of petroleum hydrocarbons in the subsurface environment  Chen, Chien T.
This article reviews our current understanding and then specifies the requirements for research that will improve our ability to detect hydrocarbons and predict their fate in the subsurface environment.
Chen, Chien T. J. Chem. Educ. 1992, 69, 357.
Alkanes / Cycloalkanes |
Phases / Phase Transitions / Diagrams
Boiling and freezing simultaneously - with a feeble vacuum pump!   Ellison, Mike
The author uses this demonstration of freezing and boiling at reduced pressure to reinforce concepts about energy effects in phase changes.
Ellison, Mike J. Chem. Educ. 1992, 69, 325.
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Thermodynamics
Vapor pressure demonstrations using a butane lighter  Delumyea, R. Del
The concept of the change of state of matter and particularly the volatitlity of liquids is an important concept taught in introductory chemistry courses.
Delumyea, R. Del J. Chem. Educ. 1992, 69, 321.
Gases |
Physical Properties |
Liquids |
Phases / Phase Transitions / Diagrams
An Ace reducing adapter for screw vials.  Canela, Ramon; Balcells, Merce.
Using this device, solvents contained in vials can be evaporated quickly without problems.
Canela, Ramon; Balcells, Merce. J. Chem. Educ. 1992, 69, 244.
Laboratory Equipment / Apparatus |
Solutions / Solvents |
Phases / Phase Transitions / Diagrams
Freezing point depression in a bottle of soda   Bare, William D.
The "ravenous consumption of soda" by today's students makes an interesting model with which to demonstrate the effect of solute concentration on the freezing point of an aqueous solution.
Bare, William D. J. Chem. Educ. 1991, 68, 1038.
Aqueous Solution Chemistry |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry
Wet dry ice   Becker, Robert
A method for demonstrating the triple point of carbon dioxide in a safe way.
Becker, Robert J. Chem. Educ. 1991, 68, 782.
Phases / Phase Transitions / Diagrams
A vapor pressure demonstration   Sears, Jerry A.
The fact that all liquids exert a vapor pressure is an abstract concept that many students have difficulty understanding. The following demonstration offers dramatic, visual evidence of the pressure exerted by the vapor of a liquid.
Sears, Jerry A. J. Chem. Educ. 1990, 67, 427.
Alkanes / Cycloalkanes |
Phases / Phase Transitions / Diagrams |
Liquids
The liquid phase of carbon dioxide: A simple lecture demonstration  Andrews, Lester
Demonstrating that liquid CO2 can exist at higher pressures.
Andrews, Lester J. Chem. Educ. 1989, 66, 597.
Liquids |
Phases / Phase Transitions / Diagrams
Heating values of fuels: An introductory experiment  Rettich, Timothy R.; Battino, Rubin; Karl, David J.
This experiment is a simple, inexpensive way for students to determine the heats of combustion of common solid, liquid, and gaseous fuels.
Rettich, Timothy R.; Battino, Rubin; Karl, David J. J. Chem. Educ. 1988, 65, 554.
Calorimetry / Thermochemistry |
Phases / Phase Transitions / Diagrams |
Applications of Chemistry
Demonstration of vapor pressure  Richardson, W. S.
Demonstrating the vapor pressure of several different materials using a water manometer.
Richardson, W. S. J. Chem. Educ. 1987, 64, 968.
Gases |
Phases / Phase Transitions / Diagrams |
Liquids
A safe cell for viewing the critical point of CO2  Botch, Beatrice; Battino, Rubin
Design, construction, and use of a safe cell for viewing the critical point of CO2.
Botch, Beatrice; Battino, Rubin J. Chem. Educ. 1987, 64, 347.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Gases |
Liquids
Carbon dioxide: Its principal properties displayed and discussed  Bent, Henry A.
The principal properties of carbon dioxide demonstrated and discussed.
Bent, Henry A. J. Chem. Educ. 1987, 64, 167.
Physical Properties |
Phases / Phase Transitions / Diagrams |
Gases |
Kinetic-Molecular Theory
Simple demonstrations of the liquefaction of gases  Marzzacco, Charles J.
This demonstration uses simple hydrocarbons to demonstrate the important ideas of states of matter and changes in state.
Marzzacco, Charles J. J. Chem. Educ. 1986, 63, 436.
Phases / Phase Transitions / Diagrams
Molecular association and structure of hydrogen peroxide  Gigure, Paul A.
