TIGER

Journal Articles: 24 results
A-DNA and B-DNA: Comparing Their Historical X-ray Fiber Diffraction Images  Amand A. Lucas
This paper provides a comparative explanation of the structural content of the diffraction diagrams of A-DNA and B-DNA that facilitated the discovery of the double-helical structure of DNA by Watson and Crick in 1953. This analysis is supported a method that simulates both A-DNA and B-DNA X-ray images optically.
Lucas, Amand A. J. Chem. Educ. 2008, 85, 737.
Biophysical Chemistry |
Conformational Analysis |
Crystals / Crystallography |
X-ray Crystallography |
Nucleic Acids / DNA / RNA
Molecular Models of DNA  William F. Coleman
The Featured Molecules this month are components of DNA and include purine and pyrimidine;the four corresponding deoxyribonucleosides and deoxyribonucleotides; a two-base-pair fragment showing the AT and GC hydrogen-bonded complements; several small 24-base-pair DNA fragmentspolyAT, polyGC; and a random array of bases.
Coleman, William F. J. Chem. Educ. 2007, 84, 809.
Molecular Modeling |
Molecular Properties / Structure
Using Physical Models of Biomolecular Structures To Teach Concepts of Biochemical Structure and Structure Depiction in the Introductory Chemistry Laboratory  Gordon A. Bain, John Yi, Mithra Beikmohamadi, Timothy M. Herman, and Michael A. Patrick
Custom-made physical models of alpha-helices and beta-sheets, the zinc finger moiety, beta-globin, and green fluorescent protein are used to introduce students in first-year chemistry to the primary, secondary, and tertiary structure of proteins.
Bain, Gordon A.; Yi, John; Beikmohamadi, Mithra; Herman, Timothy M.; Patrick, Michael A. J. Chem. Educ. 2006, 83, 1322.
Amino Acids |
Proteins / Peptides |
Molecular Modeling |
Molecular Properties / Structure |
Nucleic Acids / DNA / RNA
A Unique Demonstration Model of DNA  Jonathan P. L. Cox
Describes a physical demonstration model of DNA for the classroom. The model comprises two types of building blocks that can be put together rapidly to produce an abstract structure that portrays several of the gross architectural features of idealized B-DNA.
Cox, Jonathan P. L. J. Chem. Educ. 2006, 83, 1319.
Molecular Biology |
Molecular Properties / Structure |
Student-Centered Learning |
Nucleic Acids / DNA / RNA
DNA Profiling of the D1S80 Locus: A Forensic Analysis for the Undergraduate Biochemistry Laboratory  D. Dewaine Jackson, Chad S. Abbey, and Dylan Nugent
Describes a laboratory exercise in DNA profiling that can be used to demonstrate four fundamental procedures: isolation of genomic DNA from human cells, use of the polymerase chain reaction to amplify DNA, separation of amplified DNAs on agarose and polyacrylamide gels, and quantitative analysis of data (while comparing two different gel separation techniques).
Jackson, D. Dewaine; Abbey, Chad S.; Nugent, Dylan. J. Chem. Educ. 2006, 83, 774.
Biological Cells |
Biotechnology |
Electrophoresis |
Forensic Chemistry |
Molecular Biology |
Quantitative Analysis |
Nucleic Acids / DNA / RNA
The Nature of Hydrogen Bonding  Emeric Schultz
Students use toy connecting blocks and Velcro to investigate weak intermolecular interactions, specifically hydrogen bonds.
Schultz, Emeric. J. Chem. Educ. 2005, 82, 400A.
Noncovalent Interactions |
Hydrogen Bonding |
Phases / Phase Transitions / Diagrams |
Water / Water Chemistry |
Covalent Bonding |
Molecular Modeling |
Molecular Properties / Structure
A 3D Model of Double-Helical DNA Showing Variable Chemical Details  Susan G. Cady
A 3D double-helical DNA model, made by placing beads on a wire and stringing beads through holes in plastic canvas, is described. Suggestions are given to enhance the basic helical frame to show the shapes and sizes of the nitrogenous base rings, 3' and 5' chain termini, and base pair hydrogen bonding. Students can incorporate random or real gene sequence data into their models.
