TIGER

Journal Articles: 11 results
A-DNA and B-DNA: Comparing Their Historical X-ray Fiber Diffraction Images  Amand A. Lucas
This paper provides a comparative explanation of the structural content of the diffraction diagrams of A-DNA and B-DNA that facilitated the discovery of the double-helical structure of DNA by Watson and Crick in 1953. This analysis is supported a method that simulates both A-DNA and B-DNA X-ray images optically.
Lucas, Amand A. J. Chem. Educ. 2008, 85, 737.
Biophysical Chemistry |
Conformational Analysis |
Crystals / Crystallography |
X-ray Crystallography |
Nucleic Acids / DNA / RNA
Using Physical Models of Biomolecular Structures To Teach Concepts of Biochemical Structure and Structure Depiction in the Introductory Chemistry Laboratory  Gordon A. Bain, John Yi, Mithra Beikmohamadi, Timothy M. Herman, and Michael A. Patrick
Custom-made physical models of alpha-helices and beta-sheets, the zinc finger moiety, beta-globin, and green fluorescent protein are used to introduce students in first-year chemistry to the primary, secondary, and tertiary structure of proteins.
Bain, Gordon A.; Yi, John; Beikmohamadi, Mithra; Herman, Timothy M.; Patrick, Michael A. J. Chem. Educ. 2006, 83, 1322.
Amino Acids |
Proteins / Peptides |
Molecular Modeling |
Molecular Properties / Structure |
Nucleic Acids / DNA / RNA
A Unique Demonstration Model of DNA  Jonathan P. L. Cox
Describes a physical demonstration model of DNA for the classroom. The model comprises two types of building blocks that can be put together rapidly to produce an abstract structure that portrays several of the gross architectural features of idealized B-DNA.
Cox, Jonathan P. L. J. Chem. Educ. 2006, 83, 1319.
Molecular Biology |
Molecular Properties / Structure |
Student-Centered Learning |
Nucleic Acids / DNA / RNA
DNA Profiling of the D1S80 Locus: A Forensic Analysis for the Undergraduate Biochemistry Laboratory  D. Dewaine Jackson, Chad S. Abbey, and Dylan Nugent
Describes a laboratory exercise in DNA profiling that can be used to demonstrate four fundamental procedures: isolation of genomic DNA from human cells, use of the polymerase chain reaction to amplify DNA, separation of amplified DNAs on agarose and polyacrylamide gels, and quantitative analysis of data (while comparing two different gel separation techniques).
Jackson, D. Dewaine; Abbey, Chad S.; Nugent, Dylan. J. Chem. Educ. 2006, 83, 774.
Biological Cells |
Biotechnology |
Electrophoresis |
Forensic Chemistry |
Molecular Biology |
Quantitative Analysis |
Nucleic Acids / DNA / RNA
The Nature of Hydrogen Bonding  Emeric Schultz
Students use toy connecting blocks and Velcro to investigate weak intermolecular interactions, specifically hydrogen bonds.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 400A.
Noncovalent Interactions |
Hydrogen Bonding |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Covalent Bonding |
Molecular Modeling |
Molecular Properties / Structure
A 3D Model of Double-Helical DNA Showing Variable Chemical Details  Susan G. Cady
A 3D double-helical DNA model, made by placing beads on a wire and stringing beads through holes in plastic canvas, is described. Suggestions are given to enhance the basic helical frame to show the shapes and sizes of the nitrogenous base rings, 3' and 5' chain termini, and base pair hydrogen bonding. Students can incorporate random or real gene sequence data into their models.
Cady, Susan G. J. Chem. Educ. 2005, 82, 79.
Biotechnology |
Molecular Properties / Structure |
Molecular Modeling |
Nucleic Acids / DNA / RNA
Genomics: The Science and Technology Behind the Human Genome Project (by Charles R. Cantor and Cassandra L. Smith)  reviewed by Martin J. Serra
This book is an outgrowth of a series of lectures given by one of the former heads (CRC) of the Human Genome Initiative. The book is designed to reach a wide audience, from biologists with little chemical or physical science background through engineers, computer scientists, and physicists with little current exposure to the chemical or biological principles of genetics.
Serra, Martin J. J. Chem. Educ. 2000, 77, 33.
Biotechnology |
Nucleic Acids / DNA / RNA
Liver and Onions: DNA Extraction from Animal and Plant Tissues  Karen J. Nordell, Anne-Marie L. Jackelen, S. Michael Condren, George C. Lisensky, and Arthur B. Ellis*
This activity, which allows students to extract DNA from plant and animal cells, serves as a spectacular example of the complexity of biochemical structure and function and fits well with a discussion of nucleic acids, hydrogen bonding, genetic coding, and heredity. DNA extraction can also be used in conjunction with a discussion of polymers and their properties.
Nordell, Karen J.; Jackelen, Anne-Marie L.; Condren, S. Michael; Lisensky, George C.; Ellis, Arthur B. J. Chem. Educ. 1999, 76, 400A.
Hydrogen Bonding |
Molecular Properties / Structure |
Nucleic Acids / DNA / RNA
An Attack on the AIDS Virus: Inhibition of the HIV-1 Protease. New Drug Development Based on the Structure and Activity of the Protease and its Role in the Replication and Maturation of the Virus  Volker, Eugene J.
Article shows how research into the biochemistry of HIV may lead to a method for controlling its growth and maturation. This research illustrates some basic enzyme chemistry and holds student appeal due to the tie into current affairs.
Volker, Eugene J. J. Chem. Educ. 1993, 70, 3.
Bioorganic Chemistry |
Proteins / Peptides |
Medicinal Chemistry |
Molecular Biology
Nucleic acid structure and synthesis (Parish, J.H.)  Parker, Keith K.
A review of a software program designed to introduce current understanding of DNA and RNA structure and the dynamic processes of replication and transcription.
Parker, Keith K. J. Chem. Educ. 1988, 65, A298.
Molecular Biology
Strand polarity: Antiparallel molecular interactions in nucleic acids  Davidson, Michael W.; Wilson, W. David
121. The illustrations in many biochemistry textbooks indicates a parallel polarity in DNA, but in truth DNA is antiparallel.
Davidson, Michael W.; Wilson, W. David J. Chem. Educ. 1975, 52, 323.
Molecular Properties / Structure