The typical textbook treatment of molecular association and structure of hydrogen peroxide, and the implications of these concepts for the physical properties of hydrogen peroxide tend to be oversimplified and inaccurate.
Gigure, Paul A. J. Chem. Educ. 1983, 60, 399.
Molecular Properties / Structure |
Physical Properties |
Phases / Phase Transitions / Diagrams |
Hydrogen Bonding
Vapor pressure apparatus for general chemistry  Long, Joseph W.
A simple apparatus for collecting vapor pressure data; relies on a mercury manometer.
Long, Joseph W. J. Chem. Educ. 1982, 59, 933.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Gases
Collapsing can  Sands, Richard D.
Demonstrates the solubility of ammonia gas in water.
Sands, Richard D. J. Chem. Educ. 1982, 59, 866.
Gases |
Phases / Phase Transitions / Diagrams |
Precipitation / Solubility |
Aqueous Solution Chemistry
A simple experiment for determining vapor pressure and enthalpy of vaporization of water  Levinson, Gerald S.
It is possible to determine the vapor pressure of water using only a tall beaker, a graduated cylinder, and a thermometer.
Levinson, Gerald S. J. Chem. Educ. 1982, 59, 337.
Water / Water Chemistry |
Gases |
Phases / Phase Transitions / Diagrams
Entropy and its role in introductory chemistry  Bickford, Franklin R.
The concept of entropy as it applies to phase changes.
Bickford, Franklin R. J. Chem. Educ. 1982, 59, 317.
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Solids |
Liquids |
Gases
Stormy weather  Taylor, Thomas E.
Question regarding the formation of rain clouds and the exothermic process of condensation.
Taylor, Thomas E. J. Chem. Educ. 1980, 57, 732.
Thermodynamics |
Atmospheric Chemistry |
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams
Measuring the heat of vaporization using the Clausius-Clapeyron equation  Driscoll, Jerry A.
Uses toluene, methylcyclohexane, or piperidine to measure the heat of vaporization using the Clausius-Clapeyron equation.
Driscoll, Jerry A. J. Chem. Educ. 1980, 57, 667.
Phases / Phase Transitions / Diagrams
Illustrating chemical concepts through food systems: Introductory chemistry experiments  Chamber, IV, E.; Setser, C. S.
Illustrating the vaporization of liquids, reaction rates, adsorption, properties of solutions, colloidal dispersions, suspensions, and hydrogen ion concentration using foods.
Chamber, IV, E.; Setser, C. S. J. Chem. Educ. 1980, 57, 312.
Food Science |
Applications of Chemistry |
Liquids |
Phases / Phase Transitions / Diagrams |
Solutions / Solvents |
Colloids |
Acids / Bases
Lecture demonstration of vanishing meniscus in vapor liquid transition  Duus, H. C.
Shows how the interface between vapor and liquid propane vanishes.
Duus, H. C. J. Chem. Educ. 1979, 56, 614.
Liquids |
Gases |
Phases / Phase Transitions / Diagrams
Toys in the chemistry classroom  Ziegler, Gene R.
Using toys to teach chemical principles; lists common toys and their potential applications.
Ziegler, Gene R. J. Chem. Educ. 1977, 54, 629.
Applications of Chemistry |
Phases / Phase Transitions / Diagrams
Le Chtelier's principle: A laboratory exercise  Friedman, Frederica
Le Chtelier's principle can be demonstrated by showing that water can boil at temperatures below 100C due to reduced vapor pressure.
Friedman, Frederica J. Chem. Educ. 1977, 54, 236.
Equilibrium |
Phases / Phase Transitions / Diagrams |
Gases |
Water / Water Chemistry
What the standard state doesn't say about temperature and phase  Carmichael, Halbert
125. The author develops the concept of the "standard state" in a manner that is more robust than typical textbook treatment.
Carmichael, Halbert J. Chem. Educ. 1976, 53, 695.
Thermodynamics |
Phases / Phase Transitions / Diagrams
A computer program for calculation of boiling points at sub- and super-atmospheric pressures  Davis, Charles C.; Wright, C. David
An interactive program has been written in Fortran IV for the IBM 370/125 which will compute the boiling points of organic compounds at a range of pressures.
Davis, Charles C.; Wright, C. David J. Chem. Educ. 1976, 53, 355.