Cady, Susan G. J. Chem. Educ. 2005, 82, 79.
Biotechnology |
Molecular Properties / Structure |
Molecular Modeling |
Nucleic Acids / DNA / RNA
Exploring the Structure–Function Relationship of Macromolecules at the Undergraduate Level  Belinda Pastrana-Rios
The undergraduate teaching initiatives discussed in this manuscript take advantage of a state-of-the-art visualization center devoted to teaching and research activities.
Pastrana-Rios, Belinda. J. Chem. Educ. 2004, 81, 837.
Molecular Properties / Structure |
Biophysical Chemistry |
Biotechnology
Modern Sport and Chemistry: What a Chemically Aware Sports Fanatic Should Know  Guinevere A. Giffin, Steven R. Boone, Renée S. Cole, Scott E. McKay, and Robert Kopitzke
Summary of the chemistry of a variety of sports and athletics; topics include golf, football, tennis, and hockey, as well as sports medicine, performance-enhancing drugs, sports supplements and drinks, and the couch potato.
Giffin, Guinevere A.; Boone, Steven R.; Cole, Renée S.; McKay, Scott E.; Kopitzke, Robert. J. Chem. Educ. 2002, 79, 813.
Consumer Chemistry |
Applications of Chemistry |
Molecular Properties / Structure
News from Online: What's New with Chime?  Liz Dorland
The Chime plug-in, resources, materials for student and classroom use, and structure libraries.
Dorland, Liz. J. Chem. Educ. 2002, 79, 778.
Molecular Properties / Structure
Demonstrating Chirality: Using a Mirror with Physical Models to Show Non-superimposability of Chiral Molecules with Their Mirror Images  Michael J. Collins
Using a mirror with physical models to show non-superimposability of chiral molecules with their mirror images.
Collins, Michael J. J. Chem. Educ. 2001, 78, 1484.
Chirality / Optical Activity |
Enantiomers |
Molecular Modeling |
Molecular Properties / Structure
The Other Double Helix--The Fascinating Chemistry of Starch  Robert D. Hancock and Bryon J. Tarbet
The chemistry of starch, particularly the structure of starch and starch granules.
Hancock, Robert D.; Tarbet, Bryon J. J. Chem. Educ. 2000, 77, 988.
Bioorganic Chemistry |
Carbohydrates |
Food Science |
Stereochemistry |
Applications of Chemistry |
Molecular Properties / Structure
Genomics: The Science and Technology Behind the Human Genome Project (by Charles R. Cantor and Cassandra L. Smith)  reviewed by Martin J. Serra
This book is an outgrowth of a series of lectures given by one of the former heads (CRC) of the Human Genome Initiative. The book is designed to reach a wide audience, from biologists with little chemical or physical science background through engineers, computer scientists, and physicists with little current exposure to the chemical or biological principles of genetics.
Serra, Martin J. J. Chem. Educ. 2000, 77, 33.
Biotechnology |
Nucleic Acids / DNA / RNA
Liver and Onions: DNA Extraction from Animal and Plant Tissues  Karen J. Nordell, Anne-Marie L. Jackelen, S. Michael Condren, George C. Lisensky, and Arthur B. Ellis*
This activity, which allows students to extract DNA from plant and animal cells, serves as a spectacular example of the complexity of biochemical structure and function and fits well with a discussion of nucleic acids, hydrogen bonding, genetic coding, and heredity. DNA extraction can also be used in conjunction with a discussion of polymers and their properties.
Nordell, Karen J.; Jackelen, Anne-Marie L.; Condren, S. Michael; Lisensky, George C.; Ellis, Arthur B. J. Chem. Educ. 1999, 76, 400A.