Laboratory Computing / Interfacing |
Phases / Phase Transitions / Diagrams |
Gases
A computer program for calculation of boiling points at sub- and super-atmospheric pressures  Davis, Charles C.; Wright, C. David
An interactive program has been written in Fortran IV for the IBM 370/125 which will compute the boiling points of organic compounds at a range of pressures.
Davis, Charles C.; Wright, C. David J. Chem. Educ. 1976, 53, 355.
Laboratory Computing / Interfacing |
Phases / Phase Transitions / Diagrams |
Gases
Freezing ice cream and making caramel topping  Plumb, Robert C.; Olson, John Otto; Bowman, Leo H.
The obscurity of "colligative properties" can be dispelled by this ice cream example.
Plumb, Robert C.; Olson, John Otto; Bowman, Leo H. J. Chem. Educ. 1976, 53, 49.
Phases / Phase Transitions / Diagrams |
Physical Properties |
Thermodynamics |
Applications of Chemistry
Phase changes of hexachloroethane  Shavitz, Richard
A demonstration of the sublimation of hexachloroethane.
Shavitz, Richard J. Chem. Educ. 1975, 52, 231.
Phases / Phase Transitions / Diagrams |
Physical Properties
Physical chemistry of the drinking duck  Plumb, Robert C.; Wagner, Robert E.
The operation of the drinking bird is easily understood in terms of a few elementary physical chemistry principles.
Plumb, Robert C.; Wagner, Robert E. J. Chem. Educ. 1973, 50, 213.
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Equilibrium
Enthalpy and entropy of evaporation from measured vapor pressure using a programmable desk calculator  McEachern, Douglas M.
A program for a calculator that calculates the heat of evaporation of a solid or a liquid and the corresponding entropy change.
McEachern, Douglas M. J. Chem. Educ. 1973, 50, 190.
Calorimetry / Thermochemistry |
Thermodynamics |
Phases / Phase Transitions / Diagrams |
Chemometrics
Squeak, skid and glide - The unusual properties of snow and ice  Plumb, Robert C.; Fletcher, N. H.
The Clapeyron equation controls the behavior of ice under varying conditions of temperature and pressure.
Plumb, Robert C.; Fletcher, N. H. J. Chem. Educ. 1972, 49, 179.
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams |
Equilibrium
Squeak, skid and glide - The unusual properties of snow and ice  Plumb, Robert C.; Fletcher, N. H.
The Clapeyron equation controls the behavior of ice under varying conditions of temperature and pressure.
Plumb, Robert C.; Fletcher, N. H. J. Chem. Educ. 1972, 49, 179.
Water / Water Chemistry |
Phases / Phase Transitions / Diagrams |
Equilibrium
Evaporation rate: A beginning chemistry experiment  Feinstein, H. I.; Walters, C.
A simple procedure for determining the evaporation rate of volatile solvents.
Feinstein, H. I.; Walters, C. J. Chem. Educ. 1972, 49, 135.
Phases / Phase Transitions / Diagrams
Cloud Caps on High Mountains  Stevenson, Philip E.
The formation of cloud caps on high mountains illustrates cooling in an adiabatic expansion and the change in vapor pressure of a liquid with temperature.
Stevenson, Philip E. J. Chem. Educ. 1970, 47, 272.
Atmospheric Chemistry |
Gases |
Applications of Chemistry |
Phases / Phase Transitions / Diagrams |
Thermodynamics
The snowmaking machines  Plumb, Robert C.
Illustrating principles of thermodynamics in gas expansions and phase changes.
Plumb, Robert C. J. Chem. Educ. 1970, 47, 176.
Gases |
Thermodynamics |
Phases / Phase Transitions / Diagrams
Chemical principles exemplified  Plumb, Robert C.
Introduction to a new series, containing "exempla" (brief anecdotes about materials and phenomena which exemplify chemical principles). [Debut]
Plumb, Robert C. J. Chem. Educ. 1970, 47, 175.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams |
Thermodynamics |
Equilibrium |
Photochemistry |
Applications of Chemistry
An attachment for semiautomatic melting point determination  Vogel, George
This simple yet rugged device notifies the experimenter when a small crystalline sample in a capillary tube first begins to melt.
Vogel, George J. Chem. Educ. 1969, 46, 789.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Physical Properties |
Laboratory Management
Microboiling point determination at atmospheric pressure  Chaco, M. C.
This microboiling point determination uses a melting-point capillary
Chaco, M. C. J. Chem. Educ. 1967, 44, 474.
Phases / Phase Transitions / Diagrams |
Microscale Lab |
Physical Properties
Capillary tube experiments for introductory chemistry laboratory  Gesser, H. D.; Lithown, Caroline; Brattston, D.; Thompson, Ian
Describes the use of a capillary tube to determine how vapor changes with temperature.
Gesser, H. D.; Lithown, Caroline; Brattston, D.; Thompson, Ian J. Chem. Educ. 1967, 44, 387.
Gases |
Phases / Phase Transitions / Diagrams
Hard sphere simulation of statistical mechanical behavior of molecules  Plumb, Robert C.
Describes the design and use of a demonstration device to illustrate the kinetic behavior of gases, liquids, and solids.
Plumb, Robert C. J. Chem. Educ. 1966, 43, 648.
Statistical Mechanics |
Gases |
Liquids |
Solids |
Kinetic-Molecular Theory |
Equilibrium |
Phases / Phase Transitions / Diagrams
A modified condensing apparatus for both refluxing and distilling  Goddard, Charles; Henry, Malcolm C.
The condenser described here can be pivoted from a vertical position (refluxing) to one approximately horizontal (distilling) without having to switch the inlet and outlet condensor connections.
Goddard, Charles; Henry, Malcolm C. J. Chem. Educ. 1965, 42, 221.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams |
Laboratory Management
Freezing point observations on micellar solutions  Hutchinson, Eric.; Tokiwa, Fumikatsu
Describes freezing point observations on solutions of p-methylphenyl glucose and p-butylphenylglucose.
Hutchinson, Eric.; Tokiwa, Fumikatsu J. Chem. Educ. 1963, 40, 472.
Micelles |
Phases / Phase Transitions / Diagrams |
Aqueous Solution Chemistry
An apparatus for the continuous production of triple distilled water  Taylor, Jay E.
Presents the design of an apparatus for the continuous production of triple distilled water.
Taylor, Jay E. J. Chem. Educ. 1960, 37, 204.
Laboratory Equipment / Apparatus |
Phases / Phase Transitions / Diagrams
Determination of vapor pressure: A general chemistry laboratory experiment  Wolthuis, Enno; Brummel, Roger; Bout, Paul Vanden
Provides a method for obtaining good vapor pressure measurements using simple equipment.
Wolthuis, Enno; Brummel, Roger; Bout, Paul Vanden J. Chem. Educ. 1959, 36, 494.
Gases |
Liquids |
Phases / Phase Transitions / Diagrams
A temperature sensitive stirring rod: Liquefaction of NO2 as a student experiment  Eddy, Robert D.; Scholes, Samuel R., Jr.
NO2 is generated from Pb(NO3)2 and collected, condensed, and sealed in a hollow stirring rod, which is then observed in hot, cool, and cold water.
Eddy, Robert D.; Scholes, Samuel R., Jr. J. Chem. Educ. 1958, 35, 527.
Gases |
Phases / Phase Transitions / Diagrams
Textbook errors: Guest column. XVI: The vapor pressure of hydrated cupric sulfate  Logan, Thomas S.
Examines variability in the values of pressures of water vapor in equilibrium with pairs of cupric sulfate in hydrates quoted in the literature and texts.
Logan, Thomas S. J. Chem. Educ. 1958, 35, 148.
Phases / Phase Transitions / Diagrams |
Equilibrium
The determination of normal boiling points at high altitudes  Levy, Luis; Proano, Oswaldo E.
A pressurized distillation apparatus is useful for the direct determination of the normal boiling point, regardless of the outside atmospheric pressure.
Levy, Luis; Proano, Oswaldo E. J. Chem. Educ. 1957, 34, 440.
Phases / Phase Transitions / Diagrams
Letters to the editor  Lash, M. E.
The author clarifies the definition of critical temperature, which is often stated uncritically in textbooks.
Lash, M. E. J. Chem. Educ. 1954, 31, 102.
Gases |
Phases / Phase Transitions / Diagrams |
Nomenclature / Units / Symbols
The kinetic structure of gases  Slabaugh, W. H.
Describes a model that illustrates the kinetic properties of gases and ii use to demonstrate the effect of temperature changes on the motion of gas particles.
Slabaugh, W. H. J. Chem. Educ. 1953, 30, 68.
Gases |
Kinetic-Molecular Theory |
Phases / Phase Transitions / Diagrams