Hydrogen Bonding |
Molecular Properties / Structure |
Nucleic Acids / DNA / RNA
A Simple Demonstration of How Intermolecular Forces Make DNA Helical  Michael F. Bruist
The usage of stacked identical boxes can be used to demonstrate the helical shape of DNA by the effect of intermolecular forces.
Bruist, Michael F. J. Chem. Educ. 1998, 75, 53.
Molecular Properties / Structure |
Hydrogen Bonding |
Noncovalent Interactions |
Molecular Modeling
Fostering Curiosity-Driven Learning through Interactive Multimedia Representations of Biological Molecules  Abby L. Parrill and Jacquelyn Gervay
A series of QuickTime movies have been developed and are available over the World Wide Web (WWW) to help evoke student curiosity about organic chemistry. When viewed in series the movies start with a 'big picture' view based on crystallographic data and narrow in on the basic concepts needed to understand that scientific observation.
Parrill, Abby L.; Gervay, Jacquelyn. J. Chem. Educ. 1997, 74, 1141.
Molecular Properties / Structure |
Molecular Modeling
A method for building simple physical models: Representing the structures of nucleic acids  Benedetti, Giorgio; Morosetti, Stefano.
A low-resolution model made from inexpensive and common materials that retains the essentials structural features of a three-dimensional high-resolution structure.
Benedetti, Giorgio; Morosetti, Stefano. J. Chem. Educ. 1992, 69, 569.
Molecular Properties / Structure |
Molecular Modeling
Viewing stereo drawings  Srinivasan, A. R.; Olson, Wilma K.
Using stereo triptych representations in place of conventional stereo diagrams.
Srinivasan, A. R.; Olson, Wilma K. J. Chem. Educ. 1989, 66, 664.
Molecular Properties / Structure |
Stereochemistry
Prospects and retrospects in chemical education  Pauling, Linus
Pauling provides suggestions for what concepts to focus on in an elementary chemistry course.
Pauling, Linus J. Chem. Educ. 1980, 57, 38.
Covalent Bonding |
Descriptive Chemistry |
Molecular Properties / Structure
Non-covalent interactions: Key to biological flexibility and specificity  Frieden, Earl
Summarizes the types of non-covalent interactions found among biomolecules and how they facilitate the function of antibodies, hormones, and hemoglobin.
Frieden, Earl J. Chem. Educ. 1975, 52, 754.
Noncovalent Interactions |
Hydrogen Bonding |
Water / Water Chemistry |
Proteins / Peptides |
Amino Acids |
Molecular Properties / Structure |
Hormones
Strand polarity: Antiparallel molecular interactions in nucleic acids  Davidson, Michael W.; Wilson, W. David
121. The illustrations in many biochemistry textbooks indicates a parallel polarity in DNA, but in truth DNA is antiparallel.
Davidson, Michael W.; Wilson, W. David J. Chem. Educ. 1975, 52, 323.
Molecular Properties / Structure
The helix coil transition of DNA  Steinert, Roger; Hudson, Bruce
The design and use of a photometer to detect the transition of DNA from the double helix to random coil form.
Steinert, Roger; Hudson, Bruce J. Chem. Educ. 1973, 50, 129.
Molecular Properties / Structure |
Photochemistry |
Spectroscopy |
Laboratory Equipment / Apparatus
Construction of a framework model of DNA. A class project  Anderson, John A.
A model of DNA is constructed from plastic tubing as a class project.
Anderson, John A. J. Chem. Educ. 1972, 49, 329.
Molecular Modeling |
Molecular Properties / Structure
Teaching organic stereochemistry  Eliel, Ernest L.
Focusses on suggestions for the teaching of stereochemistry in general chemistry.
Eliel, Ernest L. J. Chem. Educ. 1964, 41, 73.
Molecular Properties / Structure |
Stereochemistry